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Abstract: This paper aims to investigate free convection heat transmission in hybrid nanofluids across
an inclined pours plate, which characterizes an asymmetrical hybrid nanofluid flow and heat transfer
behavior. With an angled magnetic field applied, sliding on the border of walls is also considered with
sinusoidal heat transfer boundary conditions. The non-dimensional leading equations are converted
into a fractional model using an effective mathematical fractional approach known as the Prabhakar
time fractional derivative. Silver (Ag) and titanium dioxide (TiO2) are both considered nanoparticles,
with water (H2O) and sodium alginate (C6H9NaO7) serving as the base fluids. The solution of
the momentum, concentration, and energy equation is found by utilizing the Laplace scheme, and
different numerical algorithms are considered for the inverse of Laplace, i.e., Stehfest and Tzou’s.
The graphical analysis investigates the impact and symmetry of significant physical and fractional
parameters. Consequently, we surmise that water-based hybrid nanofluid has a somewhat higher
velocity than sodium alginate-based hybrid nanofluid. Furthermore, the Casson parameter has a dual
effect on the momentum profile. Furthermore, the memory effect reduces as fractional restriction
increases for both the velocity and temperature layers. The results demonstrate that increasing the
heat transmission in the solid nanoparticle volume fractions enhanced the heat transmission. In
addition, the numerical assessment examined the increase in mass and heat transmission, while shear
stress was increased with an increase in the Prabhakar fractional parameter α.

Keywords: heat transfer; Prabhakar derivative; slip; Casson fluid; sodium alginate

1. Introduction

During previous years, various attempts have been made to attain the actual thermal
effectiveness of diverse systems. This is part of these attempts to enhance the thermal
transfer rate by adding different nanoparticles and mixed convection flow [1,2]. The effect
of a mixed convection MHD flow along with diverse Grashof numbers, Reynolds numbers,
and Hartmann numbers are examined by Al-Salem et al. [3]. They observed that heat
convection and flow speed are affected by the path of fluid motion and permit the magnetic
field, which sources a deprived transfer of heat. Furthermore, Lorentz’s force in the reverse
flow direction is produced using a magnetic force. Another form of nanofluid (NF) that
has newly received consideration is known as the hybrid nanofluid (HNF). Simultaneous
mixtures of a metallic nanoparticle and a non-metallic form increase the thermal conduction
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and solidity of the NF [4]. Using this, the characteristics of two or three nanoparticles
may be utilized. As yet, several investigations have been made on HNFs. The effects of
Al2O3-Cu-H2O and Al2O3-H2O are differentiated through Moghadassi et al. [5]. They
determined that the transfer of convective heat is far advanced in the case of HNF. Suresh
et al. [6] discussed the viscosity and thermal conductivity of hybrid (Al2O3-Cu-H2O) nano-
suspension in a cylinder. They exposed that transfer of heat is elevated when the HNF
is utilized. Singh et al. [7] used the quasi-linearization method with an implicit finite
difference technique to study the mixed convection flow along a vertical plate. Govindaraj
et al. [8] discussed the MHD NF flow over an accelerated vertical plate with different
viscosity values and Prandtl numbers. Gnanaprasanna et al. [9] numerically examined a
mathematical flow model of Casson NF over a flat plate.

Further, the laminar flow through a hot cylinder filled with HNF (Al2O3-Cu-H2O)
was investigated empirically by Suresh et al. [10] and exhibited that the Nusselt number
is enlarged in an HNF in contrast with pure water. The HNF (Ag-MgO-H2O) through a
square cavity was premeditated by Ghalambaz et al. [11]. The impacts of disparity of the
major constraints, such as the nanoparticle volume fraction, were considered. The impact
on the entropy construction and MHD convection of HNF Al2O3-Cu in a permeable square
addition was deliberated by a numerical scheme in [12]. They noted that heat transmission
in convection mode increases by increasing Rayleigh number while it decreases with the
increase in Hartmann number. Non-Newtonian fluids are fluids that do not have a linear
relationship between rates of deformation and stress. Non-Newtonian fluids are used in
a wide range of scientific and technology sectors, such as crude oil extraction and fiber
varnishing, and have piqued the interest of many researchers. Because of their flexibility,
non-Newtonian fluids do not have all of their characteristics explained in a single equation.
Casson fluid, commonly known as a shear-thinning liquid, is a non-Newtonian fluid.
Casson-type fluids include honey, human blood, tomato sauce jelly, and others. Casson
fluids are studied by engineers, mathematicians, biomedical researchers, and scientists
due to their diverse uses. Because of this phenomenon and in nature, several types are
established. The Casson model is an important model that is established, and this fluid
model explains yield stress. The Casson NF model with the impact of the magnetic field
was studied in [13]. A model of non-Newtonian NF because of heat transference in the
existence of a porous surface by taking the stagnation point was deliberated by Nadeem
et al. [14]. The Casson NF model with the impacts of MHD and heat transfer was inspected
by Haq et al. [15]. Alwawi et al. [16] explored the Casson NF model and heat transference
produced by the Lorentz force. The water-based boundary layer flow over a stretching
surface along with a vertical plate was discussed by employing the Quasilinearization
scheme by Govindaraj et al. [17]. The boundary layer flow in a diverging channel along
with diverse viscosity was solved numerically with the quasilinearization method [18].
Patil et al. [19] investigated the MHD triple diffusing quadratic and convective Eyring–
Powell NF flow over a vertical plate in diffusing liquid oxygen and hydrogen by employing
the implicit finite difference estimation. Iyyappan et al. [20] investigated the boundary
layer forced convection flow in a diverging channel with viscous dissipation and heat
source/sink on momentum and temperature fields numerically. Patil et al. [21] examined a
mathematical model of heat and mass transfer in the nonlinear convective Williamson NF
with a moving plate. The shape effects of MHD nanoparticles were studied on energy and
fluid flow features on a slender cylinder by employing the implicit finite difference system
and quasi-linearization technique [22]. The mixed convective HNF flow around a yawed
cylinder with one type of nanoparticle was investigated by utilizing the quasilinearization
and the finite method [23].

We see that a numerical model involving an integer-order derivative, with the non-
linear model, cannot work suitably in many cases. Fractional calculus has numerous
implementations in electromagnetics, viscoplasticity, fluid mechanics, fluid dynamics,
processing of signals, as well as optics. It is exploited to explain the model’s physics and
design forms formulated through fractional approaches. The Caputo fractional derivative



Symmetry 2022, 14, 2658 3 of 16

(CTFD) with the utilization of time-fractional distribution by employing a fast method
for variable order was discussed by Fang et al. [24]. Ali et al. [25] investigated HNFs
with continuous reasonable CTFD due to a pressure gradient. A mathematical model
demonstrating the human liver with Caputo–Fabrizio derivatives (CF) was studied by
Baleanu et al. [26]. Atangana–Baleanu derivatives (AB) are a novel utilization for designing
an AB-fractional mask image dispensation communicated in [27]. Saqib et al. [28] examined
the heat transfer rate of CNTs-based nanofluid moving on an inclined plate without singular
and local kernels definitions of fractional derivatives. In [29], authors investigate the MHD
channel flow of BTF containing hybrid nanoparticles with the help of nonlocal definitions
of recent fractional derivatives. Moreover, the recent work completed on different steady
and unsteady flows can be seen in [30–34]. The heat transfer fractional study based on AB
and CF derivatives for MHD mixed convection flow with nanoparticles (copper oxide and
silver) through an inclined moving surface using the Laplace method was completed by
Bafakeeh et al. [35]. Sadiq et al. [36] used the Laplace approach to investigate the natural
convection heat transfer NF fractional model with CF derivative inside a channel with
ramped wall conditions under the impacts of radiation, chemical reactions, and the Soret
effect.

In 1971, the Prabhakar work was proposed by an Indian mathematician, Professor
Tilak Raj Prabhakar, who anticipated a generality of the Mittag–Leffler function involving
three parameters. Using the Prabhakar derivative along with precise fractional coefficients
might be a valuable path for choosing suitable numerical models that are recognized as a
good arrangement between trial and hypothetical outcomes [37,38]. Due to massive uses
in fluid mechanics, researchers studied fractional models based on Caputo, CF, AB, and
Prabhakar’s time-fractional derivatives to study the memory effects of different Newtonian
and non-Newtonian models in [39–44]. The carbon nanotube NF, along with Prabhakar-
type thermal transport and free convection flow, was deliberated by Elnaqeeb et al. [45].
Shah et al. [46] discussed a Prabhakar fractional of Maxwell fluid with thermal transport and
free convection flow model. Raza et al. [47] used the Laplace method to examine viscous
natural convection fractionalized fluid flowing based on Prabhakar fractional operator with
slip effects, constant mass diffusion, and Newtonian heating over an oscillating inclined
plate. Asjad et al. [48] used the Prabhakar operator to obtain a fractional problem of Jeffrey
fluid along a moving vertical plate and the equations for energy, and the Laplace approach
solved momentum. Recent definitions of fractional derivatives can be seen in [40,49–51].

In the literature, researchers dismissed the notion of fractional, particularly the Prab-
hakar form fractional, which has an extended Mittag–Leffler function as its kernel and can
regulate the momentum and thermal boundary layers. This research investigates the mixed
convection heat transfer in HNFs across an inclined vertical plate. With an angled magnetic
field applied, sliding on the border of walls is also considered. The non-dimensional
controlling equations are converted into a fractional model using an effective mathematical
fractional method known as the Prabhakar time-fractional derivative. Silver (Ag) and
titanium dioxide (TiO2) are nanoparticles with water and sodium alginate as base fluids.
The Laplace scheme is used to solve the momentum, concentration, and energy equation,
and several numerical approaches are studied for the inverse of Laplace. The graphical
depiction also discusses the effects of physical and flow characteristics.

2. Mathematical Formulation

Assume an unsteady free convection nanofluid mixed with silver (Ag) and tita-
nium dioxide (TiO2) as nanoparticles. Furthermore, water (H2O) and sodium alginate
(C6H9NaO7) are considered as a base fluid of flowing hybrid nanofluid on an inclined
plate with ambient temperature T∞. Moreover, a magnetic field of intensity B2

o provided
to the poured plate at an angle of inclination θ1. Because of the low Reynolds number
values, the induced magnetic field is neglected. At the start of time t = 0, the system is at
rest, and the fluid is also motionless with a constant temperature. After some time t > 0+,
the system begins to oscillate with some constant velocity H(t)Cos(ωt), and the hybrid
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nanofluid begins to flow across the plate owing to oscillations of the inclined plane, as
shown in Figure 1.
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As a result of the assumptions mentioned above and the Boussinesq’s approxima-
tion [52], the significant leading governing equations of free convection-flowing fluid may
be described as [53].

The momentum field:

ρn f
∂w(y,t)

∂t =
(

1 + 1
Λ0

)
∂2w(y,t)

∂y2 −
(

σn f B2
o Sin(θ1) +

(
1 + 1

Λ0

)
µn f

k

)
w(y,t)

+g(ρβT)n f

(
T(y,t) − T∞

)
Cos(θ2)

+g(ρβC)n f

(
C(y,t) − T∞

)
Cos(θ2)

(1)

The energy equation:

(
ρCp

)
n f

∂T(y,t)

∂t
= −

∂δ(y,t)

∂y
, where δ(y,t) = −kn f

∂T(y,t)

∂y
(2)

Concentration field:

∂C(y,t)

∂t
= −

∂M(y,t)

∂y
, where M(y,t) = −D

∂C(y,t)

∂y
. (3)

With equivalent conditions:

w(0,t) − h ∂w
∂y

∣∣∣
y=0

= Uo H(t)Cos(ωt), T(y,t)

=


T∞ + (Tw − T∞) t

to
, 0 < t ≤ to

Tw, t > to

, C(0,t) = Cw

w(y,t) → 0, T(y,t) → T∞, C(y,t) → C∞ ; y→ ∞, t > 0
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Introducing the consequent non-dimensional variables:

w∗ = w
Uo

, y∗ = Uo
υ f

y, t∗ = t
to

, to =
υ f

U2
o

, T∗ =
T(y,t)−T∞
Tw−T∞

C∗ =
C(y,t)−C∞
Cw−C∞

, q∗ = q
qo

By discarding the static notation in Equations (1)–(3) and comparable conditions, the
non-dimensional form of the preceding equations will emerge as

λo
∂w(y,t)

∂t = λ1
Λ1

∂2w(y,t)
∂y2 −

(
λ2MSin(θ1) +

λ1
k

)
w(y,t) + λ3GrT(y,t)Cos(θ2)

+λ4GrC(y,t)Cos(θ2)
(4)

λ5Pr
∂T(y,t)

∂t
= −

∂δ(y,t)

∂y
, δ(y,t) = −

∂T(y,t)

∂y
(5)

λ6Sc
∂C(y,t)

∂t
= −

∂M(y,t)

∂y
, M(y,t) = −

∂C(y,t)

∂y
(6)

With the following transformed conditions:

w(y,0) = 0, T(y,0) = 0, C(y,0) = 0; ∀y ≥ 0 (7)

w(0,t) − h ∂w
∂y

∣∣∣
y=0

= H(t)Cos(ωt),

T(y,t) =


t, 0 < t ≤ 1

1, t > 1
, C(0,t) = 1

(8)

w(y,t) → 0, T(y,t) → 0, C(y,t) → 0 ; y→ ∞, t > 0 (9)

Tables 1 and 2 shows the thermal properties and properties of under-conversation
nanoparticles and fluids.

Table 1. The thermal characteristics of nanoparticles and base fluid.

Material Water (H2O) Sodium Alginate (C6H9NaO7) Silver (Ag) Titanium Dioxide (TiO2)

ρ
(
M/L3) 997.1 898 10,500 425

Cp(J/M K) 4179 4175 235 6862
k(W/L K) 0.613 0.6367 429 8.9538
βT
(
K−1) 21 23 1.89 0.9
σ 0.05 0.07 3.6 × 107 1 × 10−7

Where:

λo = (1− ϕ) + ϕ
ρs

ρ f
, λ1 =

1

(1− ϕ)2.5 , λ2 = 1 +
3
(

σs
σf
− 1
)

ϕ(
σs
σf

+ 2
)
−
(

σs
σf
− 1
)

ϕ

λ3 = (1− ϕ) + ϕ
(ρβT)s
(ρβT) f

, λ4 = (1− ϕ) + ϕ
(ρβC)s
(ρβT) f

λ5 =
kn f

k f
, Λ1 =

Λ0υ f

U2
o

Pr =
(

µCp

κ

)
f
, Gr =

g(ρβT) f (Tw − T∞)

U3
o

, Sc =
ν

D
, Gm =

g(ρβC) f (Cw − C∞)

U3
o
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As a result, the equivalent fractional model for the Fourier law of heat conductivity
and Fick’s law in terms of Prabhakar time-fractional derivatives is as follows

δ(y,t) = −CD
γ
α,β,α

∂T(y,t)

∂y
(10)

M(y,t) = −CD
γ
α,β,α

∂C(y,t)

∂y
(11)

where CD
γ
α,β,α is the regularised Prabhakar fractional operator with the necessary prelimi-

naries stated below.

Table 2. Model for thermophysical characteristics of NFs quantities.

Thermal Features Regular Nanofluid Hybrid Nanofluid

Density ρ f =
ρn f

(1−ϕ)+ϕ
ρs
ρs

ρ f =
ρhn f(

(1−ϕ2)

(
(1−ϕ1)+ϕ1

ρs1
ρ f

)
+ϕ2ρs2

)
Dynamic Viscosity µ f = µn f (1− ϕ)2.5 µ f = µhn f (1− ϕ1)

2.5(1− ϕ2)
2.5

Electrical Conductivity
σf =

σn f1+
3
(

σs
σf
−1
)

ϕ(
σs
σf

+2
)
−
(

σs
σf
−1
)

ϕ

 σb f =
σhn f(

1+
3ϕ(ϕ1σ1+ϕ2σ2−σb f (ϕ1+ϕ2))

(ϕ1σ1+ϕ2σ2+2ϕσb f −ϕσb f (ϕ1σ1+ϕ2σ2−σb f (ϕ1+ϕ2)))

)

Thermal Conductivity
k f =

kn f(
ks+(n−1)k f −(n−1)(k f −ks)ϕ

ks+(n−1)k f +(k f −ks)ϕ

)
kb f =

khn f(
ks2+(n−1)kb f −(n−1)(kb f −ks2)ϕ2

ks2+(n−1)kb f +(kb f −ks2)ϕ2

)and k f =

kb f(
ks1+(n−1)k f −(n−1)(k f −ks1)ϕ1

ks1+(n−1)k f +(k f −ks1)ϕ1

)

Heat Capacitance
(
ρCp

)
f =

(ρCp)n f

(1−ϕ)+ϕ
(ρCp)s
(ρCp) f

(
ρCp

)
s =

(ρCp)hn f

(1−ϕ2)

(
(1−ϕ1)+ϕ1

(ρCp)s1
(ρCp) f

)
+ϕ2(ρCp)s2

Thermal Expansion Coefficient (ρβ) f =
(ρβ)n f

(1−ϕ)+ϕ
(ρβ)s
(ρβ) f

(ρβ) f =
(ρβ)hn f

(1−ϕ2)

(
(1−ϕ1)+ϕ1

(ρβ)s1
(ρβ) f 1

)
+ϕ2(ρβ)s2

Definition 1. The mathematical form of Prabhakar fractional kernel [54]

eγ
α,β(α; t) = tβ−1Eγ

α,β(αtα), Re(α) > 0

Definition 2. The mathematical representation of Prabhakar integral

Eγ
α,β,αh(t) = h(t) ∗ eγ

α,β(α; t) =
t∫

0

h(τ)(t− τ)β−1Eγ
α,β

(
α(t− τ)α)dτ

with its Laplace transform

L
{

Eγ
α,β,αh(t)

}
(q) = L{h(t)}

(
qαγ−β

(qα − α)γ

)

Definition 3. The regularized Prabhakar derivative is distinct as [55]

CD
γ
α,β,αh(t) =

t∫
0

hn(τ)(t− τ)n−β−1E−γ
α,n−β

(
α(t− τ)α)dτ
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with its Laplace transform

L
{

CD
γ
α,β,αh(t)

}
= qβ−n(1− αq−α

)γL{hn(t)}

3. Solution of the Problem

The LT approach is used to solve this issue for both leading equations.

3.1. Energy Profile

By applying the LT to Equations (5) and (10) and inserting Equation (10) into
Equation (5), we obtain the ordinary differential equation as follows for the solution
of the energy equation.

λ5Pr q T(y,q) =
(

qβ
(
1− αq−α

)γ
)d2T

dy2

After simplifying this ordinary differential equation, we yield the general solution
with transformed boundary conditions as follows:

T(y,q) = Ae
y
√

λ5Pr q1−β

(1−αq−α)γ − Be
−y
√

λ5Pr q1−β

(1−αq−α)γ (12)

T(0,q) =
1− e−q

q2 , T(∞,q) = 0

Using these conditions, the answer to the thermal equation will be as follows:

T(y,s) =
1− e−q

q2 e
−y
√

λ5Pr q1−β

(1−αq−α)γ (13)

The Laplace inverse of Equation (13) will be derived numerically in Table 3.

Table 3. Numerical analysis of governed profiles by both numerical algorithms.

y T(y,t)by
Stehfest

T(y,t)by
Tzou’s

C(y,t)by
Stehfest

C(y,t)by
Tzou’s

w(y,t)by
Stehfest

w(y,t)by
Tzou’s

0.1 0.8141 0.8215 0.8342 0.8339 1.1816 1.1923
0.3 0.5591 0.5637 0.5802 0.5797 1.2916 1.3035
0.5 0.3840 0.3868 0.4038 0.4029 1.3134 1.3254
0.7 0.2636 0.2653 0.2808 0.2800 1.2777 1.2894
0.9 0.1810 0.1820 0.1593 0.1946 1.2069 1.2108
1.1 0.1243 0.1248 0.1359 0.1352 1.1165 1.1268
1.3 0.0853 0.0856 0.0945 0.0940 1.0169 1.0263
1.5 0.0585 0.0587 0.0658 0.0654 0.9153 0.9237
1.7 0.0402 0.0402 0.0458 0.0454 0.8163 0.8234
1.9 0.0275 0.0275 0.0319 0.0316 0.7223 0.720

3.2. Concentration Profile

We obtain the ordinary differential equation for the simulations of the concentration
profile by using the LT on Equations (6) and (11)

λ6 Sc q C(y,q) = −
∂M

∂y
(14)

M(y,q) = −
(

qβ
(
1− αq−α

)γ
)∂C(y,q)

∂y
(15)



Symmetry 2022, 14, 2658 8 of 16

We introduce Equation (15) into Equation (14) and utilize the corresponding conditions
we obtain:

C(y,q) =
1
q

e
−y
√

λ6 Sc q1−β

(1−αq−α)γ (16)

The Laplace inverse of the concentration as mentioned above field solution will be
computed numerically in Table 3 using Stehfest and Tzou’s techniques.

3.3. Momentum Profile

We use the LT on the modified governing Equation (4) and its following conditions to
obtain the momentum profile solution.

∂2 w(y,q)
∂y2 − Λ1

λ1

(
λ2Msin(θ1) +

λ1
k + λoq

)
w(y,q)

= − λ3GrΛ1Cos(θ2)
λ1

T(y,q) −
λ4GrΛ1Cos(θ2)

λ1
C(y,q)

(17)

w(0,q) − h
∂w
∂y

∣∣∣∣
y=0

=
q

ω2 + q2 , w(∞,q) → 0

Using these circumstances, we obtain the momentum profile simulation shown below.

w(y,q)

= 1

1+h
√

Λ1
λ1

(
λ2 Msin(θ1)+

λ1
k +λ0q

)
 λ3Gr Λ1 Cos(θ2)(1−e−q)

λ1q2

1+h
√

λ5Pr q

qβ(1−αq−α)γ(
λ5Pr q

qβ(1−αq−α)γ

)
−Λ1

λ1

(
λ2 Msin(θ1)+

λ1
k +λ0q

)

+ λ4Gm Λ1 Cos(θ2)
λ1q

1+h
√

λ6Sc q

qβ(1−αq−α)γ(
λ6Sc q

qβ(1−αq−α)γ

)
−Λ1

λ1

(
λ2 Msin(θ1)+

λ1
k +λ0q

) + q
ω2+q2

e
−y
√

Λ1
λ1

(λ2 Msin(θ1)+
λ1
k +λ0q)

− λ3Gr Λ1 Cos(θ2)(1−e−q)
λ1q2

e
−y

√
λ5Pr q

qβ(1−αq−α)γ(
λ5Pr q

qβ(1−αq−α)γ

)
−Λ1

λ1

(
λ2 Msin(θ1)+

λ1
k +λ0q

)

− λ4Gm Λ1 Cos(θ2)
λ1q

e
−y

√
λ6Sc q

qβ(1−αq−α)γ(
λ6Sc q

qβ(1−αq−α)γ

)
−Λ1

λ1

(
λ2 Msin(θ1)+

λ1
k +λ0q

)

(18)

We used a numerical tool, the Stehfest algorithm, to examine the solution of heat
and momentum fields to investigate LT’s inverse. Mathematically, the Gaver Stehfest
method [56–58] may be distinguished as

w(y, t) =
ln(2)

t

N

∑
n=1

vnw
(

y, n
ln(2)

t

)
where

vn = (−1)n+ N
2

min(q, N
2 )

∑
r=[

q+1
2 ]

r
N
2 (2r)!(

N
2 − r

)
!r! (r− 1)! (q− r)! (2r− q)!

To compare and confirm the findings acquired by the preceding numerical technique,
we also used Tzou’s method, which may be mathematically rigorous.

w(ξ, t) =
e4.7

t

[
1
2

w
(

r,
4.7
t

)
+ Re

{
N

∑
j=1

(−1)kw
(

r,
4.7 + kπi

t

)}]
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3.4. Gradients

This paper uses the following three important fundamental engineering quantities of
interest: the Nusselt number, the Sherwood number, and the shear stress. These gradients
are mathematically expressed as:

Nu = −
∂T(y,t)

∂y

∣∣∣∣
y=0

= −L−1

{
∂T(0,s)

∂y

}
, (19)

Sh = −
∂C(y,t)

∂y

∣∣∣∣
y=0

= −L−1

{
∂C(0,s)

∂y

}
, (20)

C f = −
∂w(y,t)

∂y

∣∣∣∣
y=0

= −L−1
{

∂w(0,s)

∂y

}
. (21)

4. Discussion of Results

We study the application of the recently presented Mittage–Leffler kernel called Prab-
hakar fractional derivative to Casson HNF (Ag-TiO2-H2O and Ag-TiO2-C6H9NaO7) and
mixed convection over a vertical, inclined plate. The slip on the boundary of walls is also
considered with an inclined applied magnetic field. This fractional model is solved by em-
ploying the Laplace transform scheme sustaining all initial and boundary conditions. The
consequences of fractional and different involved flow parameters on energy, concentration,
and momentum are consulted in Figures 2–8.
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Figure 2 is planned to see the impacts of fractional parameters (α, β, γ) and Pr on the
temperature profile. By setting other parameters constant and varying fractional parameters
and Pr, we see that the temperature rate is decayed by enhancing the (α, β, γ) and Pr. It
means that fluid characteristics may be controlled with fractional parameters. It has been
discovered that raising the fractional parameter reduces the temperature, concentration,
and profiles due to the Prabhakar fractional kernel. This demonstrates the memory effect
of the momentum and temperature at a certain period. Figure 2b depicts the physical
influence of the Prandtl number Pr on the temperature profile while keeping the other flow
parameters constant. We may argue that when the value of Pr increases, the temperature
of the fluid and the thickness of the boundary layer decrease. It is primarily due to an



Symmetry 2022, 14, 2658 11 of 16

increase in fluid viscosity and a decrease in the thermal boundary layer, which resulted
in a slower fluid thermal field. Physically, when the estimations of Pr rise, which source
is quickly reducing of the thermal boundary layer thickness, due to which declines the
energy profile. Moreover, we perceived that the temperature for silver–titanium dioxide–
sodium alginate-based HNF has a relatively more significant value than silver–titanium
dioxide–water HNF.
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Figure 3 is planned to check the impact of (α, β, γ) and Sc on concentration. By
setting other parameters fixed and vary (α, β, γ) and Sc. It is detected that concentration
cannot be boosted by mean declines for a more significant estimation of (α, β, γ) and
Sc. Figure 3b depicts the effect of Sc, the Schmidt number, on the concentration profile.
It is clearly demonstrated that an increase in the value of the Schmidt number Sc results
in a decrease in the centration profile. Because the rate of molecular diffusion decreases
as Sc increases, the thickness of the boundary layer is reduced. Physically, Sc is the ratio
of momentum and mass diffusivity. The fluid layers get more viscosity, so concentration
declines.

Figure 4a shows that the velocity curve drops as fractional parameters are improved,
and the velocity field shows a dual behavior by varying Casson parameter (Λ1) as shown
in Figure 4b. There are separate peaks for momentum profile layer thickness as well. The
velocity near the plate is more incredible, but as the fluid flows away from the plate, its
value decreases and becomes zero as y approaches infinity, as depicted in the figures.
Figure 5a signified the influence of Pr on the velocity profile and observed that the fluid’s
velocity enhancements as Pr declines. The velocity layer increases thickness because of the
lesser rate of thermal diffusion, Pr directs the relative viscosity of momentum boundary
layers in energy transfer model problems. As predicted, raising the values of Pr lowers
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thermal conductivity, making the fluid thicker, and therefore reducing the thickness of the
thermal boundary layer. Figure 5b displays that the velocity behavior is also seen contrary
to the Sc since as the estimations of Sc increase, it drops mass diffusivity by raising the
kinematic viscosity. In Figure 6a,b, we see that fluid velocity amplified for more significant
estimations of thermal Grashof number (Gr) and mass Grashof number (Gm), respectively.
Because Gr creates natural convection owing to buoyancy and viscosity forces acting on the
fluid, large values of Gr cause buoyancy forces to increase, forcing the flow to accelerate.
Physically, Gr is that it characterizes the ratio of the buoyant forces because of spatial
disparity in the fluid density (produced by temperature variation) to the preventive force
because of the fluid viscosity. Grashof number signifies how the buoyant force is dominant,
which controls the convection because of which velocity is enlarged. A similar trend is seen
for Gm. Because Gm is the ratio of viscous forces to buoyant forces owing to concentration
gradient, raising the value of Gm increases fluid velocity and boundary layer thickness in
both circumstances. The influence of inclined magnetic field M considered in Figure 7a
shows that the velocity decays by increasing the estimation of M due to Lorentz forces.
It is a type of resistant force that sources velocity decay. In Figure 7b it is realized how
the volume fraction (ϕ) impacts the velocity. We realize that fluid velocity is reduced
for great values of ϕ. This is physically suitable as the fluid gains much viscosity with
growing ϕ, which sources a reduction in the fluid velocity and eventually displays the
fluid motion. It is discovered that increasing the value of ϕ reduces the velocity. The
velocity is most significant for “ϕ = 0” (pure water), while it is lowest for “ϕ = 0.04”. As
it rises, the viscous forces get more extraordinary, and the velocity drops. Furthermore,
sodium alginate-based hybrid nanofluid is denser than pure water-based hybrid nanofluid.
Figure 8a,b are planned to compare two diverse numerical approaches, Stehfest and Tzou,
for temperature, concentration, and momentum profiles. The consequences from different
profile curves have overlapped slightly, indicating this research work’s validity. Figure 9 is
designed to see the validity of our achieved results compared to Khalid et al. [59] velocity
outcomes. By overlapping both curves, it is appreciated from these graphs that our attained
outcomes match those developed by Khalid et al. [59]. The comparison of governed
equations with different numerical schemes is analyzed in Tables 3 and 4 with nusselt
number, Sherwood number, and skin friction.
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Table 4. Numerical analysis of Nusselt number, Sherwood number, and skin friction.

α Nu Sh Cf

0.1 1.4057 1.4801 7.5847
0.2 1.4845 1.5480 7.9900
0.3 1.5811 1.6169 8.3908
0.4 1.6826 1.6808 8.7468
0.5 1.8124 1.7340 9.0116
0.6 1.9319 1.7736 9.1780
0.7 2.0423 1.7989 9.2379
0.8 2.1374 1.8115 9.2163
0.9 2.2135 1.8123 9.1376

5. Conclusions

We investigated a Casson-type sodium alginate and water-based hybrid nanofluid
combined with silver (Ag) and titanium dioxide (TiO2) and flowing on an inclined plate
in this study. The effects of an inclined applied magnetic field saturated porous plate and
sinusoidal thermal conditions are also studied. The LT approach examines both governing
equations’ semi-analytical solutions. The behavior of various parameters is visually and
quantitatively evaluated. The key findings of the graphical research are listed in bullet form
below.

• With fractional and Prandtl number augmentation, both velocity and temperature
fields exhibit opposing behavior.

• The memory effect is reduced for both concentration and temperature profiles by
increasing the fractional value restriction.

• Because of its physical properties, the energy field fluctuates with the fluctuation in
volume fractional parameters.

• The momentum profile accelerates as the Grashof number increases due to an im-
provement in the boundary layer of the flowing fluid.

• The permeability parameter and the applied magnetic field retorted the velocity profile
for water-based hybrid nanofluid and sodium alginate nanofluid.

• The significant comparison of the momentum profile with the current physical litera-
ture adds to the study’s originality.

• When comparing numerical methodologies, the curves of both methods overlap,
indicating that our obtained results are legitimate.

Recent advances in the study of fractional order frameworks include the fractional
natural decomposition method (FNDM), the fractional Shehu transform, and the modified
generalized Taylor fractional series method (MGTFSM). Researchers in the future can
correlate their findings to those we found utilizing the Caputo–Fabrizio, Atangana–Baleanu,
and Prabhakar fractional methods in our investigation.
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Nomenclatures
θ1 Angle of inclination of the plate [–]
θ2 Angle of inclination of the magnetic field [–]
g Acceleration due to gravity

[
LT−2]

C Concentration of the fluid
[
ML−3]

Uo Constant velocity
[
LT−1]

β1 Casson fluid parameter [–]
K Dimensionless porosity parameter [–]
µ Dynamic viscosity

[
ML−1T−1]

σ Electrical conductivity [–]
Tw Fluids temperature at the plate [K]
Cw Fluids Concentration at the plate

[
ML−3]

Gr Heat Grashof number [–]
υ f Kinematic viscosity

[
L2T−1]

s Laplace transformed variable [–]
Gm Mass Grashof number [–]
D Mass diffusion coefficient

[
L2T−1]

Nu Nusselt number [–]
Pr Prandtl number [–]
α, β, γ Prabhakar fractional derivative operators [–]
k Permeability of the porous medium [L]
Sc Schmidt number [–]
b Slip parameter [–]
C f Skin friction [–]
Cp Specific heat at constant pressure

[
JM−1K−1]

t Time [T]
T Temperature [K]
T∞ Temperature of fluid away from the plate [K]
w Velocity

[
LT−1]

Note: This [–] represents the dimensionless quantity.
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