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Abstract: To address the problem that traditional models are not effective in predicting atmospheric
temperature, this paper proposes an atmospheric temperature prediction model based on symmetric
BiLSTM (bidirectional long short-term memory)-Attention model. Firstly, the meteorological data
from five major stations in Beijing were integrated, cleaned, and normalized to build an atmospheric
temperature prediction dataset containing multiple feature dimensions; then, a BiLSTM memory
network was used to construct with forward and backward information in the time dimension. And
the limitations of the traditional LSTM method in long-term time series analysis were solved by
introducing the attention mechanism to achieve the prediction analysis of atmospheric temperature.
Finally, by comparing the prediction results with those of BiLSTM, LSTM-Attention, and LSTM, it is
revealed that the proposed model has the best prediction effect, with a MAE value of 0.013, which
is 0.72%, 0.41%, and 1.24% lower than those of BiLSTM, LSTM-Attention, and LSTM, respectively;
the R2 value reaches 0.9618, which is 2.73%, 1.23%, and 4.98% higher than BiLSTM, LSTM-Attention,
and LSTM, respectively. The results show that the symmetrical BiLSTM-Attention atmospheric
temperature prediction model can effectively improve the prediction accuracy of temperature data,
and the model can also be used to predict other time series data.

Keywords: bidirectional long short-term memory network; attention mechanism; machine learning;
temperature prediction

1. Introduction

The study of temperature prediction affects many fields, and the ability to accurately
predict atmospheric temperatures is important for urban flood and drought prevention,
resource use, and agricultural development; as such, this has become a topic that needs
to be addressed and further researched [1,2]. In response to this, early researchers have
developed models to predict atmospheric temperatures based on historical meteorological
data combined with statistical knowledge [3], which are more interpretable than people’s
subjective experiences. However, the accuracy of such prediction methods is not high, and
atmospheric temperature data are generally subject to a variety of different influencing
factors, and the data exhibit strong randomness and uncertainty [4]. The use of neural
network models trained on a large amount of historical data will allow for more accurate
learning of data fluctuations and better extraction of data features, thus largely improving
the accuracy of predictions [5].

For historical data with time series characteristics, people have started to use time
series prediction models to carry out temperature prediction, such as LSTM (long short-
term memory) [6–8], which are based on the memory function of neural networks, and can
achieve good temperature data prediction for a large amount of historical data in a time
series. However, symmetry-based BiLSTM networks can better avoid the shortcomings of
unidirectional LSTM networks. The attention mechanism is widely used to improve the
problem of unfocused and time-consuming feature extraction by allocating computational
resources to neural networks. Therefore, in the field of time series prediction, the attention
mechanism is also of very good use [9].
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In order to further improve the prediction accuracy of temperature data, this paper
combines a BiLSTM network with an attention mechanism and proposes a BiLSTM (bidi-
rectional long short-term memory)-Attention model, with the following main innovations.

(1) Firstly, by extracting time series information in both directions through a bidirectional
long short-term memory network with symmetry, the problem of forward and back-
ward time dependence of series data is well solved, and more accurate prediction
results can be obtained through the training of the neural network.

(2) Secondly, by adding an attention mechanism to the network and using it to reasonably
allocate the attention resources in the model, the impact of key sequence information
on the prediction results during temperature prediction is highlighted.

The prediction analysis is carried out for several districts in Beijing, and finally com-
pared with several models, such as the BiLSTM, to verify the effectiveness of the BiLSTM-
Attention model, which will be a good guide for meteorologists to conduct more complete
temperature prediction research.

The article is organized as follows. Section 2 of the article describes the related work.
Section 3 introduces the dataset used in this paper. Section 4 introduces the methods used
in this paper, mainly including BiLSTM, the attention mechanism, and BiLSTM-Attention
model. Section 5 presents the analysis and discussion of experimental results, and Section 6
is the summary and outlook.

The overall framework is shown in Figure 1. This paper selects the temperature
datasets of five major stations in Beijing (China), constructs effective features based on the
characteristics of temperature data, and divides the training set and test set proportionally;
then, the training set is input into the constructed temperature prediction model for training,
and then the test set is input into the already trained model for testing, after which the data
need to be renormalized to finally obtain the prediction results of the temperature data.
The model is also analyzed and compared with BiLSTM, the LSTM-Attention model, and
LSTM model, which finally proves the certain superiority of the BiLSTM-Attention model.
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2. Literature Review

Several scholars have already made many contributions to the field of temperature
prediction [10,11]. More traditional machine learning methods have been used in the
past [12,13]. Zhou et al. proposed a grey-Markov temperature prediction model based
on seasonal indices based on the interannual cyclical and seasonal variation patterns of
historical temperature data, and obtained more accurate prediction results by predict-
ing the average temperature of Guangzhou city [14]. Raviprased et al., formulated a
compound-specific prediction model that could better predict the critical temperature
of superconductors to solve the problem of predicting the effectiveness of the decision
tree approach in this area, which was finally demonstrated after comparison with other
multiple models [15]. Hou et al. developed a BP (back propagation) neural network model
for climate change prediction by integrating factors such as atmospheric CO2 emissions,
heat dissipation of the Earth, and changes in ocean surface temperature over the years,
and produced a more accurate prediction of temperature changes in the future years [16].
Cai et al. established an SVM (support vector machine) model to predict the indoor tem-
perature of buildings, and compared it with a BP neural network, and found that the SVM
prediction accuracy effect was better than that of the BP neural network, which proved
the applicability of SVM prediction method in the field of prediction [17]. From the above
studies related to temperature prediction, it can be seen that prediction is mostly based
on traditional machine learning models [18–20], which can better achieve the prediction
of temperature data, but the prediction accuracy of the model is affected by many factors,
such as the quality of the data, the extraction of data features, the configuration of model
parameters, etc., and its prediction accuracy needs to be further improved.

Among existing temperature prediction studies, time series prediction models rep-
resented by LSTM networks have been widely used in temperature prediction, and can
reliably predict long-term time series data [21]. Qiu et al., used LSTM models to predict
daily river temperatures and, through experimental analysis of data from the Three Gorges
reservoir system, captured the daily average variation of the thermal system more accu-
rately, demonstrating that the LSTM outperformed other methods in predicting the daily
average water temperature of rivers [22]. MASOOMA et al. used an LSTM model based
on a spatial attention mechanism to accurately capture the space and time of multiple me-
teorological features to predict temperature, and discovered that spatial feature attention
captured the interaction of input features on target features, and the study maintained a
better prediction accuracy [23]. Song et al., proposed a temporal prediction model, based
on LSTM and Kalman filtering, for predicting observations in atmospheric quality datasets,
and found that the LSTM–Kalman model had better prediction results when compared with
the LSTM model [24]. Liu et al. analyzed the time dependence of ocean temperature vari-
ability at multiple depths, and proposed a new method for ocean temperature time series
prediction, namely the time-dependent ocean-temperature-prediction-based long short-
term memory network (TD-LSTM), which confirmed that the TD-LSTM outperformed
other methods and performed well in different regions and depths [25].

The above studies on temperature prediction are summarized in Table 1. All of the
above methods provide good solutions for temperature prediction.

Table 1. Comparison of temperature prediction methods.

Literature Method Overall Evaluation of the Method

[17] Grey-Markov Combining longitudinal and cross-sectional analysis for non-stationary data
prediction, but the method is traditional and the accuracy is not high.

[18] Decision Trees
Multiple conventional and non-conventional models are used for superconductor

critical temperature prediction, demonstrating the benefits of decision trees, however,
the prediction accuracy needs to be improved.
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Table 1. Cont.

Literature Method Overall Evaluation of the Method

[19] BP
A wide range of atmospheric factors affecting temperature change are considered to
predict climate conditions over the next 25 years, but the method is single and the

accuracy needs to be improved.

[20] SVM
A support vector machine SVM model for indoor temperature prediction is shown to

outperform a back propagation neural network BPNN model, but the model is
traditional, the contrast is single.

[22] LSTM
Neural networks predict daily water temperatures and quantify trends, resulting in a
significant improvement over traditional models, however, the model is single and the

feature extraction is not sufficient.

[23] LSTM-Attention Accurately capture the spatial and temporal relationships of multiple meteorological
features, but the feature extraction is not sufficient.

[24] LSTM-Kalman Kalman filtering added to data series processing, however, the data features are not
sufficiently extracted and the prediction accuracy needs to be verified.

[25] TD-LSTM
A time-varying parameter matrix based on the fusion of historical observations is

proposed, but more models need to be compared and the accuracy can be
further improved.

3. Dataset Construction and Data Quality Improvement
3.1. Data Sources and Their Visualization

This paper focuses on the prediction of Beijing temperature data, which were taken
from the multi-site meteorological dataset of Beijing in the machine learning database UCI
(University of California-Irvine). A total of five major sites were selected for the actual
study; the five sites are Changping, Dingling, Tiantan, Huairou, and Shunyi. Each site
contains atmospheric monitoring data from March 2013 to February 2017, and each site has
about 35,064 pieces of data; the data therefore contain a total of 35,064 × 5 samples. The
dataset is recorded for each characteristic value for 24 h within each day. The sample data
are shown in Table 2.

Table 2. Tiantan Station air monitoring dataset (sample).

No Year Month Day Hour PM2.5 PM10 SO2 NO2 CO O3 PRES DEWP RAIN WSPM TEMP Station

1 2013 3 1 0 6 6 4 8 300 81 1024.5 −21.4 0 5.7 −0.5 Tiantan
2 2013 3 1 1 6 29 5 9 300 80 1025.1 −22.1 0 3.9 −0.7 Tiantan
3 2013 3 1 2 6 6 4 12 300 75 1025.3 −24.6 0 5.3 −1.2 Tiantan
4 2013 3 1 3 6 6 4 12 300 74 1026.2 −25.5 0 4.9 −1.4 Tiantan
5 2013 3 1 4 5 5 7 15 400 70 1027.1 −24.5 0 3.2 −1.9 Tiantan

PM2.5, PM10, SO2, NO2, CO, and O3 are air pollutant indicators in Table 1. Sev-
eral other features in Table 1 are meteorological terminology, and the meaning of these
terminologies is explained in Table 3.

Table 3. The meaning of the eigenvalues.

Features Eigenvalue Meaning

PRES Atmospheric pressure intensity
DEWP Dew point temperature
RAIN Rainfall
WSPM Wind speed
TEMP Atmospheric temperature
Station Five stations

Based on the year and temperature characteristics provided in the dataset, a graph of
the average temperature trend for 2013–2016 can be obtained, as shown in Figure 2. In the
year 2013, the highest average temperature value (15.96 ◦C) was observed, and the average
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temperature showed a decreasing trend in 2014–2015, while the average temperature
increased in 2016.
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3.2. Data Cleaning
3.2.1. Removing Invalid Attributes

The dataset of Tiantan City is used as the main sample for the experiment, which has
a total of 35,064 records and 17 attributes. The attributes that are not relevant to this data
prediction, such as “No”, and “station”, can be deleted directly when conducting data
pre-processing.

3.2.2. Fill Missing Values

The missing values in the original dataset are indicated by “NA”, and the missing
values of the valid features are counted. We found that there are a certain number of
missing values for each feature; for example, 597 missing values for PM10, 1118 missing
values for SO2, 744 missing values for NO2, etc. The results of missing value statistics are
shown in Figure 3. According to the missing value statistics, the missing values are filled
by mean interpolation.
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3.3. Feature Importance Analysis

In general, feature importance measures the weight and value of a feature in the
construction of a model; the higher the score of a feature used as an input, the more
important it is relatively, and conversely, the less important it is. The importance scores
for the above features of PM2.5, PM10, SO2, etc., are ranked, as shown in Figure 4. It
can be seen that DEWP (dew point temperature) has the highest importance score, PRES
(atmospheric pressure) has the next highest importance score, and CO (carbon monoxide)
and RAIN (rainfall) have relatively low importance scores.
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3.4. Data Normalization Process

The data prediction accuracy is affected by the data dimensionality, and to eliminate
the effect of dimensionality on the experimental results, the data need to be normalized.
The normalization operation can transform all the data with magnitudes into dimensionless
data, i.e., all lie within [0, 1] [26], and can also improve the training accuracy and speed of
the model. In this paper, the minimum–maximum normalization conversion was performed
for PM2.5, PM10, CO, O3, TEMP, DEWP, and RAIN attributes, and the conversion method
is shown in Equation (1).

x∗ =
x− xmin

xmax − xmin
(1)

In the above equation, xmax is the maximum data in the column, and xmin is the
minimum data in the column. x∗ is the value of the entire column normalized by the
highest value.

The feature box visualization type plots before and after normalization are shown in
Figures 5 and 6, respectively. It can be seen from the figures that the original eigenvalue
data fluctuate greatly, and the normalized eigenvalue distributions are all between [0, 1], at
which point, the data need to be restored using the inverse normalization operation.
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4. Temperature Data Series Prediction Method
4.1. BiLSTM Network

The LSTM network is a deep learning network model evolved from a recurrent neural
network [27] that can improve some shortcomings in the recurrent neural network model,
such as gradient disappearance [28]. The LSTM network contains a total of four structures:
memory unit, forgetting gate ft, input gate it, and output gate ot Its structure is shown in
Figure 7.
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As seen in Figure 6, the LSTM network has added cell states with three gate compo-
nents compared to the RNN (recurrent neural network) [29]. The forgetting gate ft in the
LSTM structure is responsible for determining what percentage of information is left in
that network, and is calculated as follows:

ft = σ
(

W f · [ht−1, xt] + b f

)
(2)

In the above equation, xt is the input sequence; ht−1 is the state memory of the previous
moment; σ(·) is the sigmoid activation function; W f is the weight matrix of the forgetting
gate; b f is the bias of the forgetting gate; and ft is the state of the forgetting gate.

The input gate it is responsible for selectively memorizing the new information in the
cell state, and is calculated as follows:

it = σ(Wi · [ht−1, xt] + bi) (3)

C̃t = tanh(Wc · [ht−1, xt] + bc) (4)

Ct = ft ∗ Ct + it ∗ C̃t (5)

In the above equation, C̃t is the cell state candidate; Ct is the new cell state; tanh(·) is
the hyperbolic tangent function; Wi is the weight matrix of the input gate; Wc is the weight
matrix of the cell state; bi is the bias of the input gate; bc is the bias of the cell state; and it is
the state of the input gate.

The output gate ot is responsible for determining the current state of the output
information, and is calculated as follows:

ot = σ(Wo · [ht−1, xt] + bo) (6)

ht = ot ∗ tanh(Ct) (7)

In the above equation, Wo is the weight matrix of the output gate; bo is the bias of the
output gate; and ot is the state of the output gate.

In this paper, we focus on the BiLSTM model, which is a bidirectional long short-
term memory model combining forward and backward information, i.e., it can process
information in both directions. Both forward and backward directions have hidden layers,
and these hidden layers can extract the forward and backward key information together in
a given time [30]; thus, we can obtain more adequate temperature data features and help to
improve the prediction accuracy of the model. The BiLSTM network structure is shown in
Figure 8.
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4.2. Attentional Mechanisms

The attention mechanism is mainly designed to quickly extract more valid information
from the large volume of information, reduce the influence of invalid information on the
training effect of the model, and achieve the purpose of improving prediction accuracy [31].

There are generally hard and soft attention mechanisms for machine learning. The
hard attention mechanism is a random selection of the information in the input sequence.
Since the selection probability is difficult to quantify, which increases the difficulty of model
training, in this paper, we choose to use a soft attention mechanism. Combined with the
sequence data information, the input information is calculated as a weighted average, and
then input into the network for training, which can effectively improve the attention of the
model to the input information, and achieve a reasonable allocation of resources, which is
suitable for predicting temperature sequence data in this paper [32]. The flow structure of
the soft attention mechanism is shown in Figure 9.
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In Figure 9, xi is the input of the BiLSTM layer embedded with the attention mech-
anism; hi is the output of the BiLSTM layer; αi is the different weights of the different
channels of the BiLSTM obtained after making calculations based on the attention mecha-
nism; y is the final output of the neural network model.

The main formulas of the attentional mechanism are as follows:

et = utanh(w · ht + b) (8)

αt =
exp(et)

∑i
t=1 αt · ht

(9)

st =
i

∑
t=1

αt · ht (10)

where et is the attention distribution value at moment t; u and w are weight coefficients; b is
bias; αt is the different weights of different channel information in BiLSTM; st is the output
ht and weight matrix of BiLSTM layer after weighting.

The attention mechanism is mainly manifested in the operation of the weight coeffi-
cients of different channels, which can be updated and optimized to adjust the allocation
ratio of the model to the channel information [33], producing the best training effect of the
model in the current computing environment.
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4.3. BiLSTM-Attention Model

Combined with the temperature dataset used in this paper, the BiLSTM-Attention
model is proposed, which can fully utilize the advantages of the bidirectional memory
network and the attention mechanism. The BiLSTM network structure can process the
input of the network based on both forward and backward directions simultaneously,
and obtain the information of the previous moment and the next moment at a particular
time. Moreover, BiLSTM has a unique bidirectional network structure, so it can extremely
enhance the information memory of the model at the beginning and end phases of the
input information during the training process [34]. Based on the bidirectional memory
network structure, the means of the attention mechanism are embedded, which makes
the model channels reasonably assign weights and strengthen the attention of the key
information; therefore, using the improved model, the prediction effect of temperature
data can be improved. The network structure of the BiLSTM-Attention model is shown in
Figure 10.
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Figure 10. BiLSTM-Attention network structure diagram.

The BiLSTM-Attention model is divided into four parts: the feature vector input layer,
the BiLSTM layer, the attention layer, and the output layer. As can be seen from Figure 10,
the first layer is the input layer, xi (i = 1, 2, . . . , n) is the input of the input layer; the second
layer is the bidirectional LSTM layer, which is further divided into forward LSTM and
backward LSTM layers; the third layer is the attention mechanism layer, αi (i = 1, 2, . . . , n)
values are the different weights of different channels of information; the fourth layer is the
output layer, in which y which is the final output of the network.

(1) Input layer: This refers to the input feature vectors. The input layer of this paper
focuses on pre-processing the atmospheric temperature datasets into the form of
feature vectors that can be directly accepted and processed by the BiLSTM layer.

(2) BiLSTM layer: The BiLSTM layer consists of forward and backward LSTM layers,
which have the role of capturing the information features before and after. The

forward LSTM layer computation vector is denoted as
→
hi (i =1,2, . . . ,n), and the
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backward LSTM layer computation vector is denoted as
←
hi (i =1,2, . . . ,n), which yields

the output h of the BiLSTM layer at moment t, as follows.

ht = α
→
hi + β

←
hi (11)

h = σ(ht) (12)

In the above equation, α and β are constants and the sum of α and β is 1.
(3) Attention layer: In temperature data prediction, the neural network is trained to

focus on certain key features through the attention mechanism, the core of which is
the weight coefficient. The first step is to learn the importance of each feature, and
then assign the corresponding weight to each feature according to the importance.
Equation (9) enables the transition from the input initial state to the new attention
state, after which the final output state vector st is obtained through Equation (10).
Finally, st is integrated with the dense layer as an output value input into the final
output layer.

(4) Output layer: The input into the output layer is the output of the attention mechanism
layer in the implicit layer, which in this paper is mainly the set of predicted y-vectors
of atmospheric temperature.

By continuously optimizing and updating the weights and biases, the cost function
in the model structure gradually becomes smaller, and the network model becomes better
during the training period.

Based on the measured and predicted temperature values, the prediction results of
the model are evaluated based on commonly used prediction metrics such as MAE (mean
absolute error), MSE (mean squared error), MAPE (mean absolute percentage error), and
R2 (linear correlation coefficient) [35]. The formulas, meanings, and evaluation criteria
of each metric are shown in Table 4, where n is the total number of measured values, yi
is the temperature predicted measurements, ỹi is the predicted value of the temperature
prediction and yi is the average value of yi.

Table 4. Model evaluation metrics.

Model Evaluation Metrics Equation Evaluation Criteria

MAE MAE = 1
n

n
∑

i=1

∣∣∣∣(yi − ỹi)

∣∣∣∣ Average absolute error, the more the value tends to 0, the
better the model.

MSE MSE = 1
n

n
∑

i=1
(yi − ỹi)

2 Mean square error, the more the value tends to 0, the
better the model.

MAPE MAPE = 100%
n

n
∑

i=1

∣∣∣ yi−ỹi
yi

∣∣∣ Average absolute percentage error, the more the value
tends to 0, the better the model.

R2 R2 = 1− ∑n
i (yi−ỹi)

2

∑n
i (yi−yi)

2

Linear correlation coefficient, the more the value tends to
1, the better the model.

5. Temperature Data Prediction Based on BiLSTM-Attention Model
5.1. Experimental Materials
5.1.1. Experimental Datasets

The experimental process used the dataset once it had undergone the processing
stage in Section 3.1, including real-time monitoring data from five major stations, with
35,064 sample records for each dataset, including several features, such as PM2.5, PM10,
NO, PRES, etc. For this dataset, the model is trained by randomly dividing it into an 80%
training set and a 20% test set.

5.1.2. Experimental Environment

The configurations used for the experiments, such as software and hardware, are
shown in Table 5.
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Table 5. Experimental environment.

Configuration Items Configuration Conditions

Software environment Pycharm, Jupyter Notebook

Hardware environment Win10, GPU, 8 GB of memory, GTX960M
graphics card

Language Python
Frames Keras

Evaluation indicators MAE, MSE, MAPE, R2

5.2. Input and Output Variables

The model mainly solves the learning-based problem of mapping features between
input and output variables. For the atmospheric temperature prediction experiment,
the input and output variables are determined to conform to the requirements of the
model. In this experiment, the model input is a time series variable consisting of a time
step and an independent variable, and the output is a predicted value formed by a one-
dimensional array.

(1) Model input: The model input is the input data X. M(t) represents the indicator data
at moment t, and consists of a set of multiple factors selected to satisfy the variation in
the influencing temperature. The change in continuous values M′(t) in M(t) at moment
t in the future is fitted by the current indicator value M(t−1) at moment t− 1. The data
from moment t− 1 and moment t form the temporal input variable X. The formula is
calculated as follows. In this experiment, the input variables of the model are: PM2.5,
PM10, SO2, NO2, CO, O3, PRES, DEWP, RAIN, and WSPM.

M′(t) = σLSTM
(

M(t−1), M(t)

)
(13)

X = concat
(

M(t−1), M′(t)
)

(14)

(2) Model output: The model output is the prediction result Y′, a one-dimensional array
of predictions. In this experiment, the output variable of the model is temperature.

Y = [y1, y2, . . . yi . . . yn](i = 1, 2, . . . , n) (15)

Y′ = so f tmax (BiLSTM−Attention(X, Y)) (16)

5.3. Optimizer Selection

For the training of large-scale data, optimizers are generally needed to speed up the
model learning rate and make the model converge faster. In machine learning, optimizers
are generally used mainly for solving the gradient descent problem; the principle of gradient
descent is shown in Equation (17).

θn+1 = θn − η · ∇θ J(θ) (17)

In the above equation, η is the learning rate, θn is the parameter before the update;
θn+1 is the parameter after the update; and∇θ J(θ) is the derivative of the current parameter.

For the SGD (stochastic gradient descent) optimizer, the parameters of the gradient
descent can be updated once with a single piece of data, but the amount of data used to
update the parameters of this optimizer is extremely small, and the amplitude of the gradi-
ent update is extremely large. As for the ADAM optimizer (adaptive moment estimation),
it can store the exponential decay average of the squared vt of the historical gradient as
well as keep the exponential decay average of the past gradient mt, which enables adaptive
learning for each parameter.

gt = ∇θ J(θt−1) (18)
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mt = β1mt−1 + (1− β1)gt (19)

vt = β2vt−1 + (1− β2)gt
2 (20)

β1 is the exponential decay rate, which controls the weight assignment (momentum
vs. current gradient) and usually takes a value close to 1, with a default of 0.9.

β2 is the exponential decay rate, which controls the influence of the previous gradient squared.
In this paper, two optimizers, SGD and ADAM, are used for comparative analysis,

and MSE is used as the model evaluation index. As shown in Figure 11a, when the SGD
optimizer is used, the error of both the training and test sets gradually decreases and tends
to 0. However, the error of the test set is higher than that of the training set within 0–400
iterations; thus, the model has the problem of overfitting. In Figure 11b, when the ADAM
optimizer is used, the errors of the training and test sets are also gradually reduced to zero,
and the error line fits better; consequently, the ADAM optimizer is finally chosen for the
optimization of the prediction model.
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5.4. Model Parameters Configuration

In this paper, the training is based on the Sklearn framework for the Python platform.
To avoid the problem of overfitting the model, the Dropout layer is added for improvement.
By setting the value of the dropout parameter to 0.01, which means that each layer randomly
discards the neuron weights of the network built in each layer with a probability of 0.01,
the purpose of improving the generalization ability of the built model can be achieved.

In addition, during the training process of the model, the recurrent neural network
may generally execute for a longer time, and the training duration is generally governed by
the size of the input sample set, the size of the set epoch, batch size, and other parameters,
hence the model hyperparameters should be set reasonably to achieve efficient training.

Here, the process of setting the dropout parameter is used as an example to illustrate
the process of setting the parameter, and the other parameters are also adopted in a similar
way. When the dropout is set to 0.01, 0.1, 0.5, and 0.9 respectively, the other parameters are
kept constant and the model is trained. It can be seen that the model achieves the highest
R2 value on both the training set and the test set when dropout = 0.01, and the accuracy
error on both the training set and the test set is the smallest, indicating that the model fits
best when dropout = 0.01. Therefore, the dropout parameter is set to 0.01. The change in
prediction accuracy with dropout is shown in Figure 12.
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During the experiments, the model was trained using the control variable method,
and the input parameters of the model, i.e., dropout, learning rate, epoch, batch size, and
window, were configured separately, where dropout was chosen from 0–1 with four com-
mon values of 0, 0.01, 0.5, and 0.9 for the experiments. The learning rate was experimented
with in decreasing order of 0.1, 0.01, and 0.001; epoch was experimented with in increasing
order of 100; batch size was experimented with in increasing order of 128; and window
was experimented with in increasing order of 3. As shown in Table 6, the meanings of the
main parameters of the BiLSTM-Attention model and their values are provided.

Table 6. BiLSTM-Attention model parameter configuration.

Model Parameters Meaning Takes Values

window Frames the time series according to the specified
unit length, i.e., the size of the sliding window. 5

lstm_units Dimensions of the hidden layers within the
LSTM cell. 16

learning_rate
Learning rate, which is negatively correlated

with model training time, the higher the learning
rate the shorter the training time.

0.001

dropout
The activation values of neurons stop working

with a certain probability value, making the
model more generalizable.

0.01

epoch Number of training rounds. 500
input_size Number of features of the input variable x. 11

output_size Number of output variables y. 1

batch_size Number of samples selected for one
training session. 256

optimizer Faster model learning and faster
model convergence. ADAM

5.5. Model Training Process

For the experiments, the training and test sets were divided into a ratio of 8:2, with a
sample size of 27,245 × 5 × 11 for the training set and 7713 × 5 × 11 for the test set. The
experimental procedure is divided into the following steps.

(1) Input a training set sample of size 27,245 × 5 × 11, with a step size of 5 and a
dimension of 11.

(2) Randomly initialize model parameters, including dropout, learning rate, epoch, etc.
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(3) The training data are learned by BiLSTM and the feature vector of (none, 5, 11) is
output, connecting the weights of the temporal states by the attention mechanism
layer, and finally, the prediction result of the atmospheric temperature value is output
by the softmax function.

(4) The output predictions are compared with the true labels to calculate the cross-entropy
loss, and the weight parameters in the network are updated by the ADAM optimizer
to calculate the error loss gradient reverse optimization according to the set learning
rate size.

(5) Repeat the model training process (1)–(4) over and over again according to the number
of training steps.

The flow chart for model training is shown in Figure 13.
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5.6. Predictive Effectiveness Evaluation
5.6.1. Loss Curve

The loss curve plots of the BiLSTM-Attention model training are shown in Figure 14a.
When the number of iterations is 500 rounds, the model has the best fitting effect on the
loss values of the training and test sets, and the model has the best stability, i.e., the losses
of both the training and test sets have converged and the difference between them is small,
and the fitting effect is the best. The curve plots of BiLSTM, LSTM-Attention, and LSTM
loss profiles are shown in Figure 14b–d, respectively, and it can be seen that the fitting
effects of the comparison models are noisy and fluctuating, and the loss values of the test
set are sometimes good and at other times bad, and the fitting effect is poor.
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(d) LSTM.

5.6.2. Visualization of Prediction Results

After the actual prediction using the BiLSTM-Attention model, it is revealed that the
improved model shows very good prediction results, both in the test set and in the training
set. A line graph of the model’s prediction results on the test set is shown in Figure 15,
where it can be seen that the errors between the true and predicted values are very small,
and the curves are very close, i.e., the predicted values can reflect the magnitude of the true
values well.

Symmetry 2022, 14, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 15. BiLSTM-Attention prediction results. 

In order to better express the goodness of the model prediction results, the errors 

between the real temperature values and the predicted temperature values can be dis-

played using box plots, as shown in Figure 16, from which it can be seen that the errors 

between the predicted and real values are basically all between 0.1 and 0.3, and very few 

errors are slightly larger, but they are also between 0 and 1. Therefore, it is shown that the 

overall prediction errors are extremely small, and the model has a very good prediction  

  

Figure 15. BiLSTM-Attention prediction results.



Symmetry 2022, 14, 2470 17 of 21

In order to better express the goodness of the model prediction results, the errors
between the real temperature values and the predicted temperature values can be displayed
using box plots, as shown in Figure 16, from which it can be seen that the errors between
the predicted and real values are basically all between 0.1 and 0.3, and very few errors are
slightly larger, but they are also between 0 and 1. Therefore, it is shown that the overall
prediction errors are extremely small, and the model has a very good prediction effect. The
model is therefore suitable for the field of atmospheric temperature prediction.
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5.6.3. Comparative Testing of Models

To quantify the effectiveness of the BiLSTM-Attention model for temperature pre-
diction, the prediction evaluation indexes of BiLSTM, LSTM-Attention, and LSTM were
compared with those of Tiantan City as an example, and the results are shown in Table 7.

Table 7. Analysis of evaluation indices of each model.

Contrast
Model

Training Set Test Set
Training Time/s

R2 MAE/◦C MSE/◦C MAPE/◦C R2 MAE/◦C MSE/◦C MAPE/◦C

BiLSTM-Attention 0.9922 0.0117 0.0003 3.5886 0.9618 0.0130 0.0004 4.2370 204
LSTM-Attention [23] 0.9884 0.0161 0.0004 3.6735 0.9495 0.0171 0.0006 5.0966 210

BiLSTM [34] 0.9875 0.0159 0.0005 4.4780 0.9345 0.0202 0.0007 7.0559 207
LSTM [22] 0.9809 0.0214 0.0007 4.9403 0.9120 0.0254 0.0010 7.4216 207

It can be seen that the BiLSTM-Attention model outperforms the other models in both
the test set and the training set, and the prediction accuracy of the model reaches 0.9618,
while the mean square error is only 0.0004, the average absolute error is only 0.0130, and the
average absolute percentage error is only 4.2370. In terms of time, the average training time
of each model is 207 s, while the execution time of BiLSTM-Attention model is relatively
short at 204 s, which shows that the training time of this model does not increase due to the
addition of the attention mechanism.

As shown in Figures 17 and 18, the BiLSTM-Attention model, both for the training
and test sets, shows the highest R2 value and its error value is the smallest. Comparing
the prediction results of BiLSTM-Attention with BiLSTM, LSTM-Attention, and LSTM
models, its MAE values are reduced by 0.72%, 0.41%, and 1.24% compared with BiLSTM,
LSTM-Attention, and LSTM, respectively; furthermore, its MSE values are reduced by
0.03% compared with BiLSTM, LSTM- Attention, and LSTM by 0.03%, 0.02%, and 0.06%,
respectively, and the R2 values are improved by 2.73%, 1.23%, and 4.98% compared to
BiLSTM, LSTM-Attention, and LSTM, respectively. This shows that the stability of the
proposed improved model is better and the model relevance is stronger. This experimental
result also effectively verifies that the BiLSTM-Attention model has some superiority in the
field of temperature prediction.
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Experiments were conducted separately for multi-site temperature data, and the
prediction results based on the model were obtained for each site, as shown in Table 8. The
R2 value on the test set was maintained at 0.9638, MAE at 0.0133, MSE at 0.0004, and MAPE
at 4.4130, indicating that the BiLSTM-Attention model has good model generalization
ability and portability on different regional monitoring datasets.

Table 8. Evaluation index analysis of each station.

Stations
Training Set Test Set

R2 MAE/◦C MSE/◦C MAPE/◦C R2 MAE/◦C MSE/◦C MAPE/◦C

Changping 0.9886 0.0145 0.0004 3.3236 0.9632 0.0132 0.0004 4.5364
Dingling 0.9886 0.0144 0.0004 3.4486 0.9600 0.0143 0.0005 4.8303
Tiantan 0.9922 0.0117 0.0003 3.5886 0.9618 0.0130 0.0004 4.2370
Huairou 0.9905 0.0127 0.0004 2.8664 0.9649 0.0138 0.0004 4.2658
Shunyi 0.9904 0.0137 0.0004 3.4345 0.9691 0.0122 0.0004 4.1956
Mean 0.9900 0.0134 0.0004 3.3323 0.9638 0.0133 0.0004 4.4130

5.7. Discussion

From Table 7, it can be seen that the BiLSTM [34] tends to have better prediction
accuracy than the LSTM [22], which also indicates that the bidirectional network structure
can more fully consider the complete information of the sequence data in the forward and
backward directions, thus improving the prediction accuracy of the model. At the same
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time, it can be seen that the improved network based on the attention mechanism [23] has
better accuracy, which also indicates that the attention mechanism can assign different
attention weights to different stages of temperature change during the training process
of the model, so that the model can focus on the key sequence information as much
as possible, thus achieving the purpose of enhancing the improvement of temperature
prediction accuracy.

The execution time of the model can also be used as a criterion to evaluate the goodness
of the model. Controlling the same sample set and the same hardware environment,
different comparison models were input for experiments and the training time of the model
was recorded, as shown in Table 7. It can be seen that the execution times of the four major
models are relatively close to each other, and the average execution time is 207 s. However,
the execution time of the BiLSTM-Attention model is relatively shorter, indicating a faster
execution speed.

6. Conclusions

In this paper, an improved symmetric BiLSTM network is proposed for the prediction
of atmospheric temperature data, and Beijing temperature data are used as an example for
validation and analysis, with the following main findings.

(1) The proposed BiLSTM-Attention model enables the model to efficiently extract feature
data in a specific time step through a bidirectional LSTM network structure while
retaining complete information between the past and the future. It then continuously
and dynamically adjusts the weight values of different channels based on the attention
mechanism, which in turn enables efficient allocation of computational resources, and
can effectively improve the model’s temperature prediction accuracy.

(2) The model is used for temperature data prediction and compared with BiLSTM,
LSTM-Attention, and LSTM models, and it was found that the proposed BiLSTM-
Attention model has the highest prediction accuracy and the lowest error, reduced by
0.72%, 0.41%, and 1.24%, respectively; the R2 value reached 0.9618, which improved
by 2.73%, 1.23%, and 4.98% compared with BiLSTM, LSTM-Attention, and LSTM,
respectively. Thus, it is shown that the BiLSTM-Attention model has good theoretical
value and practical application significance, and can provide better solutions in the
field of temperature prediction.

The following directions exist for future research that deserve further study.

(1) Consider using more efficient and fast hyperparameter optimization methods to
optimize the model parameters to obtain a more suitable parameter configuration for
the temperature prediction domain.

(2) In future research, more regional temperature datasets should be collected for a more
complete prediction analysis to make the model more reliable and adaptable.

(3) More detailed comparison experiments can be attempted in future studies to prove
the superiority of the model.
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