
Citation: Wei, W.; Chen, W.; Xu, M.

Co-Saliency Detection of RGBD

Image Based on Superpixel and

Hypergraph. Symmetry 2022, 14, 2393.

https://doi.org/10.3390/sym

14112393

Academic Editors: Wei Feng, Qiang Li

and Gabriel Dauphin

Received: 28 September 2022

Accepted: 9 November 2022

Published: 12 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Co-Saliency Detection of RGBD Image Based on Superpixel
and Hypergraph
Weiyi Wei, Wenxia Chen * and Mengyu Xu

Department of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China
* Correspondence: 2020211950@nwnu.edu.cn; Tel.: +86-173-6162-3178

Abstract: For the co-saliency detection algorithm of an RGBD image that may have incomplete
detection of common salient regions and unclear boundaries, we proposed an improved co-saliency
detection method of RGBD images based on superpixels and hypergraphs. First, we optimized
the depth map based on edge consistency, and introduced the optimized depth map into the SLIC
algorithm to obtain the better superpixel segmentation results of RGBD images. Second, the color
features, optimized depth features and global spatial features of superpixels were extracted to
construct a weighted hypergraph model to generate saliency maps. Finally, we constructed a weighted
hypergraph model for co-saliency detection based on the relationship of color features, global spatial
features, optimized depth features and saliency features among images. In addition, in order to
verify the impact of the symmetry of the optimized depth information on the co-saliency detection
results, we compared the proposed method with two types of models, which included considering
depth information and not considering depth information. The experimental results on Cosal150
and Coseg183 datasets showed that our improved algorithm had the advantages of suppressing
the background and detecting the integrity of the common salient region, and outperformed other
algorithms on the metrics of P-R curve, F-measure and MAE.

Keywords: co-saliency detection; RGBD image; superpixel; hypergraph; edge consistency

1. Introduction

The visual attention mechanism allows humans to automatically capture the most
attractive part of a complex scene. Salient object detection, as a branch of computer
vision, aims to enable computers to automatically detect salient objects. It has been widely
used in vision applications, such as stereo matching [1], image segmentation [2,3], video
detection [4,5] and image quality assessment [6].

In salient object detection methods, superpixel segmentation is generally taken as a
part of image preprocessing in order to improve the efficiency of the algorithm. Generally
speaking, superpixel segmentation methods can be divided into graph-based methods [7,8]
and gradient ascent-based methods [9,10]. Felzenszwalb et al. [7] used the minimum span-
ning tree method to generate superpixels. However, the shape of the generated superpixels
is uncontrollable and the compactness is low. In [8], the feature space constructed by con-
tour features and texture features generates a feature-undirected graph, but this algorithm
speed is slow. Thus, the Turbopixels algorithm [9] based on geometric flow is proposed.
However, it cannot achieve high-quality segmentation for high resolution images. On the
basis of the merits of the Turbopixels algorithm, Achanta et al. [10] proposed the Simple
Linear Iterative Clustering (SLIC) algorithm; this algorithm used five-dimensional space for
feature extraction, and used a distance metric that incorporated color information and spa-
tial location information to improve the edge fit of the superpixel segmentation. Agoes [11]
used only depth information for superpixel segmentation, which solved the problem of
inaccurate superpixel segmentation using color information in very dark scenes, and also
proved the important role of depth information in superpixel segmentation. Subsequently,
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Li et al. [12] introduced depth information into the SLIC algorithm (SLIC-D). However, in
the above method, for images with a complex background or similar foreground colors to
the background, the result of superpixel segmentation does not fit the image edge due to
the existence of high-quality depth information in the edge consistency region between the
depth map and RGB map. Therefore, we used the edge consistency map to optimize the
depth map, and introduced the optimized depth map information into the SLIC algorithm
to achieve superpixel segmentation.

In recent years, there have been an increasing number of methods for the saliency
detection [13,14] of RGB images. Li et al. [13] proposed a novel hierarchical feature fu-
sion network and used the edge information extracted by the Laplace operator [15] for
supervised saliency detection. In addition, many researchers have also introduced graph
models into saliency detection methods. The basic idea is to first perform superpixel
segmentation on the input image, and then take the segmented superpixel blocks as the
nodes of the graph, and the similarity [16] between the superpixel blocks as the edges of
the graph; some nodes in the graph are marked according to different prior knowledge,
and finally, the saliency of the image is determined through the propagation of the graph
model. Common transmission mechanisms include markov, cellular automata [17] and
label propagation [18]. Saliency detection methods for simple graph models [19,20] can only
connect any two regions in the image, and it is difficult to capture higher-level relationships
among multiple regions, which makes saliency detection results inaccurate. To overcome
the disadvantages of the simple graph model, the hypergraph model [21–23] is proposed
and introduced into the saliency detection method. In addition, it is proved that depth
information helps to improve the recognition of salient objects [24–27]. Wang et al. [28]
proposed a multi-scale method to evaluate the quality of a depth map, and then combined
the quality evaluation results with saliency cues to guide the selective fusion of RGBD
images. In this paper, we introduce the optimized depth features to construct a weighted
hypergraph model for saliency detection.

The difference between the saliency detection method and the co-saliency detection
method is that co-saliency detection is the extraction of the common salient region in
multiple images. Two necessary conditions must be met in co-saliency detection: the object
is salient in a single image, and the object co-exists in a group of images. Saliency detection
is generally a preprocessing step of co-saliency detection, and the co-saliency detection
method is more challenging than the saliency detection method. In recent years, many
researchers have begun to study more challenging co-saliency detection methods [29–33].
In [29], a co-saliency model for image pairs is proposed. Jiang et al. [30] realized the
saliency detection of the deep neural network by using the continuous Markov random
field multi-layer model, so that the input image could achieve the saliency result map
without supervision.

However, what is described above is for the co-saliency detection of RGB images;
ignoring depth information has an important role in improving the recognition of co-salient
objects. Fu et al. [34] proposed a cluster-based co-saliency (CBCS) detection method. In [35],
a new deep descriptor is obtained by using the depth information, and an iterative co-
saliency framework (ICFS) is proposed. Cong et al. [36] proposed a co-saliency detection
method based on multi-constraint feature matching and cross label propagation (MCL).
Liu et al. [37] proposed a co-saliency method based on sample selection (BSS).

Although the above RGBD co-saliency detection model has achieved certain results,
in scenes with complex backgrounds or scenes with similar foreground and background
colors, there are problems such as the incomplete extraction of co-saliency regions, and
unclear boundaries. Therefore, an improved co-saliency detection algorithm for RGBD
images is proposed. Firstly, a fusion depth–quality RGBD image superpixel segmentation
is proposed to segment RGBD images into non-overlapping blocks. Secondly, the color
features, depth features after optimization and global spatial features of superpixels are
extracted to construct a weighted hypergraph model to generate saliency maps. Finally, a
novel weighted hypergraph model is constructed according to the color feature, optimized
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depth feature, global spatial feature and saliency feature relationship among images to
generate a co-saliency map. The main contributions are summarized as follows:

(1) A fusion depth–quality RGBD image superpixel segmentation was proposed. We
optimized the depth map based on the edge consistency between the RGB contour
map and the depth gradient map, and clustered adjacent pixels to generate superpix-
els by integrating the color information, pixel position information and optimized
depth information.

(2) A weighted hypergraph model for saliency detection was proposed. The general
hypergraph model was established by using a Fuzzy C-Means (FCM) clustering
algorithm. The number of categories in the clustering result was the edge of the
hypergraph, and the number of superpixels in each category was the vertex of the
hypergraph. Then, the weighted hypergraph model was constructed by using global
spatial feature similarity, color feature similarity and optimized depth feature similarity.

(3) We proposed a novel weighted hypergraph model for co-saliency detection. The gen-
eral hypergraph model was established by using the FCM clustering algorithm, and
then the weighted hypergraph model was constructed by using the relationships of
color features, global spatial features, optimized depth features and saliency features
among images.

2. Materials and Methods

In this paper, firstly the edge consistency map was used to optimize the depth map,
and the adjacent pixels were clustered by integrating Lab color space features, optimized
depth features and pixel position features to obtain superpixel blocks. Secondly, the color
features, global spatial features and optimized depth features of superpixels were extracted
to construct a weighted hypergraph model, and saliency maps were generated by a random
walk algorithm on the weighted hypergraph model. Finally, a weighted hypergraph
model was constructed based on the relationships of color features, global spatial features,
optimized depth features and saliency features among images, and a random walk on the
weighted hypergraph model to obtain the co-saliency map. The algorithm flow is shown in
Figure 1.
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Figure 1. The algorithm flow of the proposed co-saliency detection. 

2.1. Fusion Depth–Quality RGBD Image Superpixel Segmentation 

Figure 1. The algorithm flow of the proposed co-saliency detection.

2.1. Fusion Depth–Quality RGBD Image Superpixel Segmentation

Firstly, the RGB map is enhanced by using a bilateral filtering method, and the holes in
the depth map are filled by using a joint bilateral filtering method [38]. Then, the depth map
is optimized based on the depth quality evaluation method of edge consistency [28]. Finally,
the superpixel block is obtained by clustering the color feature, pixel position feature and
optimized depth feature of the image.
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In our method, the depth quality feature map is divided into two parts for analysis,
namely the edge area and the area not close to the edge of the image. At the edge area
of the image, the convolutional neural network-based holistically-nested edge detection
(HED) [28,39] method is used to generate the RGB contour map. Compared to other
methods of generating contour maps, the HED method can suppress the uncorrelated edges
inside the object to generate clear contour edges. To generate the initial edge consistency
(IEC) map [28] with the obtained RGB contour map (HED) and depth gradient map (DG),
the IEC is calculated as follows:

IEC = HED� DG, (1)

where � denotes the Hadamard product operation, and the result of the IEC is shown in
Figure 2.
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Figure 2. The process of generating edge consistency map.

High-quality depth areas often exist where edge consistency value is high; we deter-
mine a subgroup of anchored pixels (ATB in Figure 2) by using defined thresholds (Tb). The
approximate high quality depth region (EC−) [28] is determined by these anchor pixels,
and the EC− is calculated as follows:

EC−= G(pos(IEC− Tb ×mean(IEC))), (2)

where G denotes Gaussian operation [40], pos is a function that assigns zero to its negative
input and 1 to the remaining positive values, mean returns a matrix of the same size matrix
as IEC, with each row containing the average of all the elements in each column, Tb denotes
threshold of 20.

To generate the complete D quality map, space-weighted operations [28] are used
to determine the regions that are not close to the edges, which include feature similarity
measure (exp) and spatial weighting range (φ) [28]. Among them, the common thread [41]
is used to measure the feature similarity. The spatial weighting range (4) is adaptively
determined by a subgroup of anchored pixels (ATC in Figure 2), in which these pixels are
determined by using a threshold (Tc). Specifically, in order to improve the computational
efficiency, we conduct the spatial-weighting over superpixel [10].

EC(spj)←
∑

spi∈φ
EC−(spi) · exp(−w

∣∣∣∣v(spj), v(spi)
∣∣∣∣2)

∑
spi∈φ

exp(−w
∣∣∣∣v(spj), v(spi)

∣∣∣∣2) , (3)

φ =
{

spi :||p(spj), p(spi)
∣∣∣∣2 ≤ min(

∣∣∣∣spj, pos(IEC− Tc ·mean(IEC)
∣∣∣∣)}, (4)
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where spi denotes the i-th superpixel, spj denotes the j-th superpixel, Tc denotes threshold
of 30, w denotes strength parameter, ||.||2 denotes Euclidean distance, v(.) and p(.) represent
the average value and center position of superpixels on RGB map.

Generate optimized depth maps based on weighted fusion of the complete edge
consistency map with the depth map in Equation (5).

h(x) = (1− α) f0(x) + α f1(x), (5)

where α denotes the weight 0.6, f 0 (x) and f 1 (x), respectively, represent the depth map and
the corresponding edge consistency map, h(x) denotes optimized depth map. The process
of optimizing the depth map is shown in Figure 3.

Symmetry 2022, 14, x FOR PEER REVIEW 5 of 13 
 

 

 2= :|| ( ), ( ) || min(|| , ( ( ) ||)i j i j csp p sp p sp sp pos IEC T mean IEC  −  , (4) 

where isp  denotes the i-th superpixel, 
jsp  denotes the j-th superpixel, Tc denotes 

threshold of 30, w  denotes strength parameter, 
2|| . ||  denotes Euclidean distance, v(.) 

and p(.) represent the average value and center position of superpixels on RGB map.  

Generate optimized depth maps based on weighted fusion of the complete edge con-

sistency map with the depth map in Equation (5).  

0 1( ) (1 ) ( ) ( )h x f x f x = − + , (5) 

where   denotes the weight 0.6, f0 (x) and f1 (x), respectively, represent the depth map 

and the corresponding edge consistency map, h(x) denotes optimized depth map. The 

process of optimizing the depth map is shown in Figure 3. 

    

(a) (b) (c) (d) 

Figure 3. The process of optimizing depth map. (a) RGB map; (b) Depth map; (c) Final EC; (d) Op-

timized depth map. 

Since pixel depth provides depth information for objects, when processing images 

with complex backgrounds or similar foreground and background colors, the combina-

tion of depth information and color information can obtain relatively compact segmenta-

tion regions in the clustering process. Therefore, the optimized depth value of pixels is 

introduced into the superpixel segmentation in this paper, which increases the traditional 

SLIC [10] superpixel segmentation algorithm to 6 dimensions. We want to obtain super-

pixels of size r r , but if we restrict the search range of seed points to 2 2r r , this can 

accelerate the convergence of the algorithm. For each searched pixel, the distance between 

it and the neighboring pixel is calculated. The normalized distance based on color feature, 

optimized depth feature and spatial location feature is calculated as follows: 

2 2 2

,

|| || || || || ||
+i k i k i k

i k

c d l

D
N N N

     − − −
= +     

     

c c d d l l
, (6) 

r /N K= , (7) 

where vector c denotes the three-dimensional color feature vector, vector d denotes the 

optimized depth feature vector, vector l denotes the two-dimensional spatial position co-

ordinates. k denotes the cluster center, i is each pixel in the 2 2r r  neighborhood pixel of 

the cluster center. 
cN , 

dN  and 
lN  are the distance-normalized constants of the color, 

depth and space, respectively. N denotes the number of pixels; K is the number of super-

pixels. 

In our study, the number of superpixels is set to 300; we compare the proposed 

method with two representative methods, which include SLIC [10] and SLIC-D [12]. As 

in Figure 4, it can be seen from the part of the yellow rectangular frame that the proposed 

superpixel segmentation method not only suppresses irrelevant edges inside the object, 

but also improves the object edge fit. 
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Since pixel depth provides depth information for objects, when processing images
with complex backgrounds or similar foreground and background colors, the combination
of depth information and color information can obtain relatively compact segmentation re-
gions in the clustering process. Therefore, the optimized depth value of pixels is introduced
into the superpixel segmentation in this paper, which increases the traditional SLIC [10]
superpixel segmentation algorithm to 6 dimensions. We want to obtain superpixels of size
r× r, but if we restrict the search range of seed points to 2r× 2r, this can accelerate the
convergence of the algorithm. For each searched pixel, the distance between it and the
neighboring pixel is calculated. The normalized distance based on color feature, optimized
depth feature and spatial location feature is calculated as follows:

Di,k =

√(
||ci − ck||

Nc

)2
+

(
||di − dk||

Nd

)2
+

(
||li − lk||

Nl

)2
, (6)

r =
√

N/K, (7)

where vector c denotes the three-dimensional color feature vector, vector d denotes the
optimized depth feature vector, vector l denotes the two-dimensional spatial position
coordinates. k denotes the cluster center, i is each pixel in the 2r× 2r neighborhood pixel of
the cluster center. Nc, Nd and Nl are the distance-normalized constants of the color, depth
and space, respectively. N denotes the number of pixels; K is the number of superpixels.

In our study, the number of superpixels is set to 300; we compare the proposed method
with two representative methods, which include SLIC [10] and SLIC-D [12]. As in Figure 4,
it can be seen from the part of the yellow rectangular frame that the proposed superpixel
segmentation method not only suppresses irrelevant edges inside the object, but also
improves the object edge fit.
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Figure 4. Comparison of superpixel segmentation results of different algorithms (K = 300). (a) RGB
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2.2. RGBD Image Saliency Detection Based on Superpixel and Hypergraph

Firstly, the RGBD image is divided into superpixel blocks. Secondly, we use the FCM
clustering algorithm to construct a general hypergraph model. The number of categories of
the clustering results is taken as the edges of the hypergraph, and the number of superpixels
in each category is taken as the vertices of the hypergraph. Finally, the global spatial feature
similarity, color feature similarity and optimized depth feature similarity are used to
construct the weighted hypergraph model. The vertex and hyperedge weighting process in
saliency detection method is shown in Figure 5.
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2.2.1. Similarity of Color Feature

According to prior knowledge, the color of the salient object is significantly different
from that of other regions. We calculated the Euclidean distance [42] between the central
superpixel and remaining superpixel color features to represent the similarity of the color
features. The formula is as follows:

Fc = (1/e)||Ci−Ck ||2 , (8)

where Ck and Ci denote the center superpixel and the rest of the superpixel color features,
and Fc is the normalized color feature similarity.

2.2.2. Similarity of Depth Feature

Considering that the depth values of salient objects are significantly different compared
with other regions, we calculated the Euclidean distance between the central superpixel
and remaining superpixel to denote the similarity of the depth features in Equation (9).

Fd = (1/e)||Di−Dk ||2 , (9)
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where Dk and Di denote the center superpixel and the rest of the superpixel depth features,
Fd is the normalized depth feature similarity.

2.2.3. Global Spatial Feature Similarity

Considering that the center of the image is usually the salient, we calculated the
Euclidean distance between the central superpixel and the remaining superpixels to denote
the spatial position relationship of the image. The formula is as follows:

FL =

{
1

||Li−Lk ||2
Li 6= Lk

1 otherwise
, (10)

2.2.4. A Weighted Hypergraph Model Was Constructed for Saliency Detection

The weight value of vertices is calculated by integrating the color features of the super-
pixels, the optimized depth features and the spatial position relation. The average weight
value of all the vertices contained in a hyperedge is used as the weight of the hyperedge to
construct the weighted hypergraph model. The vertex and hyperedge weighting process is
used in the saliency detection method, as in Equations (11) and (12).

WV = (βF2
c + δF2

d + γF2
l ), (11)

WE =
ηWV

m
, (12)

where β, δ and γ are the weight of color feature, optimized depth feature and spatial
position feature, their values, respectively, set to 1/3, WV is the vertex weight value, η is
the FCM cluster result, m is the number of vertices contained in a hyperedge, WE is the
hyperedge weight value.

We first use the random walk algorithm to rank the importance of superpixels in the
weighted hypergraph model to obtain the saliency map, and then map the superpixel-level
saliency map to the pixel-level saliency map. A comparison of the saliency detection
results of different algorithms is shown in Figure 6. We compared the proposed method
with CBCS [34], ICFS [35] and MCL [36]. The results show that the CBCS [34] mistakenly
detects some complex backgrounds as salient objects, ICFS [35] and MCL [36] do not detect
salient objects completely, for example, the beak and claws of the bird are not detected.
However, the RGBD image saliency detection based on the superpixel and hypergraph
models not only displays the beak and feet of the bird, but also detects the detailed part of
the bird’s eye.
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2.3. RGBD Image Co-Saliency Detection Based on Superpixel and Hypergraph

In order to detect the common salient object in the image group, it is necessary to
consider not only the color features, global spatial features and optimized depth features
of a single image, but also the features and relations of salient objects among images.
Although the spatial location relationship of co-salient objects is dissimilarity, the color
features and depth features are often very similar. Therefore, when constructing the
weighted hypergraph model with co-saliency detection, not only the color features in single
image, optimized depth features, global spatial features and saliency features, but also the
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color similarity and optimized depth feature similarity among images should be taken
into account. The weighted process of vertex and hyperedge in co-saliency detection is
shown in Figure 7. Finally, we used the random walk algorithm to rank the importance
of superpixels in the weighted hypergraph model to obtain the co-saliency map, and then
map the superpixel-level co-saliency map to the pixel-level co-saliency map.
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2.3.1. Vertex Weight

When constructing the weighted hypergraph model for co-saliency detection, all input
images should be divided into two groups; the first group is any pair of RGBD images, and
the second group is all the remaining image pairs. When co-saliency detection is carried
out to construct the weighted hypergraph model, the vertex weight value is calculated
as follows:

WV
′(j) = FL

1(j).
∑M

j′=1 exp(−µ||C1
j − C2

j′ ||2 + ||D
1
j − D2

j′ ||2) · s
2
0(j′)

∑M
j′=1 exp(−µ(||C1

j − C2
j′ ||2 + ||D

1
j − D2

j′ ||2))
, (13)

where FL
1(j) denotes the spatial position feature in the first group of images, C1

j and

D1
j , respectively, denote the Lab color space feature and the optimized depth feature of

superpixel j in the first group of images, C2
j′ and D2

j′ , respectively, denote Lab color space

features and optimized depth features of superpixel j′ in the second group of images, s2
0(j′)

denotes the salient feature of superpixel j′ in the second group of images. µ is set to 20.

2.3.2. Hyperedge Weight

When constructing the weighted hypergraph model for co-saliency detection, the
hyperedge weight value is calculated based on the vertex weight value as shown in the
following Equation (14):

W ′E =
ηW ′v

m
, (14)

where η is FCM clustering result, m is the number of vertices contained in a hyperedge,
and W ′E is the weight value of the hyperedge for co-saliency detection.

3. Experimental Results
3.1. Dataset and Evaluation Metrics

We chose the Coseg183 dataset and Cosal150 dataset to test our method. The Cosal150
dataset contains a total of 150 images and consists of 21 image groups. The Coseg183
dataset contains a total of 183 images and consists of 16 image groups.

The precision-recall (P-R) curve, F-measure and mean absolute error (MAE) are used
to evaluate the performance of our method. Firstly, the co-saliency map is transformed into
a binary map, and then the transformed binary map is compared with the ground truth to
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obtain precision (P) and recall (R). Finally, the P-R curve is characterized by the relationship
between the P value and the R value under different thresholds. The F-measure [35] is
defined as the weighted average of the P value and the R value, which is calculated using
the following formula:

F−measure =
(1 + λ2)P · R

λ2 · P + R
, (15)

where the value of λ2 is set to 0.3 to put more emphasis on precision.
The MAE [36] measures the difference between the saliency map and ground truth,

which is calculated using the following formula:

MAE =
1

WH

W

∑
x=1

H

∑
y=1
|S(x, y)− G(x, y)|, (16)

where W and H denote the width and height of the input image, S is to obtain the co-
saliency map using the proposed method and convert the co-saliency map into a binary
map, G is the ground truth in the dataset.

3.2. Visual Comparison with Different Methods

We compared the proposed method with CBCS [34], BSCA [17], HS [13], ICFS [35],
MCL [36] and BSS [37]. Figure 8 is a comparison of the co-saliency detection results of the
different methods; from the red car image group and white cap image group, it can be seen
that the HS and BSCA for a single image cannot detect the co-saliency object accurately. In
the red car image group, the common salient object is the red car, but some non-common
salient objects such as blue cars and green cars are detected as common salient objects.
In the white cap image group, the common salient object is the white cap, but some non-
common salient objects such as cups and bowls are detected as common salient objects. In
addition, the background of the two groups of images is also not effectively suppressed.
Compared with other methods, our method can suppress the background more effectively,
and the co-saliency object detection is more complete. This is because the color information,
pixel position information and optimized depth information are taken into account when
generating superpixels, and the color feature, the optimized depth feature and the global
space feature of the image are taken into account comprehensively when constructing the
weighted hypergraph model.
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(a) (b) (c) (d) (e) (f) (g) (h) (i) 

Figure 8. Visual comparison of co-saliency detection results of different methods. (a) RGB map;
(b) Depth map; (c) Ground truth; (d) CBCS; (e) BSCA; (f) HS; (g) ICFS; (h) MCL; (i) Proposed.

3.3. Quantitative Comparison with Different Methods

Figure 9 is the P-R curve of the different methods on the two datasets. On the Cosal150
dataset, our method has high accuracy in general, but there are a few that fall faster than
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the MCLS algorithm. On the Coseg183 dataset, the P-R curve of our method is in the upper
right of the other algorithms, which denotes that our method has higher accuracy than
the other methods. Figure 10 is the Comparison of the F-measure values of the different
methods on the two datasets. On the Cosal150 dataset, it can be seen that our method
performs the best, with an F-measure value of 0.921. Meanwhile, our method achieved the
best performance on the Coseg183 dataset.
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Table 1 is the comparison of the MAE values of the different methods on the two
datasets. On the Cosal150 dataset, the results show that the proposed method outperforms
other algorithms except for the BSS algorithm. On the Coseg183 dataset, the MAE value
of the proposed method is the minimum, which means that the results of the proposed
method are closer to the ground truth than other methods.

Table 1. Comparison of MAE values of different methods on two datasets.

Cosal150 Dataset Coseg183 Dataset

MCL 0.137 0.098
ICFS 0.179 0.163
CBCS 0.215 0.116
BSS 0.089 0.081

Proposed 0.147 0.079
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4. Conclusions

Co-saliency detection of an RGBD image based on superpixels and hypergraphs is
proposed, because it is obvious that is achieved in this paper. Our work is focused on
integrating the optimized depth cue to construct a weighted hypergraph model and mining
the similarity relationship among multiple images. On the one hand, the proposed super-
pixel segmentation method uses six-dimensional space (three-dimensional Lab color space,
two-dimensional XY coordinate space and optimized depth space) for feature extraction.
On the other hand, based on the segmentation results of RGBD image superpixels, a novel
weighted hypergraph model is constructed for co-saliency detection, which extracts the
color features, optimized depth features, spatial location features and saliency features of
superpixels. The random walk algorithm is used to generate the co-saliency map on the
weighted hypergraph model. Through experimental validation on the Coseg183 dataset
and the Cosal150 dataset, the results show that the proposed method outperforms other
state-of-the-art saliency methods and co-saliency methods.
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