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Abstract: Fractional polytropic gas sphere problems and electrical engineering models typically
simulated with interconnected circuits have numerous applications in physical, astrophysical phe-
nomena, and thermionic currents. Generally, most of these models are singular-nonlinear, symmetric,
and include time delay, which has increased attention to them among researchers. In this work, we
explored deep neural networks (DNNs) with an optimization algorithm to calculate the approximate
solutions for nonlinear fractional differential equations (NFDEs). The target data-driven design of the
DNN-LM algorithm was further implemented on the fractional models to study the rigorous impact
and symmetry of different parameters on RL, RC circuits, and polytropic gas spheres. The targeted
data generated from the analytical and numerical approaches in the literature for different cases were
utilized by the deep neural networks to predict the numerical solutions by minimizing the differences
in mean square error using the Levenberg–Marquardt algorithm. The numerical solutions obtained
by the designed technique were contrasted with the multi-step reproducing kernel Hilbert space
method (MS-RKM), Laplace transformation method (LTM), and Padé approximations. The results
demonstrate the accuracy of the design technique as the DNN-LM algorithm overlaps with the actual
results with minimum percentage absolute errors that lie between 10−8 and 10−12. The extensive
graphical and statistical analysis of the designed technique showed that the DNN-LM algorithm is
dependable and facilitates the examination of higher-order nonlinear complex problems due to the
flexibility of the DNN architecture and the effectiveness of the optimization procedure.

Keywords: stiff system; electric circuits; polytropic gas spheres; fractional modeling; machine
learning; Levenberg–Marquardt algorithm; deep neural networks; symmetry; optimization
algorithms

1. Introduction

The field of fractional differential equations (FDEs) has a long history in mathematics.
After 1695, the idea of a fractional derivative (FD) emerged as an essential scholarly elabo-
ration of an integer derivative. The order of differentiating from positive integers (the set
of natural numbers) to real sets of numbers or even complex sets of numbers is generated
by an FD. A detailed presentation of the old historical steps of fractional calculus can be
found in the papers [1–3]. Fractional differential equations have recently been the focus of
a great deal of research and have been given an important part to play as a result of their
appearance in a wide variety of applications and their ability to exactly describe nonlin-
ear processes in physics, control systems, dynamical systems, biomathematics, statistical
mechanics, visco-elastic materials, and engineering [4–7].

Recently, several issues pertaining to mathematical physics and engineering have been
represented through the use of FDEs of distributed order. Research in this field has increased
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substantially as a result of the broad applications of FDEs. Since most of the FDEs do not
have the exact analytic solution, there has been a great amount of interest in developing and
investigating numerical methods specifically devised to solve fractional differential equa-
tions [8–10]. In numerical and computational mathematics, one of the most common topics to
discuss is the symmetry in numerical solutions of differential equations of integer order. This
has been the case for quite some time. However, despite a large number of recently formu-
lated applied problems, the current state of the art is far less advanced for generalized order
equations. Only a few algorithms for the numerical solution of such equations have been sug-
gested, and the majority of these numerical schemes deal with linear single-term equations
of the order less than unity [11–14]. Therefore, to study the multi-order fractional differential
equations, several fundamental works have been conducted by the researchers using differ-
ent techniques such as the operational matrix of Chebyshev polynomials [15,16], pseudo-
spectral method [17,18], Adomian decomposition method [19], collocation method [20], oper-
ational matrix of B-spline functions [21], sinc-collocation method [22,23], variational iteration
method [24,25], the operational matrix of Bernstein [26], spectral Tau method [27,28], op-
erational matrix of Legendre polynomials [29,30], differential transform method [31], and
homotopy perturbation method [32]. J. Singh and D. Kumar [33–35] presented a hybridized
technique of homotopy perturbation method and Sumudu transform to calculate the analyt-
ical solutions for the multi-order fractional modified equal-width equation and fractional
equal-width (EW) equations as well as their variants.

Many authors have implemented the fractional-order modeling of various problems
in polytropic gas spheres and electric circuits, which are of great importance to the re-
searchers due to their wide range of applications in astrophysics, and electrical engineering,
such as galactic dynamics and stellar structure, a spherical cloud of gas, equivalent gas
spheres, particle currents, electric motors, and computers, etc. [36,37]. Nonlinear fractional
Lane–Emden equations generally govern the fractional models of such systems [38,39].
The analytical solutions for polytropic models for white dwarf stars, incompressible gas
spheres, isothermal gas spheres, and electrical circuits, such as RC, LC, RL, and RLC for
super-capacitors, batteries, and energy management have been calculated using series
expansion [40,41], Adomian decomposition method [42,43], and the ρ-Laplace transform
method using left generalized fractional derivative operator [44,45]. However, the majority
of these procedures provide series expansions in the vicinity of the initial conditions that
are utilized [46]. This is despite the fact that these techniques provide reasonable approx-
imations of the solution. In addition, rounding errors significantly impact the precision
of the solutions produced by numerical techniques, which are characterized by a degree
of complexity proportional to the number of sample points [47,48]. Compared to more
conventional numerical approaches, the approximate computation provided by artificial
neural networks (ANNs) appears less sensitive to the spatial dimension. The ANN can
produce an adaptable mesh; however, it is not necessary to explicitly deal with the mesh;
all it must do is solve the optimization problem. On the basis of these facts and benefits,
the network technique for the FDEs problems was broadened by Lagaris [49,50]. Since
then, it has been used in a significant number of approximation problems involving partial
and fractional differential equations. Certain efforts are now being made to use a method
based on neural networks to successfully solve fractional partial differential equations.
Raissia [51,52] proposed the use of physics-informed neural networks (PINNs) to solve
forward and inverse problems involving nonlinear partial fractional differential equations.

In recent years, artificial neural networks have gained significant attention as reliable
and efficient techniques for symmetric function approximations. Some current applications
of ANNs with the stochastic and intelligent computational optimization algorithm include
the solution for the heat transfer and thermal conductivity of magneto micropolar fluid
with the thermal non-equilibrium condition [53], nonlinear models in ocean engineering
during the chaotic behavior of ships [54], nonlinear oscillatory systems [55,56], and the
analysis of chaos systems of wireless communication during different bandwidths and
filters [57,58]. These significant applications inspired the authors to employ ANNs in order
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to come up with an approximation of the solution to FDEs. To summarize, the use of the
appropriate trained ANN approach for the solution of FDEs gives the following preferences
in contrast to the traditional numerical schemes:

• The process of finding a solution continues without any coordinate transformations.
• ANNs with machine learning optimization techniques are capable of analytically

solving differential equations.
• The increase in the number of sample points does not result in an immediate spike in

the computational complexity.
• The ANNs are successful techniques for generating differentiable solutions and have

proved their effectiveness in resolving the problem of iterative processes. They can
handle complex singular and nonlinear differential equations without difficulty.

2. Proposed Neural Network-Based Approach for Solving FDEs

The concept of artificial neural networks (ANNs) was introduced by Warrent McCul-
loch and Walter Pitts back in 1943. The way organic neurons in an animal’s brain may
communicate with one another to carry out sophisticated computations served as a source
of motivation for the creators [59]. The early success of ANN was lost at a relatively early
stage, and it has subsequently been left behind in comparison to other machine learning
approaches. However, things began to turn around in the 1990s as a result of a significant
rise in the amount of available computer power and the vast quantities of data that could
be used to train ANNs. ANNs have a wide range of applications in the acceleration of
mechanism-based biological models [60,61], forecast prediction [62,63], and in microwave
computer-aided designs [64].

Preceptors, as shown in Figure 1a, are the fundamental units and most common archi-
tectures of artificial neural networks which have been widely used for various applications.
On the other hand, the term multilayer perceptron refers to the structure containing more
than one concealed or hidden layer, as shown in Figure 1b. It is demonstrated in the theory
of perceptron in artificial neural networks (ANNs) that these systems are capable of approx-
imating continuous functions. In this section, first, we review an important theorem that
discusses the capability of ANNs for the function approximation, and then, our suggested
ANN approach for solving FDEs is described.
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Figure 1. Comparisons of the layers and working mechanism of (a) fundamental perceptron structure
and (b) multi-layer perceptron.

Definition 1. A Sigmoid function is a mathematical function with a characteristic S-shaped curve
and the property to map the entire number line into a small range between 0 and 1. Mathematically,
a single variable sigmoidal function is defined as [65]
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f (t)→
{

1 as t→ +∞
0 as t→ −∞

. (1)

Theorem 1. Let f be the continuous sigmoidal function, then the finite sum of the form

W(x) =
N

∑
j=1

α̂j f
(

b̂T
j t + ĉj

)
, (2)

is dense in the space of continuous function defined over an interval I.

Now, let us consider a fractional differential equation of the form [66]:(
C
t0

Dα
t x
)
(t) = f (t, x(t)), x(t0) = x0. (3)

We assume that the approximate solution to Equation (3) is in the form xN(t, Ω), which
is defined as:

xN(t, Ω) = N(t, Ω), (4)

where

N(t, Ω) =
n

∑
k=1

vk ϕ(ζk), (5)

and where ϕ is an activation function (log-Sigmoid), ζk = ϑkt + Λk, and Ω is a vector
containing values of unknown neurons (ϕ, ϑ, Λ) in an ANN architecture. In this work, the
ntstool in MATLAB is utilized to construct a least square optimization problem for the
differential equation with feedforward deep neural networks consisting of two layers with
60 hidden neurons. The corresponding optimization problem for Equation (3) is given as:

min(Z) =
m

∑
i=1

[
ȳ−

((
C
t0

Dα
t xN

)
(ti, Ω)− f (xN(ti, Ω), τ)

)]2
. (6)

For a supervised machine learning strategy, ȳ is a dataset that is generated using the
reference solution for Equation (3). Furthermore, the optimization technique of the Leven-
berg–Marquardt (LM) algorithm is implemented to optimize the weights in Equation (3).
The LM algorithm is the most used technique for optimization in recent times. It outper-
forms the basic gradient descent and other conjugate gradient techniques. Some recent
applications of the LM algorithm include the solution for modeling conventional and a
still solar Earth [67], heat transfer in micropolar fluids, and interference suppression by the
element position control of phased arrays [68]. The detailed working steps of the proposed
technique are dictated in Figure 2.

When training multilayer networks, one strategy that is commonly used is to begin by
dividing the data into three distinct portions. The network’s gradient and any updates to
the weights and biases are computed using the training set, which is the first subset of the
dataset. The validation set is the second subset to be considered here. The error that was
seen on the validation set is observed when it is time to train the model. Both the training
set error and the validation error often decrease during the first stage of training. On the
other hand, as the network starts to “overfit” the data, the error on the validation set will
often start to rise. The network weights and biases are preserved when the validation set
error is at its lowest. In this work, the target vectors are randomly divided into the three
following sets:

70% of the candidate solutions are used for training purposes;
30% of the candidate solutions are equally divided to validate and test the model to

prevent overfitting.
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Figure 2. Working mechanism of the design algorithm.

3. Numerical Experimentation

In this section, we implemented the designed soft-computing machine learning algo-
rithm into the fractional models of polytropic gas spheres and electric circuits. The overview
of the mathematical models and different case studies of the problem is shown in Figure 3.
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Figure 3. Overview of the mathematical models and different cases studied in this work.

3.1. Fractional Polytropic Gas Sphere Model

Polytropic models play a very important role in galactic dynamics and in the theory of
stellar structure and evolution. Generally, the Lane–Emden differential equations are used
to construct simple models for stellar structures, star clusters, and many configurations in
astrophysics. The polytropic equation of state has the form [69]:

p = Kργ, γ = 1 +
1
n

, (7)

where n denotes the polytropic index and K represents the pressure constant. The equilib-
rium structure of a self-gravitating object may be found by being derived from hydrostatic
equations. The simplest possible scenario is a spherical, non-rotating, static arrangement.
In this scenario, all of the macroscopic features for a particular equation of state are pa-



Symmetry 2022, 14, 2482 6 of 21

rameterized by a single quantity, such as central density. The equation that represents the
conformable fractional form, which is necessary for both mass conservation and hydrostatic
equilibrium, is as follows [70]:

Dα
r M− 4πr2αρ = 0, (8)

and:
Dα

r P +
GM
r2α

ρ = 0, (9)

from Equation (9) we obtain

GM = − r2α

ρ
Dα

r P, (10)

as the first fractional derivative of Equation (10) will result in:

GDα
r M = −Dα

r

(
r2α

ρ
Dα

r P
)

. (11)

The combination of Equations (10) and (11) will result in the singular fractional model
which is given as:

1
r2α

Dα
r

(
r2α

ρ
Dα

r P
)
= −4πGρ. (12)

Now, defining the Emden function and variable x in its dimensionless form as:

ρ = ρcun, xα =
rα

a
, (13)

where ρc is central density, M is the mass of polytrope, and ρ denotes the density [44].
Using Equations (8) and (11) in Equation (12), we obtain:

1

(axα)2
dα

d(axα)

(
(axα)2

ρcun
dα(Kργ)

d(axα)

)
= −4πGρcun, (14)

K

(axα)2
dα

d(axα)

(
(axα)2

ρcun
dα(ρcun)1+ 1

n

d(axα)

)
= −4πGρcun. (15)

The Emden’s fractional derivative u is defined as:

dα

dxα
un+1 = (n + 1)un dαu

dxα
, (16)

using Equation (16) in Equation (15) will result in:

K
a2x2α

Dα
X

 (n + 1)x2αρ
1+ 1

n
c un

ρcun Dα
Xu

 = −4πGρcun, (17)

rearranging Equation (17),

K(n + 1)ρ
1
n−1
c

4πGa2
1

x2α
Dα

X

(
x2αDα

Xu
)
= −un. (18)

Considering a2 = K(n+1)ρ
1
n−1
c

4πG will transform Equation (18) into:

1
x2α

Dα
X

(
x2αDα

Xu
)
= −un, (19)

with the initial conditions:
u(0) = 1, Dα

xu(0) = 0. (20)
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The solution to a nonlinear fractional differential equation is considered a challenging
task due to the singularity behavior at the origin. Therefore, different numerical techniques
were developed by the researchers to encounter FDEs. In this work, we adopted the concepts
of deep neural networks in machine learning architecture to calculate the solutions for FDEs.
The solutions for Equation (19) by [40] for n = 0, 1 and 5 are given as:

u(x) = 1− 1
6

(
xα

α

)2
, (21)

u(x) =
(

xα

α

)−1
sin
(

xα

α

)
, (22)

u(x) =

(
1 +

1
3

(
xα

α

)2
)− 1

2

. (23)

We implemented the designed DNN-LM algorithm to calculate the approximate
numerical solutions for the fractional model of polytropic gas spheres with different values
of polytropic index n and fractional parameter α. The comparison of the solutions by
the proposed technique with Padé approximation is shown in Figure 4. It is concluded
that the value of the Emden function decreases with the increase in the polytropic index.
Furthermore, the accuracy of the solutions by the designed scheme is demonstrated by the
results of the errors illustrated in Figure 5. The errors between the targeted data and the
approximate solutions are found to lie between 10−4 to 10−7, which reflects the convergence
of the solutions. Furthermore, to assess the performance of the proposed algorithm, the
mean square errors of the solutions are calculated, which are shown in Figure 6. For these
cases, the DNN model is provided with four sets of targeted data corresponding to each
value of the fractional parameter, and the combined values of the MSE for n = 0, 1 and 5
are 2.9238× 10−11 5.2507× 10−15 and 2.3947× 10−14 attained at 837, 104, and 83 epochs.
The convergence of the solutions at different epochs highlights the speeds and accuracy of
the results. The details of the performance function (MSE) for the validation, testing, and
training of the single set of data are dictated in Table 1.
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Figure 4. The analysis of the solutions calculated by the DNN-LM algorithm for multiple values of
n with different orders of fractional derivative. Here, the red circles show the solution of the Padé
approximation. (a) n = 0. (b) n = 1. (c) n = 5.
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Table 1. Statistical analysis of the performance and computational complexity of the DNN-LM algorithm for the stiff fractional model of polytropic gas spheres.

Parameters Cases Performance Analysis

Index Hidden Neurons Time Delay α Training Validation Testing Gradient Regression Time (s) Iterations

n = 0

10 2 1 5.96× 10−14 8.09× 10−14 6.53× 10−14 1.00× 10−07 1 0.02 665
0.9 5.48× 10−12 4.43× 10−12 5.30× 10−12 9.99× 10−08 1 0.03 722
0.7 7.35× 10−12 3.45× 10−12 3.43× 10−12 9.96× 10−12 1 0.02 617
0.5 4.76× 10−12 4.19× 10−12 5.69× 10−12 9.98× 10−08 1 0.02 682

12 3 1 6.41× 10−16 7.43× 10−16 6.78× 10−16 9.95× 10−08 1 0.01 276
0.9 4.13× 10−12 5.89× 10−12 4.74× 10−12 9.98× 10−08 1 0.04 710
0.7 3.34× 10−13 3.96× 10−13 2.29× 10−13 9.99× 10−08 1 0.05 899
0.5 3.89× 10−13 4.13× 10−13 3.54× 10−13 9.92× 10−08 1 0.01 161

n = 1

10 2 1 6.04× 10−12 5.89× 10−12 6.66× 10−12 9.72× 10−08 1 0.0001 60
0.9 1.02× 10−12 1.02× 10−12 1.11× 10−12 9.72× 10−08 1 0.00001 49
0.7 1.06× 10−13 1.28× 10−13 1.05× 10−13 9.99× 10−08 1 0.01 244
0.5 1.43× 10−11 1.76× 10−11 1.81× 10−11 9.94× 10−08 1 0.0001 143

12 3 1 1.13× 10−12 1.60× 10−12 1.46× 10−12 9.39× 10−08 1 0.0001 61
0.9 5.30× 10−15 4.21× 10−15 5.23× 10−15 9.91× 10−08 1 0.0001 69
0.7 9.80× 10−14 1.38× 10−13 9.57× 10−14 9.71× 10−08 1 0.00001 40
0.5 1.95× 10−12 2.04× 10−12 2.26× 10−12 9.96× 10−08 1 0.00001 48

n = 5

10 2 1 3.87× 10−13 3.69× 10−13 3.96× 10−13 9.87× 10−08 1 0.0001 110
0.9 2.48× 10−12 2.90× 10−12 2.10× 10−12 9.93× 10−08 1 0.00001 70
0.7 8.53× 10−12 8.01× 10−12 4.85× 10−12 9.89× 10−08 1 0.00001 96
0.5 4.98× 10−11 5.68× 10−11 5.17× 10−11 9.84× 10−08 1 0.00001 74

12 3 1 5.24× 10−14 6.53× 10−14 8.01× 10−14 2.54× 10−09 1 0.000001 31
0.9 6.56× 10−13 2.98× 10−13 2.61× 10−12 9.92× 10−08 1 0.00001 85
0.7 1.56× 10−13 1.54× 10−13 1.41× 10−13 9.85× 10−08 1 0.00001 66
0.5 2.61× 10−12 3.00× 10−12 2.45× 10−12 9.98× 10−08 1 0.00001 65
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Figure 5. Difference in targeted data and approximate solutions by the Levenberg–Marquardt supervised
neural network for different values of n and fractional order α. (a) n = 0. (b) n = 1. (c) n = 5.
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Figure 6. Meansquare error-based performance analysis of the validation, testing, and training data.
(a) n = 0. (b) n = 1. (c) n = 5.

It can be seen that increasing the layers and time delays results in better performance
of the designed algorithm. The mean performance values for 10 and 12 hidden neurons
approximately lie between 10−11 and 10−14 as well as 10−13 and 10−16. Furthermore, the
regression values are equal to one, which shows the perfect modeling of the approximate
solutions. In addition, the error histograms are plotted as shown in Figure 7 to study the
behavior of errors at different mesh points of the validation, testing, and training data.
It can be seen that the error for 2000, 1000, and 3000 points of training data for n = 0, 1,
and 5 lies between −7.5 × 10−06 and 1.04 × 10−06; −2.0 × 10−08 and 4.38 × 10−08; and
−2.30 × 10−07 and 2.11 × 10−07, respectively.

The graphical analysis of the input-error cross-correlation function are shown in
Figure 8. It is a representation of the errors’ correlation with the data that were targeted
or used for reference. A prediction model that is flawless in every way should have zero
correlations at every point. In this particular case, 100% of the correlations are inside the
confidence boundaries around zero.
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Figure 7. Error histogram plots to represent the combined error of multiple fractional orders at
different mesh points. (a) n = 0. (b) n = 1. (c) n = 5.

-20 -15 -10 -5 0 5 10 15 20
Lag

-6

-4

-2

0

2

4

6

C
or

re
la

ti
on

10-7

Correlation between Input and Error = Target - Output

Correlations
Zero Correlation
Confidence Limit

(a)

-20 -15 -10 -5 0 5 10 15 20
Lag

-3

-2

-1

0

1

2

3

C
or

re
la

ti
on

10-7

Correlation between Input and Error = Target - Output

Correlations
Zero Correlation
Confidence Limit

(b)

-20 -15 -10 -5 0 5 10 15 20
Lag

-3

-2

-1

0

1

2

3

C
or

re
la

ti
on

10-8

Correlation between Input and Error = Target - Output

Correlations
Zero Correlation
Confidence Limit

(c)

Figure 8. Inputerror cross-correlation plots for n = 0, 1 and 5. (a) n = 0. (b) n = 1. (c) n = 5.

3.2. Stiff Fractional Model of Electrical Circuits

A differential equation is said to be stiff if its solution is decreasing over time in
an exponential fashion until it reaches zero and at the same time that its derivative is
much greater than the value of the solution. In the context of stiff differential equations,
there is no component of the solution that is unstable, and the vast majority of solution
components are, at the very least, quite stable. Further details of stiff fractional models with
an application in chemical engineering and mathematical physics can be found at [71]. In
this work, we are particularly interested in calculating and obtaining solutions for the stiff
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model of electrical circuits consisting of resistance (R), inductance (L), and capacitance (C)
using a machine learning technique.

The voltage drop across each element of the circuit (R, L and C) are denoted by ER, EL,
and EC which are defined as follows:

ER = RI, EL = L
(

dI
dt

)
, EC =

1
C

q. (24)

Applying Kirchhoff’s voltage law to the RL circuit illustrated in Figure 9 results in
ER + EL = E(t), where E(t) shows the supplied voltage to the current at time t. The
mathematical model for the RL circuit can be modeled using Equation (24) which is given
as [72]:

dI
dt

+
R
L

I =
1
L

E(t), (25)

with the initial current, i.e., (I(0) = I0). The closed form stiff solution for Equation (25) is
given in [73] as:

I(t) = e
−Rt

L

(
I0 +

1
R

(
−1 + e

Rt
L

)
E(t)

)
. (26)

On the other hand, the implementation of Kirchhoff’s law into the RC circuit, as
illustrated in Figure 9b, results in ER + EC = E(t). Now, using the definition of current
with Equation (24) will result in the governing model for RC circuits as:

dq
dt

+
1

RC
q =

1
R

E(t), (27)

subjected to the initial conditions q(0) = q0. The approximate solution for Equation (27)
was modeled as

q(t) = CE(t)− e
−1
cR t(CE(t)− q0). (28)

C1

R

E L

(a)

R

E C

(b)

Figure 9. (a,b) shows the RL and RC electrical circuits.

Recently, a methodical strategy for generalizing stiff differential equations to fractional
instances in the physical sense has been developed. These methods involve continuously
performing an analysis of the dimensionality of the ordinary derivative operator in order to
produce a fractional derivative operator [74]. In this manner, a new parameter denoted by
ϑ is introduced so that dimensional consistency can be achieved when [ϑ] ≡ seconds, i.e.,
is,
[

1
ϑ1−α

CFDα
a Q(t)

]
= 1

sec , where α ∈ (0, 1]. Consequently, by making use of the Caputo–

Fabrizio derivative CFDα
0 , 0 < α ≤ 1, the initial value problems (IVPs) listed below are ones

that can be obtained [75]:

1
ϑ1−α

CFDα
0 I(t) +

R
L

I(t) =
1
L

E(t); I(0) = I0, t ≥ 0, (29)
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1
ϑ1−α

CFDα
0 q(t) +

1
RC

q(t) =
1
R

E(t); q(0) = q0, t ≥ 0, (30)

where Equations (29) and (30) represent the fractional models of RL and RC circuits,
respectively.

Furthermore, we considered the different problems of the fractional models of the RL
and RC circuits based on the values of the supplied voltage and currents as elaborated
upon below.

Example 1. Consider the RL circuit model, with 5 Ω resistor and 0.05 H inductor, that holds a
voltage source of E(t) = 5 cos(120t)V. If the current in the beginning is 1A, then Equation (29)
can be written as:

1
ϑ1−α

CFDα
0 I(t) + 100I(t) = 100 cos(120t), 0 < α ≤ 1, t ≥ 0, (31)

with initial condition I(0) = 1. The exact solution for Equation (31) using the Laplace transform
method is given as:

I(t) = AL cos(120t) +
BL
120

sin(120t) +
DL
ρ

e
−100πx

ρ , (32)

where ρ = 2
2−α +(1− α)100; AL =

1002α2−1202∗ 2ρ
2−α +(120ρ)2

1002α2+(120ρ)2 ; BL = 100(1−AL)α
ρ ; DL = (1− AL)ρ.

Example 2. Consider the RC circuit model given in Equation (30) with a resistor of 1Ω and a
capacitor of 10−6 F. This circuit is powered by a voltage source of E(t) = sin(100t)V and has an
initial capacitor voltage of zero. Thus, the governing equation of RC circuit is given as:

1
ϑ1−α

CFDα
0 q(t) + 106q(t) = sin(100t), 0 < α ≤ 1, t ≥ 0, (33)

with the initial condition q(0) = 0. The exact solution for Equation (33) using the Laplace transform
method is given as:

q(t) = AL cos(100t) +
BL
100

sin(100t) +
DL
ρ

e
−106σt

ρ , (34)

where ρ = 2
2−α + (1− α)106; AL = 106α(1−α)−αρ

1010α2+ρ
; BL = 100α+1002ρAL

106α
; DL = −ρAL.

Moreover, in this section, we implemented the designed technique for the solution
of different cases based on multiple values of the fractional order to study their impact
on the current and voltage. The approximate solutions for I(t) and q(t) are shown in
Figure 10. It is observed that the current significantly increases while a small change is
observed in voltage when the fractional parameter decreases from 1 to 0.94. To validate the
efficiency of the results of the proposed method, the approximate solutions for examples
1 and 2 are compared with the multi-step approach of reproducing the kernel method
(MS-RKM) and the Laplace transform method (LTM), as shown in Tables 2 and 3. The
solutions by the DNN-LM algorithm overlap with the results of the state-of-art-techniques
with minimum absolute errors that are found to approximately lie between 10−10 and
10−15; 10−13 and 10−17; 10−09 and 10−17; and 10−06 to 10−16 for different fractional orders
(α = 1, 0.98, 0.96, 0.94, respectively) of examples 1 and 2, as shown in Tables 4 and 5.
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Table 2. Comparison of the solution obtained by the supervised Levenberg–Marquardt algorithm with MS-RKM and LTM for α = 1, 0.98, 0.96, and 0.94 of example 1.

LTM MS-RKM DNN-LM LTM MS-RKM DNN-LM LTM MS-RKM DNN-LM LTM MS-RKM DNN-LM

t α = 1 α = 0.98 α = 0.96 α = 0.94

0.1 −0.0599275843 −0.0599270127 −0.0599275843 0.4305994034 0.4305994701 0.4305994034 0.6147280840 0.6147324618 0.6147280840 0.7032568583 0.7032597645 0.7032568583
0.2 −0.2587200529 −0.2587193814 −0.2587200529 0.1374554861 0.1374561882 0.1374554861 0.2623940181 0.2623986240 0.2623940181 0.3242278859 0.3242322314 0.3242278859
0.3 −0.3710401148 −0.3710397800 −0.3710401148 −0.1640207924 −0.1640203771 −0.1640207924 −0.1274083878 −0.1274052916 −0.1274083878 −0.1143523331 −0.1143498579 −0.1143523331
0.4 −0.3674490406 −0.3674484240 −0.3674490406 −0.4113609872 −0.4113604709 −0.4113609872 −0.4686274278 −0.4686234467 −0.4686274278 −0.5045580718 −0.5045571454 −0.5045580718
0.5 −0.2491062827 −0.2491056925 −0.2491062827 −0.5299909957 −0.5299907413 −0.5299909957 −0.6617587214 −0.6617495051 −0.6617587214 −0.7333491014 −0.7333411590 −0.7333491014
0.6 −0.0529696032 −0.0529690513 −0.0529696032 −0.4830883429 −0.4830874057 −0.4830883429 −0.6478841060 −0.6478823520 −0.6478841060 −0.7319533965 −0.7319516228 −0.7319533965
0.7 0.1597090640 0.1597095680 0.1597090640 −0.2853192846 −0.2853183896 −0.2853192846 −0.4316124096 −0.4316096686 −0.4316124096 −0.5016198896 −0.5016112951 −0.5016198896
0.8 0.3225118550 0.3225127150 0.3225118550 0.0015528739 0.0015530060 0.0015528739 −0.0805381275 −0.0805377073 −0.0805381275 −0.1145268018 −0.1145220385 −0.1145268018
0.9 0.3845967472 0.3845974562 0.3845967472 0.2879400946 0.2879407366 0.2879400946 0.2956902333 0.2956919658 0.2956902333 0.3083647912 0.3083701102 0.3083647912

1 0.3265751202 0.3265760999 0.3265751202 0.4844059045 0.4844063129 0.4844059045 0.5795774012 0.5795861470 0.5795774012 0.6349664283 0.6349741110 0.6349664283

Table 3. Comparison of the solution obtained by the supervised Levenberg–Marquardt algorithm with MS-RKM and LTM for α = 1, 0.98, 0.96, and 0.94 of example 2.

LTM MS-RKM DNN-LM LTM MS-RKM DNN-LM LTM MS-RKM DNN-LM LTM MS-RKM DNN-LM

t α = 1 α = 0.98 α = 0.96 α = 0.94

0.1 −5.4385327× 10−07 −5.4393720× 10−07 −5.4385327× 10−07 −5.4254831× 10−07 −5.4401460× 10−07 −5.4254831× 10−07 −5.4087329× 10−07 −5.4401809× 10−07 −5.4087329× 10−07 −5.3853875× 10−07 −5.4401917× 10−07 −5.3853875× 10−07

0.2 9.1286360× 10−07 9.1290443× 10−07 9.1286360× 10−07 9.1084693× 10−07 9.1293598× 10−07 9.1084693× 10−07 9.0819903× 10−07 9.1294070× 10−07 9.0819903× 10−07 9.0439469× 10−07 9.1294223× 10−07 9.0439469× 10−07

0.3 −9.8806243× 10−07 −9.8804704× 10−07 −9.8806243× 10−07 −9.8583139× 10−07 −9.8802190× 10−07 −9.8583139× 10−07 −9.8285513× 10−07 −9.8802666× 10−07 −9.8285513× 10−07 −9.7865049× 10−07 −9.8802831× 10−07 −9.7865049× 10−07

0.4 7.4524652× 10−07 7.4517985× 10−07 7.4524652× 10−07 7.4358087× 10−07 7.4510639× 10−07 7.4358087× 10−07 7.4141345× 10−07 7.4510961× 10−07 7.4141345× 10−07 7.3832821× 10−07 7.4511076× 10−07 7.3832821× 10−07

0.5 −2.6256784× 10−07 −2.6247135× 10−07 −2.6256784× 10−07 −2.6197860× 10−07 −2.6237310× 10−07 −2.6197860× 10−07 −2.6118118× 10−07 −2.6237371× 10−07 −2.6118118× 10−07 −2.6004727× 10−07 −2.6237403× 10−07 −2.6004727× 10−07

0.6 −3.0462013× 10−07 −3.0471538× 10−07 −3.0462013× 10−07 −3.0393310× 10−07 −3.0480674× 10−07 −3.0393310× 10−07 −3.0300579× 10−07 −3.0480889× 10−07 −3.0300579× 10−07 −3.0167622× 10−07 −3.0480951× 10−07 −3.0167622× 10−07

0.7 7.7376399× 10−07 7.7382734× 10−07 7.7376399× 10−07 7.7202597× 10−07 7.7388244× 10−07 7.7202597× 10−07 7.6974082× 10−07 7.7388670× 10−07 7.6974082× 10−07 7.6650543× 10−07 7.7388807× 10−07 7.6650543× 10−07

0.8 −9.9386654× 10−07 −9.9387761× 10−07 −9.9386654× 10−07 −9.9163524× 10−07 −9.9387870× 10−07 −9.9163524× 10−07 −9.8868078× 10−07 −9.9388366× 10−07 −9.8868078× 10−07 9.8446935× 10−07 −9.9388532× 10−07 −9.8446935× 10−07

0.9 8.9408624× 10−07 8.9404146× 10−07 8.9408624× 10−07 8.9208051× 10−07 8.9398820× 10−07 8.9208051× 10−07 8.9208051× 10−07 8.9399230× 10−07 8.8943958× 10−07 8.8570183× 10−07 8.9399373× 10−07 8.8570183× 10−07

1 −5.0653808× 10−07 −5.0645187× 10−07 −5.0653808× 10−07 −5.0540319× 10−07 −5.0636139× 10−07 −5.0540319× 10−07 −5.0390421× 10−07 −5.0636328× 10−07 −5.0390421× 10−07 −5.0176457× 10−07 −5.0636401× 10−07 −5.0176457× 10−07
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Table 4. Statistical comparison of the absolute errors in the solutions of the proposed technique with MS-RKM and LTM for multiple fractional orders in example 1.

MS-RKM DNN-LM MS-RKM DNN-LM MS-RKM DNN-LM MS-RKM DNN-LM

t α = 1 α = 0.98 α = 0.96 α = 0.94

0.1 5.7100× 10−07 2.8311× 10−10 6.6731× 10−08 2.5502× 10−13 4.3778× 10−06 5.1958× 10−14 2.9062× 10−06 1.9984× 10−14

0.2 6.7200× 10−07 5.8660× 10−11 7.0208× 10−07 9.4008× 10−14 4.6059× 10−06 1.9984× 10−14 4.3454× 10−06 7.9936× 10−15

0.3 3.3500× 10−07 2.2285× 10−10 4.1522× 10−07 7.9992× 10−14 3.0963× 10−06 1.1019× 10−14 2.4753× 10−06 3.9968× 10−15

0.4 6.1700× 10−07 3.5299× 10−10 5.1622× 10−07 2.2998× 10−13 3.9811× 10−06 3.9968× 10−14 9.2649× 10−07 1.3101× 10−14

0.5 5.9100× 10−07 3.1058× 10−10 2.5439× 10−07 3.0809× 10−13 9.2163× 10−06 5.4956× 10−14 7.9424× 10−06 1.8985× 10−14

0.6 5.5200× 10−07 2.0185× 10−10 9.3718× 10−07 2.8499× 10−13 1.7540× 10−06 4.9960× 10−14 1.7737× 10−06 1.4988× 10−14

0.7 5.0400× 10−07 7.6100× 10−12 8.9494× 10−07 1.7902× 10−13 2.7411× 10−06 3.4028× 10−14 8.5945× 10−06 1.0991× 10−14

0.8 8.6000× 10−07 7.2000× 10−12 1.3208× 10−07 1.5000× 10−14 4.2028× 10−07 4.9960× 10−15 4.7633× 10−06 9.9920× 10−16

0.9 7.0900× 10−07 1.5528× 10−10 6.4203× 10−07 1.5499× 10−13 1.7325× 10−06 2.5979× 10−14 5.3190× 10−06 8.9928× 10−15

1 9.8000× 10−07 2.1244× 10−10 4.0842× 10−07 2.7600× 10−13 8.7457× 10−06 4.8961× 10−14 7.6826× 10−06 1.5987× 10−14

Table 5. Statistical comparison of the absolute errors in the solutions of the proposed technique with MS-RKM and LTM for multiple fractional orders in example 2.

MS-RKM DNN-LM MS-RKM DNN-LM MS-RKM DNN-LM MS-RKM DNN-LM

t α = 1 α = 0.9 α = 0.8 α = 0.7

0.1 8.3930× 10−11 4.8227× 10−15 1.4663× 10−09 3.5664× 10−15 3.1448× 10−09 4.6818× 10−15 5.4804× 10−09 6.1333× 10−16

0.2 4.0830× 10−11 2.2025× 10−15 2.0891× 10−09 3.5390× 10−15 4.7417× 10−09 2.8190× 10−17 8.5475× 10−09 3.5407× 10−15

0.3 1.5390× 10−11 4.8616× 10−15 2.1905× 10−09 1.4343× 10−15 5.1715× 10−09 1.2313× 10−15 9.3778× 10−09 1.8032× 10−15

0.4 6.6670× 10−11 1.7129× 10−15 1.5255× 10−09 1.9076× 10−15 3.6962× 10−09 3.8103× 10−15 6.7826× 10−09 2.3130× 10−15

0.5 9.6490× 10−11 3.5854× 10−15 3.9450× 10−10 1.4174× 10−15 1.1925× 10−09 3.1910× 10−15 2.3268× 10−09 4.6028× 10−15

0.6 9.5250× 10−11 3.6862× 10−15 8.7364× 10−10 1.3781× 10−15 1.8031× 10−09 3.6668× 10−16 3.1333× 10−09 1.5681× 10−15

0.7 6.3350× 10−11 3.2383× 10−15 1.8565× 10−09 2.3814× 10−15 4.1459× 10−09 4.5780× 10−15 7.3826× 10−09 3.6619× 10−16

0.8 1.1070× 10−11 3.2809× 10−15 2.2435× 10−09 1.0802× 10−15 5.2029× 10−09 4.3272× 10−16 1.9784× 10−06 1.9689× 10−06

0.9 4.4780× 10−11 2.5639× 10−15 1.9077× 10−09 4.4938× 10−15 1.9118× 10−09 2.6409× 10−09 8.2919× 10−09 9.3330× 10−16

1 8.6210× 10−11 4.6296× 10−15 9.5820× 10−10 1.1281× 10−17 2.4591× 10−09 1.1152× 10−15 4.5994× 10−09 1.1250× 10−15
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Figure 10. Approximate solutions obtained by DNN-LM algorithm for different fractional orders of
RC and RL circuits, respectively.

The convergence of mean square error for the combined tuning of the target data is
plotted through Figure 11. The validation, testing, and training values of the DNN model for
examples 1 and 2 overlap with each other and the mean square errors are approaching zero,
which indicates the accuracy of the results. The error histogram figures are given in Figure 12.
The error between the targeted data and approximate data for almost 3000 points out of
4000 mesh points lies at approximately −8.1× 10−8 for Example 1. The detailed analysis
of the performance of the designed algorithm in terms of training, testing, validation, and
computational complexity for each case of problem 1 with different layers and delays of
the neural network is dictated in Table 6. The values of correlation for examples 1 and 2 are
approaching zero and lie between the confidence limit that highlights the perfect model of
the approximated solutions, as shown in Figure 13.
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Table 6. Outcomes of the performance functions to analyze the solution of the stiff fractional model of electrical circuits.

Parameters Cases Performance Analysis

Example Hidden neurons Time delay alpha Training Validation Testing Gradient Regression Time (s) Iterations

1

10 2 1 3.95× 10−11 7.58× 10−11 4.71× 10−11 9.94× 10−08 1 0.03 753
10 2 0.98 7.31× 10−11 7.05× 10−11 2.18× 10−10 1.07× 10−07 1 0.04 1000
10 2 0.96 6.14× 10−11 7.05× 10−11 5.89× 10−11 7.01× 10−07 1 0.04 1000
10 2 0.94 2.60× 10−11 2.46× 10−11 2.23× 10−11 9.94× 10−08 1 0.05 735

12 3 1 2.44× 10−11 2.75× 10−11 5.20× 10−11 9.89× 10−08 1 0.05 675
12 3 0.98 1.97× 10−11 2.64× 10−11 1.54× 10−11 9.97× 10−08 1 0.05 744
12 3 0.96 4.42× 10−12 4.42× 10−12 3.21× 10−12 9.87× 10−08 1 0.05 799
12 3 0.94 1.31× 10−11 1.36× 10−11 1.46× 10−11 4.96× 10−07 1 0.04 1000

2

10 2 1 7.00× 10−12 7.09× 10−12 7.39× 10−12 1.09× 10−11 1 0.0005 49
10 2 0.98 2.86× 10−12 3.01× 10−12 2.83× 10−12 4.98× 10−12 1 0.004 98
10 2 0.96 3.42× 10−12 3.50× 10−12 3.33× 10−12 6.52× 10−12 1 0.0005 60
10 2 0.94 2.95× 10−12 2.93× 10−12 3.27× 10−12 7.55× 10−12 1 0.03 148

12 3 1 1.84× 10−12 1.91× 10−12 1.81× 10−12 3.91× 10−12 1 0.0005 35
12 3 0.98 1.71× 10−12 1.94× 10−12 2.05× 10−12 3.57× 10−12 1 0.005 46
12 3 0.96 4.46× 10−13 4.36× 10−13 5.15× 10−13 2.53× 10−12 1 0.05 223
12 3 0.94 4.24× 10−13 4.34× 10−13 3.98× 10−13 1.94× 10−12 1 0.02 571
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Figure 12. Errorhistogram plots representing the combined error of a multiple fractional order at
different mesh points.
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Figure 13. Input error cross-correlation plots for examples 1 and 2 of the RL and RC circuits, respectively.

The training state such as the behavior of the gradient and the validation fails of the
DNN-LM technique for examples 1 and 2 are shown in Figure 14. The results show that
the iterative process of the design scheme is smooth with no validation failures during
990 epochs and 660 epochs. Finally, the regression plots for the validation, testing, and
training phases of the algorithm are disclosed in Figure 15.
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Figure 14. Behaviorof the gradient, mu, and validation checks during the process of optimization of
the DNN-LM algorithm for the solutions of examples 1 and 2.
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Figure 15. Regression plots for examples 1 and 2.

4. Conclusions

This study investigates the fractional models of polytropic gas spheres and electric
circuits that are of significant importance in various domains of astrophysics and electrical
engineering. The fractional models are usually difficult to solve; therefore, in this work,
we employed the supervised learning strategy of neural networks in a machine learning
environment. The deep neural networks were utilized with the optimization technique,
namely the Levenberg–Marquardt algorithm, to study the impact of the fractional parame-
ter on the differential equations of the physical models. The study reveals that the solution
of the proposed DNN-LM algorithm is in good agreement with state-of-the-art-techniques
such as the multi-step approach of reproducing the kernel method (MS-RKM), Laplace
transform method (LTM), and Padé approximation. The approximate solutions by the
proposed algorithm overlap with the analytical solutions with minimum absolute errors
that approximately lie between 10−8 and 10−10; 10−7 and 10−11; 10−6 and 10−12; and 10−7

and 10−10 for different cases of the studied problems.
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Extensive graphical and statistical analyses based on regression, training, testing,
validation, and computational complexity were conducted to assess the performance of the
designed scheme. The outcomes of the performance matrices were close to zero and the
regression value is exactly 1 for each case, which demonstrates that the proposed technique
successfully achieved the solution to nonlinear fractional differential equations.

The solution, ease of implementation, and accuracy of the machine learning techniques
motivated the authors to extend the use of the neural network to the solution to fractional
partial differential equations modeling real-world phenomena.
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