
����������
�������

Citation: Yuan, L.; Kuang, F.;

Zhang, S.; Chen, H. The Gaussian

Mutational Barebone Dragonfly

Algorithm: From Design to Analysis.

Symmetry 2022, 14, 331. https://

doi.org/10.3390/sym14020331

Academic Editor: Jan Awrejcewicz

Received: 5 January 2022

Accepted: 1 February 2022

Published: 6 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

The Gaussian Mutational Barebone Dragonfly Algorithm: From
Design to Analysis
Li Yuan 1, Fangjun Kuang 2, Siyang Zhang 2,* and Huiling Chen 3,*

1 School of Artificial Intelligence, Beijing Institute of Economics and Management, Beijing 100102, China;
yuanli@biem.edu.cn

2 School of Information Engineering, Wenzhou Business College, Wenzhou 325035, China; kfj@wzbc.edu.cn
3 College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou 325035, China
* Correspondence: zsy@wzbc.edu.cn (S.Z.); chenhuiling.jlu@gmail.com (H.C.)

Abstract: The dragonfly algorithm is a swarm intelligence optimization algorithm based on simulat-
ing the swarming behavior of dragonfly individuals. An efficient algorithm must have a symmetry of
information between the participating entities. An improved dragonfly algorithm is proposed in this
paper to further improve the global searching ability and the convergence speed of DA. The improved
DA is named GGBDA, which adds Gaussian mutation and Gaussian barebone on the basis of DA.
Gaussian mutation can randomly update the individual positions to avoid the algorithm falling
into a local optimal solution. Gaussian barebone can quicken the convergent speed and strengthen
local exploitation capacities. Enhancing algorithm efficiency relative to the symmetric concept is a
critical challenge in the field of engineering design. To verify the superiorities of GGBDA, this paper
sets 30 benchmark functions, which are taken from CEC2014 and 4 engineering design problems to
compare GGBDA with other algorithms. The experimental result show that the Gaussian mutation
and Gaussian barebone can effectively improve the performance of DA. The proposed GGBDA,
similar to the DA, presents improvements in global optimization competence, search accuracy, and
convergence performance.

Keywords: dragonfly algorithm; swarm intelligence; Gaussian mutation; Gaussian barebone; engi-
neering design problem

1. Introduction

The swarm intelligence optimization algorithm (SIOA) mainly simulates biological
individuals’ group behavior, such as cooperation and competition, to obtain the optimal
solution to complex problems. Moreover, SIOA has the benefit of an uncomplicated
structure, few parameters, and uncomplicated implementations [1]. To date, varies of
SIOA had been proposed by domestic and foreign scholars, namely the whale optimization
algorithm (WOA) [2,3]; differential evolution [4] (DE); genetic algorithm (GA) [5]; ant
colony optimization (ACO) [6,7]; particle swarm optimization (PSO) [8,9]; firefly algorithm
(FA) [10]; fruit fly optimization algorithm (FOA) [11–13]; slime mould algorithm (SMA) [14];
moth flame optimization (MFO) [15–17]; grey wolf optimizer (GWO) [18,19]; bat algorithm
(BA) [20,21]; grasshopper optimization algorithm (GOA) [22,23]; Harris hawks optimization
(HHO) [24]; colony predation algorithm (CPA) [25]; hunger games search (HGS) [26];
Runge–Kutta optimizer (RUN) [27] and weighted mean of vectors (INFO) [28].

SIOA found its application in many fields, namely expensive optimization prob-
lems [29,30]; performance optimization [31]; object tracking [32,33]; multi-objective or
many optimization problems [34–36]; traveling salesman problem [37]; neural network
training [38]; scheduling problems [39]; big data optimization problems [40]; fault diag-
nosis of rolling bearings [41]; evolving deep convolutional neural networks [42]; gate
resource allocation [43,44], and combination optimization problems [45]. The dragonfly

Symmetry 2022, 14, 331. https://doi.org/10.3390/sym14020331 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14020331
https://doi.org/10.3390/sym14020331
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7714-9693
https://doi.org/10.3390/sym14020331
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14020331?type=check_update&version=3

Symmetry 2022, 14, 331 2 of 26

algorithm (DA) is a population-based heuristic search algorithm that was first proposed by
Mirjalili, S. [46] in 2015 and has since gained widespread adoption. It has a high level of
performance and a broad range of applications in real life. Many applications, including
parameter optimization [47], feature selection [48], load balancing [49], modeling [50], and
others [51], have been effectively implemented using it. Many trials with complicated,
high-dimensional, and multi-modal functions, on the other hand, demonstrated that DA
had some drawbacks in some situations. For example, the DA lacks internal memory, has
a poor convergence time, and is prone to falling into the local optimum when running in
the background. As a result, several researchers are putting forth an attempt to increase
the DA.

1.1. Related Works

When it comes to solving the challenge of numerical optimization, Sree Ranjini and
colleagues [52] suggested a new memory-based hybrid DA (HMDA). The drawback of the
DA was remedied by combining the advantages of the DA and the PSO together. Moreover,
N. S. et al. [53] integrated the crow search algorithm (CSA) with the D-Crow optimization
algorithm, presented a D-Crow optimization method, and applied this algorithm to opti-
mize the configuration of virtual machines migrating. A method combining the dynamic
analysis and the pattern search algorithm was presented by Khadanga and colleagues [54]
to improve the performance and optimize the controller settings, in order to improve the
control efficiency of the frequency of Microgrid. Using a trained multi-layer perceptron,
Ghanem et al. [55] developed a novel hybridized metaheuristic method with improved
properties in terms of attaining the best optimal value, convergence speed, avoiding local
minima, and accuracy compared to previous algorithms. They created a hybrid algorithm
by combining the artificial bee colony (ABC) algorithm with the distributed algorithm (DA).
Shilaja and colleagues [56] used a combination of the enhanced grey wolf optimization
and dynamic programming to handle the nonlinearity problems. Furthermore, it has been
demonstrated to be more efficient than the conventional method. Using a dragonfly-based
clustering method, CAVDO, Aadil et al. [57] proposed a solution to difficulties associated
with the Internet of vehicles, such as scalability, dynamic topology changes, and finding
the shortest path for routing. For the DA to be more random, Aci and colleagues [58] used
the Brownian motion, which they found to be more effective. Furthermore, the results
of the experiments revealed that the new DA had superior properties when compared to
the old algorithm. Bao and colleagues [59] proposed a new DA that was changed using
opposition-based learning. It also had a faster convergence time and a more balanced
exploration–exploitation ratio, according to the results of the studies. Li et al. [60] improved
the performance of DA by incorporating the adaptive learning factor and differential
evolution (DE) approach into the algorithm. Sayed and colleagues [61] proposed a novel
chaotic DA (CDA). In order to increase the DA, the researchers included chaotic maps
in the searching iterations of the algorithm. Conforming to the experimental findings,
CDA outperformed the control group in classification performance and was capable of
identifying more suitable feature subsets.

Mafarja et al. [62] collected eight transfer functions (s-type function and v-type func-
tion) in BDA for evaluation, and proposed the time-varying s-type BDA, which made
the algorithm have a high probability of changing the element position in the early op-
timization period, but with a low probability in the late optimization period. Hariharan
et al. [63] proposed an improved binary dragonfly optimization algorithm (IBDFO) to
solve the dimension problem and combined it with a feature extraction based on a wavelet
packet to improve the accuracy of identifying the type of infant crying. Zhang et al. [64]
used the DA to improve the prediction accuracy of the support vector machine (SVM)
to obtain the optimal combination of parameters, and proposed the DA-SVM model to
realize the short-term load prediction of the micro grid. Yuan et al. [65] tended to obtain an
algorithm with better exploration capability as they combined the DA with the Coulomb
force search strategy (CFSS). The resultant algorithm gained both a high accuracy and a

Symmetry 2022, 14, 331 3 of 26

remarkably improved convergence rate. Zhang et al. [66] quantized dragonfly behaviors
to improve the search efficiency of the DA to obtain a quantized dragonfly algorithm
(QDA). Furthermore, they put forward a new electric load forecasting model, based on
the complete ensemble empirical mode decomposition adaptive noise, QDA, and support
vector regression model, to accurately forecast the electric load. Suresh et al. [67] adopted
the DA as the optimization algorithm to solve static economic dispatch incorporating solar
energy. Based on the modified dragonfly algorithm (MDA) and bat search algorithm (BSA),
Sureshkumar et al. [68] put forward a new method that adopted the MDABSA technique
to control power flow more efficiently. In this method, MDA was used to develop the
control signals of the voltage source. Xie et al. [69] adopted the DA to create a cancer
classification algorithm. Furthermore, the comparative experiments proved it had a higher
classification accuracy on cancer datasets. Xu et al. [70] adopted the DA and DE for color
image segmentation. In this method, the DA was used for global search, and DE was used
for local search.

1.2. Needs for Research

However, despite the fact that the literature discussed above made significant ad-
vances to the DA, it is not optimal enough to stabilize the algorithm’s exploration and
exploitation capabilities. With the goal of further improving the exploration and exploita-
tion exactness of the DA, as well as avoiding falling into the local optimum, this work
proposes an upgraded DA that incorporates Gaussian mutation and Gaussian barebone
to further improve these aspects. With the use of Gaussian mutation, we were able to
update the dragonfly’s unique location while also improving the global search capabilities.
Additionally, the Gaussian barebone was used to increase the local exploitation capabilities
as well as the speed with which the searches could be conducted. The results of the simu-
lations demonstrated that the algorithm’s accomplishments were superior to those of the
original DA, and that its global optimization capabilities, search accuracy, and convergence
performance were all greatly enhanced as a consequence. In summary, the innovations and
contributions of this paper are as follows.

• An improved dragonfly algorithm (GGBDA) is proposed in this paper to further
improve the global searching ability and the convergence speed of DA.

• GGBDA achieves a great improvement in the ability of exploitation and exploration.
• The performance of GGBDA is verified by comparison with some excellent algorithms.
• GGBDA is applied to optimize the engineering optimization problems.

The following is a summary of the rest of this article. Section 2 introduces the DA;
Section 3 describes the enhanced DA based on Gaussian mutation and Gaussian barebone;
Section 4 presents the experimental findings of the benchmark functions; and Section 5
concludes the paper and provides an overview of the previous work as well as a forecast
for future work.

2. Materials and Methods
2.1. Dragonfly Algorithm (DA)

DA was inspired by two states of idealized behaviors of dragonflies in nature. There
are three principles in the core mathematical backgrounds of this method.

Separation aims to prevent search individuals from collisions with others in a static
state within a partial range. The following is the calculation function:

Si = −
N

∑
j=1

X− Xj (1)

where X is the position agents, Xj is j-th neighboring individual’s position, and N is
neighboring individuals’ number.

Symmetry 2022, 14, 331 4 of 26

Alignment is aimed at matching velocity between individuals within a partial range.
The following is the calculation function:

Ai =
∑N

j=1 Vj

N
(2)

where Vj is the j-th velocity of the neighboring individual.
Cohesion is aimed at making individuals move closer towards the center of swarm

aggregation. The following is the calculation function:

Ci =
∑N

j=1 Xj

N
− X (3)

where X is the current individual’s position, N is neighborhoods’ number, and Xj is j-th
neighboring individual’s position.

The following is the attraction towards a food source:

Fi = X+ − X (4)

where X is the current individual’s position and X+ is he food source’s position.
The following is the distraction outwards an enemy source:

Ei = X− + X (5)

where X is the current individual’s position and X− is the enemy’s position.
Step (∆X) and position(X) are prerequisites to update and record the location of agents

in the search domain. The step vector can be considered as the velocity vector in PSO.
It is the direction of the agents’ motion. The following is the calculation function of the
position vector:

∆Xt+1 = sSi + aAi + cCi + f Fi + eEi + w∆t (6)

where Si, Ai, Ci, Fi, Ei indicates the separation, alignment, cohesion, food source and an
enemy of the i-th individual’s position. s, a, c, f, e represent the weights, w is the inertia
weight, i is the i-th individual, and t is the number of the current iteration. The following is
the calculation function of the position vector:

Xt+1 = Xt + ∆Xt+1 (7)

Search agents have some deficiencies in terms of random behavior and exploration
ability, and they also lack adjacent solutions. Therefore, Levy flight-based patterns are used
to update the position of agents. The following is the function to update location:

Xt+1 = Xt + Levy(d)× Xt (8)

where t is the current iteration number and d is the dimension of the position vector.

2.2. Gaussian Mutation

To improve the performance of DA, this paper used the Gaussian mutation to up-
date the individual position of the dragonfly. Gaussian mutation has applied to many
optimizers [3,16,71,72]. The following is the mutation function of the Gaussian mutation:

temp = Xj ∗ (1 + k) (9)

where X is the position agents, temp is a temporary individual position, Xj is j-th neighbor-
ing individual position, N is neighboring individuals’ number, and k is a random number
between 0 and 1.

Symmetry 2022, 14, 331 5 of 26

After updating the individual position of the dragonfly with this mutation function,
whether the result of the Gaussian mutation is better than the previous result needs to be
verified. If the temporary individual position can obtain a better result, it will be used as the
new individual position of the dragonfly. With the population iterates, the DA may fall into
local optimum. The Gaussian mutation has randomness, thereby quickening the scouting
speed, avoiding slipping into the local optimum effectively, improving the global optimiza-
tion capacity, and eventually obtaining the global optimum or a satisfactory solution.

2.3. Gaussian Barebone Mechanism

The speed of scouting for the optimal solution is a significant indicator of the per-
formance of the algorithm. However, in the iteration, the scouting speed of the DA is
dissatisfactory; thereby, this paper employed a Gaussian barebone to improve it. The
Gaussian barebone mechanism hast been shown great potential in other optimizers [71,72].
The Gaussian barebone mechanism could help the DA scout the global optimum faster
and more effectively by gathering individuals into a food source. There are two methods
to gather individuals. The first method calculates the middle position between the food
source and individual’s position and the distance between them. Then, it generates a
random position where the values of each dimension are normally distributed based on
the two calculated variables. The second method obtains the distances for each dimension
of two random individuals. Additionally, it uses them and the position of the food source
to calculate a new position. The following is the function:

Vi,j =

{
normal(mu + sigma), rand() < CR

FPj + k ∗
(

Xk1,j − Xk2,j

)
, rand() ≥ CR

(10)

where CR is a freely settable parameter; rand is a random number between 0 and 1; Vi,j is a
new temporary position; mu is the middle position between the food source’s position and
Xj; sigma is the distance between the j-th dimension of the i-th neighboring individual and
the j-th dimension of food source; the normrnd function generates random numbers that
follow a normal distribution with the mu parameter representing the mean value and the
sigma parameter representing standard deviation; FPj is the j-th dimension of food source;
k is a random number; and Xk1,j and Xk2,j are j-th dimension of two random individuals in
the population.

3. Proposed Method

The DA lacks internal memory, has a slow convergence speed, and quickly falls into the
local optimum. As a result of these defects, this paper puts forward a new DA improved by
Gaussian mutation and a Gaussian barebone named GGBDA. It uses the Gaussian barebone
to gather individuals to food to quicken the speed of scouting the optimal solution and
strengthen local exploitation capacities. It can update the individuals’ positions based on
the position of the food source. However, Gaussian barebone could make the population
fall into local optimums. Therefore, this paper employs the Gaussian mutation to improve
the global search capacities, search accuracy, and convergence performance by preventing
it from trapping into local optimums.

The Gaussian mutation is mainly used to randomly update individuals’ positions
to escape the local optimums based on the Gaussian mutation function. The flowchart
of the improved DA is shown in Figure 1. And The pseudocode of GGBDA is shown in
Algorithm 1.

Symmetry 2022, 14, 331 6 of 26

Algorithm 1. Pseudocode of GGBDA

Begin
Initialize the dragonflies’ population Xi(i = 1, 2, . . . , n)
Initialize the step vectors ∆Xi(i = 1, 2, . . . , n)
while the end condition is not satisfied

Calculate the population fitness of all the dragonflies
Update the food source and enemy
Update w, s, a, c, f, and e
Calculate S, A, C, F, and E by Equations (1)–(5)
Update the neighboring radius
if a dragonfly has at least one neighboring dragonfly

Update the velocity and vector by Equation (6)
Update the position vector by Equation (7)

else
Update the position vector by Equation (8)

end if
Check and correct the new position according to the boundaries of the variables
Update with the Gaussian mutation and Gaussian barebone

end while
End

Symmetry 2022, 14, 331 6 of 25

individuals’ positions based on the position of the food source. However, Gaussian
barebone could make the population fall into local optimums. Therefore, this paper
employs the Gaussian mutation to improve the global search capacities, search accuracy,
and convergence performance by preventing it from trapping into local optimums.

The Gaussian mutation is mainly used to randomly update individuals’ positions to
escape the local optimums based on the Gaussian mutation function. The flowchart of the
improved DA is shown in Figure 1. And The pseudocode of GGBDA is shown in
Algorithm 1.

Figure 1. Flowchart of GGBDA.

Algorithm 1. Pseudocode of GGBDA
Begin

Initialize the dragonflies’ population 𝑋 (𝑖 = 1,2, … , 𝑛)
Initialize the step vectors Δ𝑋 (𝑖 = 1,2, … , 𝑛)
while the end condition is not satisfied

Calculate the population fitness of all the dragonflies
Update the food source and enemy
Update w, s, a, c, f, and e
Calculate S, A, C, F, and E by Equations (1)–(5)
Update the neighboring radius
if a dragonfly has at least one neighboring dragonfly

Update the velocity and vector by Equation (6)
Update the position vector by Equation (7)

else
Update the position vector by Equation (8)

end if

Figure 1. Flowchart of GGBDA.

4. Experimental Results

In this part, the GGBDA was evaluated on CEC2014 benchmarks and practical engi-
neering problems. To obtain unbiased results, all the experiments were carried out in the
same environments, and the maximum number of iterations and the population size were
set to 500 and 30, respectively. Each algorithm was run 30 times independently on each

Symmetry 2022, 14, 331 7 of 26

function to decrease the weight of unpredictability. Regarding the parameters that affect
the algorithms involved in the comparison, we adopted the same values as in the original
paper. In this paper, the average value and standard deviation of the experimental results
of the optimization function were used to evaluate and analyze the potential of related
technologies. To show the experimental result intuitively, the best values of each function
are shown in bold.

4.1. Benchmark Functions

To compare the proposed algorithm and other algorithms, this experiment used 30 clas-
sical functions, including unimodal functions, multi-modal functions, hybrid functions,
and composition functions.

These 30 functions are all taken from CEC2014 [73]. Thirty different types of bench-
marks can more comprehensively estimate the performance of the proposed algorithm.
The details of the thirty benchmarks are listed in Table 1.

Table 1. Description of the 30 benchmark functions.

ID Function Equation Search Range Optimum Value

CEC 2014 Unimodal Functions

F1 Rotated High Conditioned
Elliptic Function [−100,100] f1{Xmin} = 100

F2 Rotated Bent Cigar Function [−100,100] f2{Xmin} = 200
F3 Rotated Discus Function [−100,100] f3{Xmin} = 300

CEC 2014 Simple Multi-Modal Functions

F4 Shifted and Rotated Rosenbrock
Function [−100,100] f4{Xmin} = 400

F5 Shifted and Rotated Ackley
Function [−100,100] f5{Xmin} = 500

F6 Shifted and Rotated Weierstrass
Function [−100,100] f6{Xmin} = 600

F7 Shifted and Rotated Griewank
Function [−100,100] f7{Xmin} = 700

F8 Shifted Rastrigin Function [−100,100] f8{Xmin} = 800

F9 Shifted and Rotated Rastrigin
Function [−100,100] f9{Xmin} = 900

F10 Shifted Schwefel Function [−100,100] f10{Xmin} = 1000

F11 Shifted and Rotated Schwefel
Function [−100,100] f11{Xmin} = 1100

F12 Shifted and Rotated Katsuura
Function [−100,100] f12{Xmin} = 1200

F13 Shifted and Rotated HappyCat
Function [−100,100] f13{Xmin} = 1300

F14 Shifted and Rotated HGBat
Function [−100,100] f14{Xmin} = 1400

F15
Shifted and Rotated Expanded

Griewank Plus Rosenbrock
Function

[−100,100] f15{Xmin} = 1500

F16 Shifted and Rotated Expanded
Scaffer F6 Function [−100,100] f16{Xmin} = 1600

CEC 2014 Hybrid Functions
F17 Hybrid Function 1 (N = 3) [−100,100] f17{Xmin} = 1700
F18 Hybrid Function 2 (N = 3) [−100,100] f18{Xmin} = 1800
F19 Hybrid Function 3 (N = 4) [−100,100] f19{Xmin} = 1900
F20 Hybrid Function 4 (N = 4) [−100,100] f20{Xmin} = 2000
F21 Hybrid Function 5 (N = 5) [−100,100] f21{Xmin} = 2100
F22 Hybrid Function 6 (N = 5) [−100,100] f22{Xmin} = 2200

Symmetry 2022, 14, 331 8 of 26

Table 1. Cont.

ID Function Equation Search Range Optimum Value

CEC 2014 Composition Functions
F23 Composition Function 1 (N = 5) [−100,100] f23{Xmin} = 2300
F24 Composition Function 2 (N = 3) [−100,100] f24{Xmin} = 2400
F25 Composition Function 3 (N = 3) [−100,100] f25{Xmin} = 2500
F26 Composition Function 4 (N = 5) [−100,100] f26{Xmin} = 2600
F27 Composition Function 5 (N = 5) [−100,100] f27{Xmin} = 2700
F28 Composition Function 6 (N = 5) [−100,100] f28{Xmin} = 2800
F29 Composition Function 7 (N = 3) [−100,100] f29{Xmin} = 2900
F30 Composition Function 8 (N = 3) [−100,100] f30{Xmin} = 3000

4.2. Comparison with Classical Algorithms

In order to validate the effectiveness of the improved GGBDA, there are some repre-
sentative algorithms employed for comparison: OBSCA [74], m_SCA [75], SCADE [76],
ASCA_PSO [77], ACWOA [78], MFO [15], SCA [79], FA [80], and DA.

In the experimental part, the parameter values of the compared algorithms were
set, as shown in Table 2. To ensure the fairness of the experiments as far as possible, the
experimental environment of algorithms stayed the same. The experimentations used 30D
classical functions for comparing the proposed method and other rivals. Table 3 recorded
the experimental results on 30D. Each algorithm ran independently 30 times. The average
(Ave) and standard deviation (Std) of the optimal solutions obtained are shown in these
tables. “AVR” expresses the average of the algorithm’s ranking results on all functions. In
this experiment, the maximum number of iterations and the population size (Pop) were set
to 1000 and 30. Each algorithm was performed in every function with 30 dimensions for the
test of scalabilities, respectively. The symbol “+/=/−” refers to whether the performance
of GGBDA is greater, equal, or worse than other algorithms compared.

Table 2. Parameter settings of the algorithms in the experiment.

Algorithms Pop Maximum Iterations Others

GGBDA
OBSCA
m_SCA

30 1000 w ∈ [0.9 0.2]; s = 0.1; a = 0.1;
c = 0.7; f = 1; e = 1

30 1000 a = 2
30 1000 a = 2

SCADE
ASCA_PSO

30 1000 a = 2; CR = 0.8; LSF = 0.8; USF = 0.2

30 1000
M = 4; N = 9; Vmax = 6; wMax = 0.9; wMin =

0.2; c1 = 2;
c2 = 2;

ACWOA
MFO
SCA
FA

30 1000 B = 1
30 1000 B = 1
30 1000 a = 2
30 1000 alpha = 0.5; betamin = 0.2; gamma = 1;

DA
GGBDA

30 1000 w ∈ [0.9 0.2]; s = 0.1; a = 0.1; c = 0.7; f = 1; e = 1
30 1000 w ∈ [0.9 0.2]; s = 0.1; a = 0.1; c = 0.7; f = 1; e = 1

4.2.1. Results on 30D Functions

F1–F7 do not have local optimal solutions. They are very suitable for measuring the
exploration competence of the algorithm. In F2, F3, and F6, the results of GGBDA are far
superior to all the others. Furthermore, in the rest functions, the results of GGBDA are
better than most comparison algorithms. The results of F1–F7 show that GGBDA has an
advantage over other algorithms in the ability to explore in the unimodal locality.

Symmetry 2022, 14, 331 9 of 26

Table 3. Experimental results of the 30 dimensions (30Ds).

F1 F2 F3
Ave Std Ave Std Ave Std

GGBDA 3.3428 × 107 2.3615 × 107 5.7799 × 107 1.32174 × 107 2.2502 × 103 1.0237 × 103

OBSCA 3.8095 × 108 1.2188 × 108 2.4577 × 1010 3.9982 × 109 5.1744 × 104 7.3043 × 103

m_SCA 7.2766 × 107 3.9039 × 107 6.4809 × 109 2.7501 × 109 2.6967 × 104 7.4237 × 103

SCADE 4.3235 × 108 1.0258 × 108 2.9383 × 1010 4.9065 × 109 5.3542 × 104 6.3130 × 103

ASCA_PSO 1.5733 × 107 7.8447 × 106 5.7234 × 108 7.6338 × 108 2.0200 × 104 5.3347 × 103

ACWOA 1.3598 × 108 5.9536 × 107 7.6372 × 109 3.3593 × 109 5.1123 × 104 8.7487 × 103

MFO 7.0131 × 107 8.4361 × 107 1.3759 × 1010 7.4030 × 109 9.8036 × 104 6.1005 × 104

SCA 2.2033 × 108 7.5726 × 107 1.6600 × 1010 3.2678 × 109 3.5442 × 104 6.2559 × 103

FA 2.5375 × 108 5.0283 × 107 1.5600 × 1010 2.0292 × 109 6.3396 × 104 9.7529 × 103

DA 8.11892 × 108 4.3376 × 108 2.2171 × 1010 2.2383 × 1010 5.9107 × 104 1.5850 × 104

F4 F5 F6
Ave Std Ave Std Ave Std

GGBDA 5.9527 × 102 8.7643 × 101 5.2093 × 102 5.5872 × 10−2 6.2033 × 102 4.0175 × 100

OBSCA 2.4186 × 103 8.0598 × 102 5.2097 × 102 4.9147 × 10−2 6.3202 × 102 1.7351 × 100

m_SCA 7.5730 × 102 1.0198 × 102 5.2061 × 102 1.4096 × 10−1 6.2114 × 102 3.2807 × 100

SCADE 2.4370 × 103 5.6808 × 102 5.2094 × 102 6.3764 × 10−2 6.3419 × 102 2.3689 × 100

ASCA_PSO 5.7201 × 102 1.5123 × 102 5.2094 × 102 4.1898 × 10−2 6.2512 × 102 3.2965 × 100

ACWOA 1.0827 × 103 2.3891 × 102 5.2083 × 102 1.2246 × 10−1 6.3454 × 102 3.1803 × 100

MFO 1.4154 × 103 1.1476 × 103 5.2026 × 102 2.0197 × 10−1 6.2398 × 102 3.0738 × 100

SCA 1.4155 × 103 3.0882 × 102 5.2093 × 102 4.4333 × 10−2 6.3375 × 102 2.6530 × 100

FA 1.5386 × 103 1.7232 × 102 5.2095 × 102 5.1811 × 10−2 6.3392 × 102 6.4751 × 10−1

DA 7.2148 × 103 5.0944 × 103 5.2096 × 102 3.8523 × 10−2 6.3831 × 102 3.8669 × 100

F7 F8 F9
Ave Std Ave Std Ave Std

GGBDA 7.0154 × 102 1.4093 × 10−1 8.8953 × 102 1.4755 × 101 1.0718 × 103 3.5377 × 101

OBSCA 9.1188 × 102 3.2095 × 101 1.0564 × 103 1.5937 × 101 1.2007 × 103 1.8331 × 101

m_SCA 7.5112 × 102 2.7312 × 101 9.4797 × 102 2.0587 × 101 1.0570 × 103 2.4289 × 101

SCADE 8.9697 × 102 3.1487 × 101 1.0680 × 103 1.3258 × 101 1.2072 × 103 1.7261 × 101

ASCA_PSO 7.1122 × 102 1.5224 × 101 9.5707 × 102 2.6319 × 101 1.1114 × 103 3.7255 × 101

ACWOA 7.2872 × 102 1.6207 × 101 9.9483 × 102 2.5768 × 101 1.1277 × 103 2.1651 × 101

MFO 8.1621 × 102 7.0326 × 101 9.3286 × 102 3.1243 × 101 1.1154 × 103 4.2025 × 101

SCA 8.3820 × 102 2.6572 × 101 1.0372 × 103 1.6583 × 101 1.1745 × 103 1.5443 × 101

FA 8.3255 × 102 9.9991 × 100 1.0236 × 103 1.5241 × 101 1.1575 × 103 8.8945 × 100

DA 1.0796 × 103 2.5224 × 102 1.0603 × 103 8.6112 × 101 1.1875 × 103 4.3320 × 101

Symmetry 2022, 14, 331 10 of 26

Table 3. Cont.

F10 F11 F12
Ave Std Ave Std Ave Std

GGBDA 2.1632 × 103 4.0569 × 102 4.3103 × 103 5.8058 × 102 1.2016 × 103 6.4654 × 10−1

OBSCA 6.1914 × 103 3.3800 × 102 7.3712 × 103 3.8870 × 102 1.2022 × 103 3.8380 × 10−1

m_SCA 4.2173 × 103 6.7303 × 102 4.6926 × 103 5.6709 × 102 1.2007 × 103 2.8914 × 10−1

SCADE 7.3873 × 103 2.0852 × 102 8.2043 × 103 2.8866 × 102 1.2026 × 103 2.9637 × 10−1

ASCA_PSO 5.3236 × 103 6.1947 × 102 6.0330 × 103 1.0051 × 103 1.2024 × 103 3.2840 × 10−1

ACWOA 4.3616 × 103 9.4361 × 102 6.5284 × 103 8.8174 × 102 1.2018 × 103 5.3507 × 10−1

MFO 4.2961 × 103 1.0010 × 103 5.2553 × 103 5.8399 × 102 1.2004 × 103 1.6921 × 10−1

SCA 6.9536 × 103 5.2169 × 102 8.1744 × 103 2.6469 × 102 1.2024 × 103 2.8490 × 10−1

FA 7.5877 × 103 2.4931 × 102 7.8979 × 103 2.2794 × 102 1.2024 × 103 3.1798 × 10−1

DA 7.8983 × 103 8.8564 × 102 8.2497 × 103 7.2246 × 102 1.2024 × 103 3.9165 × 10−1

F13 F14 F15
Ave Std Ave Std Ave Std

GGBDA 1.3006 × 103 1.1023 × 10−1 1.4003 × 103 4.9476 × 10−2 1.5246 × 103 3.8702 × 100

OBSCA 1.3037 × 103 4.2284 × 10−1 1.4669 × 103 1.1727 × 101 1.7547 × 104 9.8027 × 103

m_SCA 1.3007 × 103 3.3452 × 10−1 1.4142 × 103 1.1462 × 101 2.2627 × 103 8.4352 × 102

SCADE 1.3038 × 103 2.5871 × 10−1 1.4902 × 103 1.1514 × 101 2.0450 × 104 8.8527 × 103

ASCA_PSO 1.3006 × 103 1.4205 × 10−1 1.4035 × 103 7.1583 × 100 1.5545 × 103 1.2124 × 102

ACWOA 1.3017 × 103 1.0761 × 100 1.4166 × 103 1.0655 × 101 1.9949 × 103 5.8404 × 102

MFO 1.3019 × 103 1.2975 × 100 1.4267 × 103 1.5955 × 101 3.3650 × 105 8.2577 × 105

SCA 1.3029 × 103 3.7934 × 10−1 1.4443 × 103 9.4586 × 100 5.0147 × 103 3.4034 × 103

FA 1.3029 × 103 1.9248 × 10−1 1.4403 × 103 4.8273 × 100 1.5752 × 104 4.4028 × 103

DA 1.3068 × 103 1.9095 × 100 1.5637 × 103 8.3347 × 101 2.4757 × 104 7.1463 × 104

F16 F17 F18
Ave Std Ave Std Ave Std

GGBDA 1.6122 × 103 3.8012 × 10−1 2.1700 × 106 2.7205 × 106 1.5189 × 104 5.2280 × 104

OBSCA 1.6130 × 103 1.4281 × 10−1 1.1486 × 107 5.1039 × 106 1.9793 × 108 1.4800 × 108

m_SCA 1.6115 × 103 5.1409 × 10−1 1.5833 × 106 1.7905 × 106 3.4874 × 107 4.7812 × 107

SCADE 1.6127 × 103 1.9941 × 10−1 1.4197 × 107 6.7951 × 106 1.6517 × 108 1.1211 × 108

ASCA_PSO 1.6126 × 103 3.3022 × 10−1 1.2265 × 106 1.0213 × 106 3.6646 × 106 1.0393 × 106

ACWOA 1.6123 × 103 4.6588 × 10−1 1.6366 × 107 1.4017 × 107 4.6377 × 107 3.8096 × 107

MFO 1.6128 × 103 4.8526 × 10−1 4.0035 × 106 5.0310 × 106 3.9147 × 107 1.0322 × 108

SCA 1.6127 × 103 2.8567 × 10−1 6.9907 × 106 3.6926 × 106 1.6756 × 108 8.8211 × 107

FA 1.6129 × 103 2.3262 × 10−1 6.7491 × 106 2.2624 × 106 2.6476 × 108 7.8340 × 107

DA 1.6129 × 103 2.4315 × 10−1 8.5018 × 107 4.2101 × 107 4.0928 × 109 1.8915 × 109

Symmetry 2022, 14, 331 11 of 26

Table 3. Cont.

F19 F20 F21
Ave Std Ave Std Ave Std

GGBDA 1.9217 × 103 8.2441 × 100 2.2795 × 103 6.9312 × 101 1.9235 × 105 2.8749 × 105

OBSCA 2.0091 × 103 1.1149 × 101 3.0362 × 104 1.2377 × 104 2.3649 × 106 1.5032 × 106

m_SCA 1.9453 × 103 2.5699 × 101 1.0286 × 104 4.6386 × 103 4.6439 × 105 4.6037 × 105

SCADE 2.0209 × 103 1.7879 × 101 2.7828 × 104 1.2075 × 104 2.7903 × 106 1.0593 × 106

ASCA_PSO 1.9258 × 103 2.5713 × 101 6.0026 × 103 2.2111 × 103 3.2508 × 105 2.5701 × 105

ACWOA 2.0062 × 103 3.5162 × 101 4.0828 × 104 1.8916 × 104 5.1240 × 106 4.8145 × 106

MFO 1.9722 × 103 6.5003 × 101 6.7453 × 104 3.5593 × 104 7.3786 × 105 1.1693 × 106

SCA 1.9950 × 103 2.2940 × 101 1.7570 × 104 5.4464 × 103 1.3486 × 106 6.6249 × 105

FA 2.0029 × 103 1.1339 × 101 2.1545 × 104 8.6661 × 103 1.8937 × 106 6.2858 × 105

DA 2.2044 × 103 1.3085 × 102 7.3418 × 104 4.0133 × 104 2.4506 × 107 2.0130 × 107

F22 F23 F24
Ave Std Ave Std Ave Std

GGBDA 2.6667 × 103 1.3749 × 102 2.5001 × 103 8.2205 × 10−2 2.6001 × 103 4.2571 × 10−2

OBSCA 3.0956 × 103 1.6521 × 102 2.6865 × 103 1.6694 × 101 2.6000 × 103 2.6232 × 10−4

m_SCA 2.6529 × 103 1.6213 × 102 2.6396 × 103 1.0453 × 101 2.6000 × 103 6.3375 × 10−4

SCADE 3.1130 × 103 1.5936 × 102 2.5000 × 103 0.0000 × 100 2.6000 × 103 1.0671 × 10−7

ASCA_PSO 2.7768 × 103 1.7913 × 102 2.6237 × 103 3.9400 × 100 2.6366 × 103 8.2081 × 100

ACWOA 3.0574 × 103 2.1215 × 102 2.5367 × 103 7.4780 × 101 2.6000 × 103 8.5021 × 10−6

MFO 2.9977 × 103 2.5111 × 102 2.6671 × 103 4.5312 × 101 2.6827 × 103 3.0780 × 101

SCA 2.9493 × 103 1.4065 × 102 2.6668 × 103 1.2152 × 101 2.6001 × 103 5.8342 × 10−2

FA 2.9399 × 103 1.0040 × 102 2.7354 × 103 1.4354 × 101 2.7065 × 103 4.4005 × 100

DA 1.3035 × 104 1.1958 × 104 2.8764 × 103 2.2534 × 102 2.6261 × 103 5.0498 × 100

F25 F26 F27
Ave Std Ave Std Ave Std

GGBDA 2.7000 × 103 1.3977 × 10−3 2.7006 × 103 1.8063 × 10−1 2.9000 × 103 1.8895 × 10−3

OBSCA 2.7000 × 103 1.0817 × 10−3 2.7039 × 103 4.7598 × 10−1 3.2360 × 103 4.5158 × 101

m_SCA 2.7134 × 103 2.6641 × 100 2.7008 × 103 3.4050 × 10−1 3.1926 × 103 1.5161 × 102

SCADE 2.7000 × 103 0.0000 × 100 2.7037 × 103 6.1565 × 10−1 3.1829 × 103 2.6437 × 102

ASCA_PSO 2.7125 × 103 5.1192 × 100 2.7006 × 103 1.2849 × 10−1 3.5114 × 103 2.3638 × 102

ACWOA 2.7000 × 103 0.0000 × 100 2.7471 × 103 5.0332 × 101 3.6882 × 103 3.2535 × 102

MFO 2.7190 × 103 1.0042 × 101 2.7023 × 103 1.5257 × 100 3.6672 × 103 1.8397 × 102

SCA 2.7242 × 103 1.1442 × 101 2.7023 × 103 5.9638 × 10−1 3.4473 × 103 3.1999 × 102

FA 2.7342 × 103 4.0567 × 100 2.7023 × 103 2.8881 × 10−1 3.8003 × 103 2.8675 × 101

DA 2.7109 × 103 4.7079 × 100 2.7740 × 103 4.0242 × 101 4.2646 × 103 2.7086 × 102

Symmetry 2022, 14, 331 12 of 26

Table 3. Cont.

F28 F29 F30

Ave Std Ave Std Ave Std
GGBDA 3.0000 × 103 2.8946 × 10−2 3.1087 × 103 5.4266 × 100 3.5861 × 103 6.0874 × 102

OBSCA 5.3347 × 103 3.2181 × 102 1.8861 × 107 1.0186 × 107 4.5744 × 105 1.5327 × 105

m_SCA 3.9404 × 103 2.3055 × 102 1.6245 × 106 4.3077 × 106 4.6418 × 104 2.2798 × 104

SCADE 5.2213 × 103 5.2511 × 102 1.5436 × 107 7.9392 × 106 4.1012 × 105 1.8490 × 105

ASCA_PSO 4.4056 × 103 3.2811 × 102 5.1473 × 106 6.2012 × 106 4.1476 × 104 3.1316 × 104

ACWOA 4.2050 × 103 1.1911 × 103 2.1367 × 107 1.7150 × 107 3.9650 × 105 2.1202 × 105

MFO 3.9192 × 103 1.3812 × 102 2.6412 × 106 3.4748 × 106 5.7740 × 104 4.9279 × 104

SCA 4.7438 × 103 2.5806 × 102 1.1250 × 107 6.3057 × 106 2.4763 × 105 7.9063 × 104

FA 4.2782 × 103 1.8313 × 102 3.2845 × 106 1.2612 × 106 1.7562 × 105 4.0487 × 104

DA 8.5874 × 103 1.1741 × 103 2.7820 × 108 2.7534 × 108 4.1499 × 106 2.4981 × 106

Overall Rank

Rank +/=/−
GGBDA 1 ~
OBSCA 9 28/0/2
m_SCA 2 23/0/7
SCADE 8 27/0/3

ASCA_PSO 3 24/0/6
ACWOA 5 26/0/4

MFO 4 28/0/2
SCA 6 28/0/2
FA 7 30/0/0
DA 10 30/0/0

Symmetry 2022, 14, 331 13 of 26

F8–F13 represents the multi-modal functions that have numerous local optimal solu-
tions. They are very suitable for evaluating the local optimal prevention of the search ability
of the algorithm. For F10 and F11, the results of GGBDA are near to the global optimal
solution. However, the other comparison algorithm is easy to fall into the non-global
optimal solution to different degrees. For the rest functions, GGBDA still obtains results
that are better than most other algorithms. In conclusion, the experimental result verifies
the global exploration ability of GGBDA.

From the convergence in Figure 2, we can estimate and evaluate the convergence
performance of the algorithm. In F3, F10, F18, F20, F27, F28, F29, and F30, the convergence
of GGBDA is better than other comparison algorithms in the early iterations. From the
convergence of F6 and F11, GGBDA does not obtain the best adaptive in the early iteration
but in the later iteration. In summary, the symbol “+/=/−” shows that GGBDA ranks
first with the avg far lower than the second SCA, and the performance is even better than
OBSCA, m_SCA, SCADE, ASCA_PSO, ACWOA, MFO, SCA, FA, and DA.

Symmetry 2022, 14, 331 12 of 25

Figure 2. Convergence graph of the 12 benchmarks.

4.2.2. Balance Analysis
In this section, we conduct a qualitative analysis of GGBDA on the 30 functions of

CEC14. The original DA was selected for comparison with GGBDA. Figure 3 shows the
results of the feasibility analysis of GGBDA and the DA. There are five columns in the
figure. The first column (a) is the location distribution of the GGBDA search history on
the three-dimensional plane. The second column (b) is the location distribution of the
GGBDA search history on the two-dimensional plane. The third column (c) is the
trajectory of the first dimension of GGBDA during the iteration. The fourth column (d)
shows the change of the average fitness of GGBDA during the iteration. The fifth column
(e) shows the convergence curves of GGBDA and DA. In Figure 3 (b), the red dot
represents the location of the optimal solution, and the black dot represents the search
location of GGBDA. In the selected 5 function images, the black dots are denser in the area
around the red dots, which shows that GGBDA has developed the area in which the

Figure 2. Convergence graph of the 12 benchmarks.

Symmetry 2022, 14, 331 14 of 26

4.2.2. Balance Analysis

In this section, we conduct a qualitative analysis of GGBDA on the 30 functions of
CEC14. The original DA was selected for comparison with GGBDA. Figure 3 shows the
results of the feasibility analysis of GGBDA and the DA. There are five columns in the
figure. The first column (a) is the location distribution of the GGBDA search history on
the three-dimensional plane. The second column (b) is the location distribution of the
GGBDA search history on the two-dimensional plane. The third column (c) is the trajectory
of the first dimension of GGBDA during the iteration. The fourth column (d) shows the
change of the average fitness of GGBDA during the iteration. The fifth column (e) shows
the convergence curves of GGBDA and DA. In Figure 3b, the red dot represents the location
of the optimal solution, and the black dot represents the search location of GGBDA. In the
selected 5 function images, the black dots are denser in the area around the red dots, which
shows that GGBDA has developed the area in which the optimal solution is located. In
Figure 3c, we can see that the first-dimensional trajectory of GGBDA fluctuates greatly
in the early period. Early volatility indicates that the algorithm has conducted extensive
searches. The average fitness change of GGBDA in the whole iterative process is shown in
Figure 3d. We can see that the average fitness of GGBDA dropped to a lower level in the
mid-term. This shows that GGBDA has a good convergence speed. In Figure 3e, we can
clearly see that the convergence curve of GGBDA is lower than that of DA, which shows
that GGBDA can obtain a better solution.

The balance analysis and diversity analysis are carried out on the same functions.
Figure 4 shows the results of the balanced analysis of GGBDA and DA. In Figure 4, there
are three curves in each graph. As shown in the Figure, the blue curve and red curve
represent exploitation and exploration, respectively. The larger value of the curve means
that the corresponding behavior is dominant in the algorithm. The green curve indicates
incremental–decremental. The curve can more intuitively reflect the changing trends of the
two behaviors of the algorithm. When the value of the curve increases, it means that the
exploration activity is dominant. Instead, exploitative behavior predominates. When the
curve drops to a negative value, the curve will be set to zero. Comparing the curves of the
two algorithms shows that both algorithms were dominated by exploration behavior in the
early stage. This is because the swarm intelligence optimization algorithm performs a global
search first, at the beginning. However, the difference between the two algorithm curves
is also very obvious. The DA spends more time on exploration behavior than GGBDA.
The exploration behavior of DA almost accounts for half of the entire iteration process.
However, the exploitative behavior of GGBDA quickly became dominant, indicating that it
spent more time exploiting the target area. This is the impact of the two mechanisms added
to GGBDA on its balance.

Figure 5 is the result of the diversity analysis of GGBDA and DA. In Figure 5, the
ordinate represents the population diversity. We can see that the diversity of the two
algorithms is very high at the beginning. This is because the initial population of the
algorithm is randomly generated. Then, in the iterative process, the algorithm continues to
narrow the search range so that the diversity of the population will reduce, although the
diversity curves of the two algorithms almost reached the lowest in the iteration. However,
the descent process of the two algorithms is very different. We can clearly observe that the
DA maintained a high diversity in the early stage. The diversity curve of the DA dropped to
its lowest value very quickly in the mid-term. This change was completed in a concise time.

In contrast, the curve of GGBDA declined more gently. GGBDA only declines rapidly
at the initial stage, and then the rate of decline slows down. This is obvious for F2 and
F14. This shows that the two added mechanisms have an impact on the diversity of the
DA. Owing to the strong search capability, the proposed GGBDA can also be applied
to other optimization problems, such as fault detection [81]; metabolomic data process-
ing [82,83]; urban road planning [84]; multivariate time series analysis [85]; gene signature
identification [86]; drug target discovery [87]; drug discovery [88]; pharmacoinformatics
data mining [89]; service ecosystem [90,91]; information retrieval services [92–94]; kayak

Symmetry 2022, 14, 331 15 of 26

cycle phase segmentation [95]; covert communication system [96–98]; location-based ser-
vices [99,100]; and human motion capture [101].

Symmetry 2022, 14, 331 13 of 25

optimal solution is located. In Figure 3(c), we can see that the first-dimensional trajectory
of GGBDA fluctuates greatly in the early period. Early volatility indicates that the
algorithm has conducted extensive searches. The average fitness change of GGBDA in the
whole iterative process is shown in Figure 3(d). We can see that the average fitness of
GGBDA dropped to a lower level in the mid-term. This shows that GGBDA has a good
convergence speed. In Figure 3 (e), we can clearly see that the convergence curve of
GGBDA is lower than that of DA, which shows that GGBDA can obtain a better solution.

 (a) (b) (c) (d) (e)

Figure 3. (a) Three-dimensional location distribution of GGBDA, (b) two-dimensional location
distribution of GGBDA, (c) trajectory of GGBDA in the first dimension, (d) average fitness of
GGBDA, and (e) convergence curves of GGBDA and DA.

The balance analysis and diversity analysis are carried out on the same functions.
Figure 4 shows the results of the balanced analysis of GGBDA and DA. In Figure 4, there
are three curves in each graph. As shown in the Figure, the blue curve and red curve
represent exploitation and exploration, respectively. The larger value of the curve means

Figure 3. (a) Three-dimensional location distribution of GGBDA, (b) two-dimensional location
distribution of GGBDA, (c) trajectory of GGBDA in the first dimension, (d) average fitness of GGBDA,
and (e) convergence curves of GGBDA and DA.

4.3. Real-World Problems
4.3.1. Pressure Vessel Design (PVD) Problem

The PVD problem is a common engineering design problem. There are four constraints
and four parameters in the PVD problem. The main aim is to obtain a pressure vessel that
meets the conditions with relatively minimal costs.

The formula of this problem is listed below.
Consider:

X = [x1 x2 x3 x4] = [Ts Th R L]

Symmetry 2022, 14, 331 16 of 26

Range of parameters:
0 ≤ x1 ≤ 99
0 ≤ x2 ≤ 99

10 ≤ x3 ≤ 200
10 ≤ x4 ≤ 200

Minimize:

f
(→

x
)
= 0.6224x1x3x4 + 1.7781x3x2

1 + 3.1661x4x2
1 + 19.84x3x2

1

Subject to:
g1(X) = −x1 + 0.0193x3 ≤ 0

g2(X) = −x3 + 0.00954x3 ≤ 0
g3(X) = −πx4x2

3 −
4
3 πx3

3 + 1296000 ≤ 0
g4(X) = x4 − 240 ≤ 0

Symmetry 2022, 14, 331 14 of 25

that the corresponding behavior is dominant in the algorithm. The green curve indicates
incremental–decremental. The curve can more intuitively reflect the changing trends of
the two behaviors of the algorithm. When the value of the curve increases, it means that
the exploration activity is dominant. Instead, exploitative behavior predominates. When
the curve drops to a negative value, the curve will be set to zero. Comparing the curves of
the two algorithms shows that both algorithms were dominated by exploration behavior
in the early stage. This is because the swarm intelligence optimization algorithm performs
a global search first, at the beginning. However, the difference between the two algorithm
curves is also very obvious. The DA spends more time on exploration behavior than
GGBDA. The exploration behavior of DA almost accounts for half of the entire iteration
process. However, the exploitative behavior of GGBDA quickly became dominant,
indicating that it spent more time exploiting the target area. This is the impact of the two
mechanisms added to GGBDA on its balance.

Figure 4. Balance analysis of GGBDA and DA.

Figure 5 is the result of the diversity analysis of GGBDA and DA. In Figure 5, the
ordinate represents the population diversity. We can see that the diversity of the two
algorithms is very high at the beginning. This is because the initial population of the
algorithm is randomly generated. Then, in the iterative process, the algorithm continues

Figure 4. Balance analysis of GGBDA and DA.

Symmetry 2022, 14, 331 17 of 26

Symmetry 2022, 14, 331 15 of 25

to narrow the search range so that the diversity of the population will reduce, although
the diversity curves of the two algorithms almost reached the lowest in the iteration.
However, the descent process of the two algorithms is very different. We can clearly
observe that the DA maintained a high diversity in the early stage. The diversity curve of
the DA dropped to its lowest value very quickly in the mid-term. This change was
completed in a concise time.

In contrast, the curve of GGBDA declined more gently. GGBDA only declines rapidly
at the initial stage, and then the rate of decline slows down. This is obvious for F2 and F14.
This shows that the two added mechanisms have an impact on the diversity of the DA.
Owing to the strong search capability, the proposed GGBDA can also be applied to other
optimization problems, such as fault detection [81]; metabolomic data processing [82,83];
urban road planning [84]; multivariate time series analysis [85]; gene signature
identification [86]; drug target discovery [87]; drug discovery [88]; pharmacoinformatics
data mining [89]; service ecosystem [90,91]; information retrieval services [92–94]; kayak
cycle phase segmentation [95]; covert communication system [96–98]; location-based
services [99,100]; and human motion capture [101].

Figure 5. Diversity analysis of GGBDA and DA.

4.3. Real-World Problems
4.3.1. Pressure Vessel Design (PVD) Problem

The PVD problem is a common engineering design problem. There are four
constraints and four parameters in the PVD problem. The main aim is to obtain a pressure
vessel that meets the conditions with relatively minimal costs.

The formula of this problem is listed below.

Figure 5. Diversity analysis of GGBDA and DA.

Table 4 shows the results GGBDA for the optimization for the PVD problem, compared
with other peers in the literature. The results show that the optimal value obtained by the
GGBDA was 6059.7298, which was better than CPSO, WOA, and Branch-bound. Moreover,
GGBDA has a similar effect with MFO, HPSO, and BA.

Table 4. Comparison results of the PVD problem between GGBDA and other approaches.

Algorithm Optimum Variables Optimum
CostTs Th R L

GGBDA 0.8125 0.4375 42.0983 176.6380 6059.7298
MFO [15] 0.8125 0.4375 42.0984 176.6366 6059.7143
BA [102] 0.8125 0.4375 42.0984 176.6366 6059.7143

HPSO [103] 0.8125 0.4375 42.0984 176.6366 6059.7143
CSS [104] 0.8125 0.4375 42.1036 176.5727 6059.0888

CPSO [105] 0.8125 0.4375 42.0912 176.7465 6061.0777
ACO [106] 0.8125 0.4375 42.1036 176.5727 6059.0888
GWO [18] 0.8125 0.4345 42.0892 176.7587 6051.5639
WOA [2] 0.8125 0.4375 42.0983 176.6390 6059.7410

MDDE [107] 0.8125 0.4375 42.0984 176.6360 6059.7017
Branch-bound [108] 1.1250 0.6250 47.7000 117.7010 8129.1036

Symmetry 2022, 14, 331 18 of 26

4.3.2. Hydrostatic Thrust Bearings Design (HTBD) Problem

The goal of the HTBD problem is to minimize power loss. At the same time, the
design needs to meet some constraints. There are four design variables: bearing step radius
(R), recess radius (R0), oil viscosity (µ), and flow rate (Q). The mathematical model of this
problem is shown as below.

Minimize:
f(x) =

QP0
0.7

+ Ef

Subject to:

g1(x) =
πP0

2
× R2 − R2

0
ln(R/R0)

−Ws ≥ 0

g2(x) = Pmax − P0 ≥ 0

g3(x) = ∆Tmax − ∆T ≥ 0

g4 = h− hmin ≥ 0

g5(x) = R− R0 ≥ 0

g6(x) = 0.001− γ/gP0(Q/2πRh) ≥ 0

g7(x) = 5000− W
π
(

R2 − R2
0
) ≥ 0

where

P0 =
6µQ
πh3 ln

(
R
R0

)
E f = 9336QγC∆T

∆T = 2
(
10P − 560

)
P =

log
(
log
(
8.122× 106 + 0.8

))
− C1

n

h =

(
2πN

60

)2
2πµ
E f

(
R4

4
− R4

0
4

)
C1 = 10.04

n = −3.55, Pmax = 1000, Ws = 101000

∆Tmax = 50

hmin = 0.001

g = 386.4, N = 750

5 ≤ De, Di ≤ 15

0.01 ≤ t ≤ 6

0.05 ≤ h ≤ 0.5

Table 5 shows the results of the HTBD problem. It can be seen that the optimal value
of GGBDA is 19,508.76, which is better than PSO, SQP, and GASO. Moreover, GGBDA has
almost the same effect as TNE and TLBO.

Symmetry 2022, 14, 331 19 of 26

Table 5. Comparison results of the hydrostatic thrust bearing problem between GGBDA and
other approaches.

Algorithm Optimum Variables Optimum
CostR R0 µ Q

GGBDA 5.956071 5.389334 5.36 × 10−6 2.271766 19,508.7584
PSO [8] 5.956868 5.389175 5.4021 × 10−6 2.301546 19,586.5788

NDE [109] 5.955781 5.389013 5.3586 × 10−6 2.269656 19,506.0090
TLBO [110] 5.955781 5.389013 5.3586 × 10−6 2.269656 19,505.3132
SQP [111] 5.955800 5.389040 8.6332 × 10−6 8.000010 26,114.5450

GASO [112] 6.271000 12.90100 5.6050 × 10−6 2.938000 23,403.4320

4.3.3. Welded Beam Design (WBD) Problem

WBD problem aims to minimize the cost of welded beams subject to the four con-
straints of shear stress (τ), bending stress (θ), buckling load (P_c), and deflection (δ). The
variables in this problem are composed of welding seam thickness (h), welding joint length
(l), beam width (t), and beam thickness (b). The mathematical model of this problem is
listed as below.

Consider:
→
x = [x1, x2, x3, x4] = [h l t b]

Minimize:
f
(→

x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x4)

Subject to:

g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0

g3

(→
x
)
= δ

(→
x
)
− δmax ≤ 0

g4

(→
x
)
= x1 − x4 ≤ 0

g5

(→
x
)
= P− PC

(→
x
)
≤ 0

g6

(→
x
)
= 0.125− x1 ≤ 0

g7

(→
x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

Variable range:
0.1 ≤ x1 ≤ 2

0.1 ≤ x2 ≤ 10

0.1 ≤ x3 ≤ 10

0.1 ≤ x4 ≤ 2

Symmetry 2022, 14, 331 20 of 26

where
τ
(→

x
)
=
√
(τ′)2 + 2τ′τ′′ x2

2R + (τ′′)2

τ′ =
P√

2x1x2

τ′′ =
MR

J

τ′′ =
MR

J

R =

√
x2

2
4 +

(
x1 + x3

2

)2

J = 2

{
√

2x1x2

[
x2

2
4

+

(
x1 + x3

2

)2
]}

σ
(→

x
)
=

6PL
x4x32

δ
(→

x
)
=

6PL3

Ex2
3x4

PC

(→
x
)
=

4.013E

√
x2

3x6
4

36
L2

(
1− x3

2L

√
E

4G

)
P = 60001b

L = 14 ∈ δmax = 0.25 ∈

E = 30× 16psi

G = 12× 106psi τmax = 13600psi

σmax = 30000psi

The results of the WBD problem are shown in Table 6. The optimal value of GGBDA
is 1.724527, which is the lowest among all the algorithms. It can be seen that GGBDA has a
better effect than other peers in the experiment.

Table 6. Comparison results of the WBD problem between GGBDA and other approaches.

Algorithm Optimal Values for Variables Optimum
Costh l t b

GGBDA 0.187156 3.615020 9.056672 0.206464 1.724527
RO [113] 0.203687 3.528467 9.004233 0.207241 1.735344
SSA [114] 0.205700 3.471400 9.036600 0.205700 1.724910
CDE [115] 0.203137 3.542998 9.033498 0.206179 1.733462
GWO [18] 0.205700 3.478400 9.036800 0.205800 1.726240
GSA [116] 0.182129 3.856979 10.00000 0.202376 1.879950
NDE [109] 0.205729 3.470488 9.903662 0.205729 1.724852

4.3.4. Tension–Compression String Design (TCSD) Problem

The TCSD problem is to design a tension–compression spring with the minimum
weight and meets the constraints. The three variables in the problem are the wire diameter
(d), mean coil diameter (D), and the number of active coils (N). The mathematical model of
this problem is listed as below.

Consider:
→
x = [x1 x2 x3] = [d D N]

Symmetry 2022, 14, 331 21 of 26

Objective function:
Minimize f (x) = x2

1x2x3 + 2x2
1x2

Subject to:

h1

(→
x
)
= 1−

x3
2x3

71785x4
1
≤ 0,

h2

(→
x
)
=

4x2
2 − x1x2

12566
(
x2x3

1 − x4
1
) + 1

5180x2
1
− 1 ≤ 0

h3

(→
x
)
= 1− 140.45x1

x3
2x3

≤ 0

h4

(→
x
)
=

x1 + x2

1.5
− 1 ≤ 0

Variable ranges:
0.05 ≤ x1 ≤ 2.00

0.25 ≤ x2 ≤ 1.30,

2.00 ≤ x3 ≤ 15.0

Table 7 shows the results of the TCSD problem. The optimal values of GGBDA and
NDE are both 0.012665, which is the lowest among the algorithms. It can be seen that
GGBDA still has a good effect on the TCSD problem.

Table 7. Comparison results of the TCSD problem between GGBDA and other approaches.

Algorithm
Optimal Values for Variables

Optimum Cost
d D N

GGBDA 0.051652 0.355837 11.34081 0.012665
GA [117] 0.051480 0.351661 11.63220 0.012705
RO [113] 0.051370 0.349096 11.76279 0.012679
IHS [118] 0.051154 0.349871 12.07643 0.012671
ES [119] 0.051989 0.363965 10.89052 0.012681

GSA [116] 0.050276 0.323680 13.52541 0.012702
WOA [2] 0.051207 12.00430 0.345215 0.012676
PSO [8] 0.015728 11.24454 0.357644 0.012675

NDE [109] 0.051689 0.356718 11.28896 0.012665

5. Conclusions

The purpose of this research was to propose an enhanced DA that anticipates engi-
neering design problems more efficiently and precisely. The Gaussian mutation and the
Gaussian barebone are embedded into the DA, termed as GGBDA. The Gaussian mutation
was used to prevent slipping into local optimal situations and to update the individual
locations in a random manner. To further enhance local exploitation capacities, Gaussian
barebone was used in conjunction with the improvement of Gaussian mutation, the global
searching ability, and the convergence efficiency of GGBDA to accelerate the convergent
speed and strengthen local exploitation capacities. This study compared the performance
of GGBDA with other competitive peers on 30 benchmarks and 4 engineering design issues.
The experimental findings demonstrate that GGBDA outperforms DA and other competing
algorithms in terms of solution accuracy and convergence speed.

GGBDA’s performance and time cost will be improved in future developments. For
example, we will address GGBDA’s design issues. GGBDA may also be used to anticipate
and optimize the parameters for energy optimization, image segmentation, and parameter
optimization of machine learning methods.

Symmetry 2022, 14, 331 22 of 26

Author Contributions: Conceptualization, L.Y., F.K. and H.C.; Methodology, H.C. and S.Z.; software,
S.Z.; validation, H.C., L.Y., F.K. and S.Z.; formal analysis, L.Y. and F.K.; investigation, S.Z.; resources,
H.C.; data curation, S.Z.; writing—original draft preparation, S.Z.; writing—review and editing, H.C.,
S.Z., L.Y. and F.K.; visualization, S.Z., L.Y. and F.K.; supervision, L.Y. and F.K.; project administration,
S.Z.; funding acquisition, H.C., L.Y., F.K. and S.Z. All authors have read and agreed to the published
version of the manuscript.

Funding: This research is supported by the Wenzhou Science and Technology Bureau (ZG2020030)
and the Humanities and Social Science Research Planning Fund Project of the Ministry of Educa-
tion (20YJA790090).

Data Availability Statement: The data involved in this study are all public data, which can be
downloaded through public channels.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhan, Z.H.; Shi, L.; Tan, K.C.; Zhang, J. A survey on evolutionary computation for complex continuous optimization. Artif. Intell.

Rev. 2021, 55, 59–110. [CrossRef]
2. Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
3. Luo, J.; Chen, H.; Heidari, A.A.; Xu, Y.; Zhang, Q.; Li, C. Multi-strategy boosted mutative whale-inspired optimization approaches.

Appl. Math. Model. 2019, 73, 109–123. [CrossRef]
4. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J.

Glob. Optim. 1997, 11, 341–359. [CrossRef]
5. Booker, L.B.; Goldberg, D.E.; Holland, J.H. Classifier systems and genetic algorithms. Artif. Intell. 1989, 40, 235–282. [CrossRef]
6. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.

Part B 1996, 26, 29–41. [CrossRef]
7. Deng, W.; Xu, J.; Zhao, H. An Improved Ant Colony Optimization Algorithm Based on Hybrid Strategies for Scheduling Problem.

IEEE Access 2019, 7, 20281–20292. [CrossRef]
8. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference on Neural Networks—

Conference Proceedings, Perth, WA, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995.
9. Zhang, X.; Hu, W.; Xie, N.; Bao, H.; Maybank, S. A Robust Tracking System for Low Frame Rate Video. Int. J. Comput. Vis. 2015,

115, 279–304. [CrossRef]
10. Yang, X.-S. Firefly Algorithms for Multimodal Optimization. In Stochastic Algorithms: Foundations and Applications; SAGA 2009.

Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2010; Volume 5792.
11. Pan, W.T. A new Fruit Fly Optimization Algorithm: Taking the financial distress model as an example. Knowl.-Based Syst. 2012,

26, 69–74. [CrossRef]
12. Shen, L.; Chen, H.; Yu, Z.; Kang, W.; Zhang, B.; Li, H.; Yang, B.; Liu, D. Evolving support vector machines using fruit fly

optimization for medical data classification. Knowl.-Based Syst. 2016, 96, 61–75. [CrossRef]
13. Zhang, Y.; Liu, R.; Asghar Heidari, A.; Wang, X.; Chen, Y.; Wang, M.; Chen, H. Towards Augmented Kernel Extreme Learning

Models for Bankruptcy Prediction: Algorithmic Behavior and Comprehensive Analysis. Neurocomputing 2020, 430, 185–212.
[CrossRef]

14. Li, S.; Chen, H.; Wang, M.; Heidari, A.A.; Mirjalili, S. Slime mould algorithm: A new method for stochastic optimization. Future
Gener. Comput. Syst. 2020, 111, 300–323. [CrossRef]

15. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl.-Based Syst. 2015, 89, 228–249.
[CrossRef]

16. Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced Moth-flame optimizer with mutation strategy for global
optimization. Inf. Sci. 2019, 492, 181–203. [CrossRef]

17. Xu, Y.; Chen, H.; Heidari, A.A.; Luo, J.; Zhang, Q.; Zhao, X.; Li, C. An efficient chaotic mutative moth-flame-inspired optimizer
for global optimization tasks. Expert Syst. Appl. 2019, 129, 135–155. [CrossRef]

18. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
19. Zhao, X.; Zhang, X.; Cai, Z.; Tian, X.; Wang, X.; Huang, Y.; Chen, H.; Hu, L. Chaos enhanced grey wolf optimization wrapped

ELM for diagnosis of paraquat-poisoned patients. Comput. Biol. Chem. 2019, 78, 481–490. [CrossRef]
20. Yang, X.S. A new metaheuristic Bat-inspired Algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010);

(Studies in Computational Intelligence); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.
21. Yu, H.; Zhao, N.; Wang, P.; Chen, H.; Li, C. Chaos-enhanced synchronized bat optimizer. Appl. Math. Model. 2020, 77, 1201–1215.

[CrossRef]
22. Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and application. Adv. Eng. Softw. 2017, 105, 30–47.

[CrossRef]

http://doi.org/10.1007/s10462-021-10042-y
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.apm.2019.03.046
http://doi.org/10.1023/A:1008202821328
http://doi.org/10.1016/0004-3702(89)90050-7
http://doi.org/10.1109/3477.484436
http://doi.org/10.1109/ACCESS.2019.2897580
http://doi.org/10.1007/s11263-015-0819-8
http://doi.org/10.1016/j.knosys.2011.07.001
http://doi.org/10.1016/j.knosys.2016.01.002
http://doi.org/10.1016/j.neucom.2020.10.038
http://doi.org/10.1016/j.future.2020.03.055
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1016/j.ins.2019.04.022
http://doi.org/10.1016/j.eswa.2019.03.043
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.compbiolchem.2018.11.017
http://doi.org/10.1016/j.apm.2019.09.029
http://doi.org/10.1016/j.advengsoft.2017.01.004

Symmetry 2022, 14, 331 23 of 26

23. Luo, J.; Chen, H.; Zhang, Q.; Xu, Y.; Huang, H.; Zhao, X. An improved grasshopper optimization algorithm with application to
financial stress prediction. Appl. Math. Model. 2018, 64, 654–668. [CrossRef]

24. Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications.
Future Gener. Comput. Syst. 2019, 97, 849–872. [CrossRef]

25. Tu, J.; Chen, H.; Wang, M.; Gandomi, A.H. The Colony Predation Algorithm. J. Bionic Eng. 2021, 18, 674–710. [CrossRef]
26. Yang, Y.; Chen, H.; Heidari, A.A.; Gandomi, A.H. Hunger games search: Visions, conception, implementation, deep analysis,

perspectives, and towards performance shifts. Expert Syst. Appl. 2021, 177, 114864. [CrossRef]
27. Ahmadianfar, I.; Asghar Heidari, A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN Beyond the Metaphor: An Efficient Optimization

Algorithm Based on Runge Kutta Method. Expert Syst. Appl. 2021, 181, 115079. [CrossRef]
28. Ahmadianfar, I.; Asghar Heidari, A.; Noshadian, S.; Chen, H.; Gandomi, A.H. INFO: An Efficient Optimization Algorithm based

on Weighted Mean of Vectors. Expert Syst. Appl. 2022, 194, 116516. [CrossRef]
29. Wu, S.-H.; Zhan, Z.-H.; Zhang, J. SAFE: Scale-adaptive fitness evaluation method for expensive optimization problems. IEEE

Trans. Evol. Comput. 2021, 25, 478–491. [CrossRef]
30. Li, J.-Y.; Zhan, Z.-H.; Wang, C.; Jin, H.; Zhang, J. Boosting data-driven evolutionary algorithm with localized data generation.

IEEE Trans. Evol. Comput. 2020, 24, 923–937. [CrossRef]
31. Ying, C.; Ying, C.; Ban, C. A performance optimization strategy based on degree of parallelism and allocation fitness. EURASIP J.

Wirel. Commun. Netw. 2018, 2018, 1–8. [CrossRef]
32. Hu, K.; Ye, J.; Fan, E.; Shen, S.; Huang, L.; Pi, J. A novel object tracking algorithm by fusing color and depth information based on

single valued neutrosophic cross-entropy. J. Intell. Fuzzy Syst. 2017, 32, 1775–1786. [CrossRef]
33. Hu, K.; He, W.; Ye, J.; Zhao, L.; Peng, H.; Pi, J. Online Visual Tracking of Weighted Multiple Instance Learning via Neutrosophic

Similarity-Based Objectness Estimation. Symmetry 2019, 11, 832. [CrossRef]
34. Zhang, W.; Hou, W.; Li, C.; Yang, W.; Gen, M. Multidirection Update-Based Multiobjective Particle Swarm Optimization for

Mixed No-Idle Flow-Shop Scheduling Problem. Complex Syst. Modeling Simul. 2021, 1, 176–197. [CrossRef]
35. Liu, X.-F.; Zhan, Z.-H.; Gao, Y.; Zhang, J.; Kwong, S.; Zhang, J. Coevolutionary particle swarm optimization with bottleneck

objective learning strategy for many-objective optimization. IEEE Trans. Evol. Comput. 2018, 23, 587–602. [CrossRef]
36. Deng, W.; Zhang, X.; Zhou, Y.; Liu, Y.; Deng, W.; Chen, H.; Zhao, H. An enhanced fast non-dominated solution sorting genetic

algorithm for multi-objective problems. Inf. Sci. 2021, 585, 441–453. [CrossRef]
37. Lai, X.; Zhou, Y. Analysis of multiobjective evolutionary algorithms on the biobjective traveling salesman problem (1, 2). Multimed.

Tools Appl. 2020, 79, 30839–30860. [CrossRef]
38. Yang, Z.; Li, K.; Guo, Y.; Ma, H.; Zheng, M. Compact real-valued teaching-learning based optimization with the applications to

neural network training. Knowl. Based Syst. 2018, 159, 51–62. [CrossRef]
39. Han, X.; Han, Y.; Chen, Q.; Li, J.; Sang, H.; Liu, Y.; Pan, Q.; Nojima, Y. Distributed Flow Shop Scheduling with Sequence-Dependent

Setup Times Using an Improved Iterated Greedy Algorithm. Complex Syst. Modeling Simul. 2021, 1, 198–217. [CrossRef]
40. Yi, J.-H.; Deb, S.; Dong, J.; Alavi, A.H.; Wang, G.-G. An improved NSGA-III algorithm with adaptive mutation operator for Big

Data optimization problems. Future Gener. Comput. Syst. 2018, 88, 571–585. [CrossRef]
41. Deng, W.; Liu, H.; Xu, J.; Zhao, H.; Song, Y.J. An improved quantum-inspired differential evolution algorithm for deep belief

network. IEEE Trans. Instrum. Meas. 2020, 69, 7319–7327. [CrossRef]
42. Sun, Y.; Xue, B.; Zhang, M.; Yen, G.G. Evolving deep convolutional neural networks for image classification. IEEE Trans. Evol.

Comput. 2019, 24, 394–407. [CrossRef]
43. Deng, W.; Xu, J.; Zhao, H.; Song, Y. A Novel Gate Resource Allocation Method Using Improved PSO-Based QEA. IEEE Trans.

Intell. Transp. Syst. 2020. [CrossRef]
44. Deng, W.; Xu, J.; Song, Y.; Zhao, H. An Effective Improved Co-evolution Ant Colony Optimization Algorithm with Multi-Strategies

and Its Application. Int. J. Bio-Inspired Comput. 2020, 16, 158–170. [CrossRef]
45. Zhao, F.; Di, S.; Cao, J.; Tang, J. A novel cooperative multi-stage hyper-heuristic for combination optimization problems. Complex

Syst. Modeling Simul. 2021, 1, 91–108. [CrossRef]
46. Mirjalili, S. Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and

multi-objective problems. Neural Comput. Appl. 2016, 27, 1053–1073. [CrossRef]
47. Guha, D.; Roy, P.K.; Banerjee, S. Optimal tuning of 3 degree-of-freedom proportional-integral-derivative controller for hybrid

distributed power system using dragonfly algorithm. Comput. Electr. Eng. 2018, 72, 137–153. [CrossRef]
48. Wu, J.; Zhu, Y.; Wang, Z.; Song, Z.; Liu, X.; Wang, W.; Zhang, Z.; Yu, Y.; Xu, Z.; Zhang, T.; et al. A novel ship classification approach

for high resolution SAR images based on the BDA-KELM classification model. Int. J. Remote Sens. 2017, 38, 6457–6476. [CrossRef]
49. Ashok Kumar, C.; Vimala, R.; Aravind Britto, K.R.; Sathya Devi, S. FDLA: Fractional Dragonfly based Load balancing Algorithm

in cluster cloud model. Clust. Comput. 2019, 22, 1401–1414. [CrossRef]
50. VeeraManickam, M.R.M.; Mohanapriya, M.; Pandey, B.K.; Akhade, S.; Kale, S.A.; Patil, R.; Vigneshwar, M. Map-Reduce

framework based cluster architecture for academic student’s performance prediction using cumulative dragonfly based neural
network. Clust. Comput. 2019, 22, 1259–1275. [CrossRef]

51. Yu, C.; Cai, Z.; Ye, X.; Wang, M.; Zhao, X.; Liang, G.; Chen, H.; Li, C. Quantum-like mutation-induced dragonfly-inspired
optimization approach. Math. Comput. Simul. 2020, 178, 259–289. [CrossRef]

http://doi.org/10.1016/j.apm.2018.07.044
http://doi.org/10.1016/j.future.2019.02.028
http://doi.org/10.1007/s42235-021-0050-y
http://doi.org/10.1016/j.eswa.2021.114864
http://doi.org/10.1016/j.eswa.2021.115079
http://doi.org/10.1016/j.eswa.2022.116516
http://doi.org/10.1109/TEVC.2021.3051608
http://doi.org/10.1109/TEVC.2020.2979740
http://doi.org/10.1186/s13638-018-1254-7
http://doi.org/10.3233/JIFS-152381
http://doi.org/10.3390/sym11060832
http://doi.org/10.23919/CSMS.2021.0017
http://doi.org/10.1109/TEVC.2018.2875430
http://doi.org/10.1016/j.ins.2021.11.052
http://doi.org/10.1007/s11042-020-09399-z
http://doi.org/10.1016/j.knosys.2018.06.004
http://doi.org/10.23919/CSMS.2021.0018
http://doi.org/10.1016/j.future.2018.06.008
http://doi.org/10.1109/TIM.2020.2983233
http://doi.org/10.1109/TEVC.2019.2916183
http://doi.org/10.1109/TITS.2020.3025796
http://doi.org/10.1504/IJBIC.2020.111267
http://doi.org/10.23919/CSMS.2021.0010
http://doi.org/10.1007/s00521-015-1920-1
http://doi.org/10.1016/j.compeleceng.2018.09.003
http://doi.org/10.1080/01431161.2017.1356487
http://doi.org/10.1007/s10586-018-1977-6
http://doi.org/10.1007/s10586-017-1553-5
http://doi.org/10.1016/j.matcom.2020.06.012

Symmetry 2022, 14, 331 24 of 26

52. Sree Ranjini, S.R.; Murugan, S. Memory based Hybrid Dragonfly Algorithm for numerical optimization problems. Expert Syst.
Appl. 2017, 83, 63–78.

53. More, N.S.; Ingle, R.B. Energy-aware VM migration using dragonfly-crow optimization and support vector regression model in
Cloud. Int. J. Modeling Simul. Sci. Comput. 2018, 9, 1850050. [CrossRef]

54. Khadanga, R.K.; Padhy, S.; Panda, S.; Kumar, A. Design and Analysis of Tilt Integral Derivative Controller for Frequency Control
in an Islanded Microgrid: A Novel Hybrid Dragonfly and Pattern Search Algorithm Approach. Arab. J. Sci. Eng. 2018, 43,
3103–3114. [CrossRef]

55. Ghanem, W.A.H.M.; Jantan, A. A Cognitively Inspired Hybridization of Artificial Bee Colony and Dragonfly Algorithms for
Training Multi-layer Perceptrons. Cogn. Comput. 2018, 10, 1096–1134. [CrossRef]

56. Shilaja, C.; Arunprasath, T. Internet of medical things-load optimization of power flow based on hybrid enhanced grey wolf
optimization and dragonfly algorithm. Future Gener. Comput. Syst. 2019, 98, 319–330.

57. Aadil, F.; Ahsan, W.; Rehman, Z.U.; Shah, P.A.; Rho, S.; Mehmood, I. Clustering algorithm for internet of vehicles (IoV) based on
dragonfly optimizer (CAVDO). J. Supercomput. 2018, 74, 4542–4567. [CrossRef]

58. Aci, C.I.; Gülcan, H. A modified dragonfly optimization algorithm for single- and multiobjective problems using brownian
motion. Comput. Intell. Neurosci. 2019, 2019, 6871298. [CrossRef] [PubMed]

59. Bao, X.; Jia, H.; Lang, C. Dragonfly algorithm with Opposition-based learning for multilevel thresholding color image segmenta-
tion. Symmetry 2019, 11, 716. [CrossRef]

60. Li, L.L.; Zhao, X.; Tseng, M.L.; Tan, R.R. Short-term wind power forecasting based on support vector machine with improved
dragonfly algorithm. J. Clean. Prod. 2020, 242, 118447. [CrossRef]

61. Sayed, G.I.; Tharwat, A.; Hassanien, A.E. Chaotic dragonfly algorithm: An improved metaheuristic algorithm for feature selection.
Appl. Intell. 2019, 49, 188–205. [CrossRef]

62. Mafarja, M.; Aljarah, I.; Heidari, A.A.; Faris, H.; Fournier-Viger, P.; Li, X.; Mirjalili, S. Binary dragonfly optimization for feature
selection using time-varying transfer functions. Knowl.-Based Syst. 2018, 161, 185–204. [CrossRef]

63. Hariharan, M.; Sindhu, R.; Vijean, V.; Yazid, H.; Nadarajaw, T.; Yaacob, S.; Polat, K. Improved binary dragonfly optimization
algorithm and wavelet packet based non-linear features for infant cry classification. Comput. Methods Programs Biomed. 2018, 155,
39–51. [CrossRef]

64. Zhang, A.; Zhang, P.; Feng, Y. Short-term load forecasting for microgrids based on DA-SVM. COMPEL Int. J. Comput. Math. Electr.
Electron. Eng. 2018, 38, 68–80. [CrossRef]

65. Yuan, Y.; Lv, L.; Wang, X.; Song, X. Optimization of a frame structure using the Coulomb force search strategy-based dragonfly
algorithm. Eng. Optim. 2019, 52, 915–931. [CrossRef]

66. Zhang, Z.; Hong, W.C. Electric load forecasting by complete ensemble empirical mode decomposition adaptive noise and support
vector regression with quantum-based dragonfly algorithm. Nonlinear Dyn. 2019, 98, 1107–1136. [CrossRef]

67. Suresh, V.; Sreejith, S. Generation dispatch of combined solar thermal systems using dragonfly algorithm. Computing 2017, 99,
59–80. [CrossRef]

68. Sureshkumar, K.; Ponnusamy, V. Power flow management in micro grid through renewable energy sources using a hybrid
modified dragonfly algorithm with bat search algorithm. Energy 2019, 181, 1166–1178. [CrossRef]

69. Xie, T.; Yao, J.; Zhou, Z. DA-based parameter optimization of combined kernel support vector machine for cancer diagnosis.
Processes 2019, 7, 263. [CrossRef]

70. Xu, L.; Jia, H.; Lang, C.; Peng, X.; Sun, K. A Novel Method for Multilevel Color Image Segmentation Based on Dragonfly
Algorithm and Differential Evolution. IEEE Access 2019, 7, 19502–19538. [CrossRef]

71. Zhang, Q.; Wang, Z.; Heidari, A.A.; Gui, W.; Shao, Q.; Chen, H.; Zaguia, A.; Turabieh, H.; Chen, M. Gaussian Barebone Salp
Swarm Algorithm with Stochastic Fractal Search for medical image segmentation: A COVID-19 case study. Comput. Biol. Med.
2021, 139, 104941. [CrossRef]

72. Xia, J.; Zhang, H.; Li, R.; Wang, Z.; Cai, Z.; Gu, Z.; Chen, H.; Pan, Z. Adaptive Barebones Salp Swarm Algorithm with
Quasi-oppositional Learning for Medical Diagnosis Systems: A Comprehensive Analysis. J. Bionic Eng. 2022, 19, 1–17. [CrossRef]

73. Liang, J.; Qu, B.Y.; Suganthan, P. Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single
Objective Real-Parameter Numerical Optimization; Technical Report, 201311; Zhengzhou University: Zhengzhou, China; Nanyang
Technological University: Singapore, 2013.

74. Abd Elaziz, M.; Oliva, D.; Xiong, S. An improved Opposition-Based Sine Cosine Algorithm for global optimization. Expert Syst.
Appl. 2017, 90, 484–500. [CrossRef]

75. Qu, C.; Zeng, Z.; Dai, J.; Yi, Z.; He, W. A Modified Sine-Cosine Algorithm Based on Neighborhood Search and Greedy Levy
Mutation. Comput. Intell. Neurosci. 2018, 2018, 4231647. [CrossRef] [PubMed]

76. Nenavath, H.; Jatoth, R.K. Hybridizing sine cosine algorithm with differential evolution for global optimization and object
tracking. Appl. Soft Comput. 2018, 62, 1019–1043. [CrossRef]

77. Issa, M.; Hassanien, A.E.; Oliva, D.; Helmi, A.; Ziedan, I.; Alzohairy, A. ASCA-PSO: Adaptive sine cosine optimization algorithm
integrated with particle swarm for pairwise local sequence alignment. Expert Syst. Appl. 2018, 99, 56–70. [CrossRef]

78. Elhosseini, M.A.; Haikal, A.Y.; Badawy, M.; Khashan, N. Biped robot stability based on an A–C parametric Whale Optimization
Algorithm. J. Comput. Sci. 2019, 31, 17–32. [CrossRef]

79. Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [CrossRef]

http://doi.org/10.1142/S1793962318500502
http://doi.org/10.1007/s13369-018-3151-0
http://doi.org/10.1007/s12559-018-9588-3
http://doi.org/10.1007/s11227-018-2305-x
http://doi.org/10.1155/2019/6871298
http://www.ncbi.nlm.nih.gov/pubmed/31281336
http://doi.org/10.3390/sym11050716
http://doi.org/10.1016/j.jclepro.2019.118447
http://doi.org/10.1007/s10489-018-1261-8
http://doi.org/10.1016/j.knosys.2018.08.003
http://doi.org/10.1016/j.cmpb.2017.11.021
http://doi.org/10.1108/COMPEL-05-2018-0221
http://doi.org/10.1080/0305215X.2019.1618290
http://doi.org/10.1007/s11071-019-05252-7
http://doi.org/10.1007/s00607-016-0514-9
http://doi.org/10.1016/j.energy.2019.06.029
http://doi.org/10.3390/pr7050263
http://doi.org/10.1109/ACCESS.2019.2896673
http://doi.org/10.1016/j.compbiomed.2021.104941
http://doi.org/10.1007/s42235-021-00114-8
http://doi.org/10.1016/j.eswa.2017.07.043
http://doi.org/10.1155/2018/4231647
http://www.ncbi.nlm.nih.gov/pubmed/30073023
http://doi.org/10.1016/j.asoc.2017.09.039
http://doi.org/10.1016/j.eswa.2018.01.019
http://doi.org/10.1016/j.jocs.2018.12.005
http://doi.org/10.1016/j.knosys.2015.12.022

Symmetry 2022, 14, 331 25 of 26

80. Yang, X.-S. Firefly Algorithms for Multimodal Optimization; Springer: Berlin/Heidelberg, Germany, 2009.
81. Cui, H.; Guan, Y.; Chen, H.; Deng, W. A Novel Advancing Signal Processing Method Based on Coupled Multi-Stable Stochastic

Resonance for Fault Detection. Appl. Sci. 2021, 11, 5385. [CrossRef]
82. Fu, J.; Zhang, Y.; Wang, Y.; Zhang, H.; Liu, J.; Tang, J.; Yang, Q.; Sun, H.; Qiu, W.; Ma, Y. Optimization of metabolomic data

processing using NOREVA. Nat. Protoc. 2021, 17, 129–151. [CrossRef]
83. Li, B.; Tang, J.; Yang, Q.; Li, S.; Cui, X.; Li, Y.; Chen, Y.; Xue, W.; Li, X.; Zhu, F. NOREVA: Normalization and evaluation of

MS-based metabolomics data. Nucleic Acids Res. 2017, 45, W162–W170. [CrossRef]
84. Ran, X.; Zhou, X.; Lei, M.; Tepsan, W.; Deng, W. A novel k-means clustering algorithm with a noise algorithm for capturing urban

hotspots. Appl. Sci. 2021, 11, 11202. [CrossRef]
85. Wang, M.; Zhang, Q.; Chen, H.; Heidari, A.A.; Mafarja, M.; Turabieh, H. Evaluation of constraint in photovoltaic cells using

ensemble multi-strategy shuffled frog leading algorithms. Energy Convers. Manag. 2021, 244, 114484. [CrossRef]
86. Yang, Q.; Li, B.; Tang, J.; Cui, X.; Wang, Y.; Li, X.; Hu, J.; Chen, Y.; Xue, W.; Lou, Y. Consistent gene signature of schizophrenia

identified by a novel feature selection strategy from comprehensive sets of transcriptomic data. Brief. Bioinform. 2020, 21,
1058–1068. [CrossRef] [PubMed]

87. Li, Y.H.; Li, X.X.; Hong, J.J.; Wang, Y.X.; Fu, J.B.; Yang, H.; Yu, C.Y.; Li, F.C.; Hu, J.; Xue, W.W. Clinical trials, progression-speed
differentiating features and swiftness rule of the innovative targets of first-in-class drugs. Brief. Bioinform. 2020, 21, 649–662.
[CrossRef] [PubMed]

88. Zhu, F.; Qin, C.; Tao, L.; Liu, X.; Shi, Z.; Ma, X.; Jia, J.; Tan, Y.; Cui, C.; Lin, J. Clustered patterns of species origins of nature-derived
drugs and clues for future bioprospecting. Proc. Natl. Acad. Sci. USA 2011, 108, 12943–12948. [CrossRef]

89. Yin, J.; Sun, W.; Li, F.; Hong, J.; Li, X.; Zhou, Y.; Lu, Y.; Liu, M.; Zhang, X.; Chen, N. VARIDT 1.0: Variability of drug transporter
database. Nucleic Acids Res. 2020, 48, D1042–D1050. [CrossRef]

90. Xue, X.; Wang, S.F.; Zhan, L.J.; Feng, Z.Y.; Guo, Y.D. Social Learning Evolution (SLE): Computational Experiment-Based Modeling
Framework of Social Manufacturing. IEEE Trans. Ind. Inform. 2019, 15, 3343–3355. [CrossRef]

91. Xue, X.; Chen, Z.; Wang, S.; Feng, Z.; Duan, Y.; Zhou, Z. Value Entropy: A Systematic Evaluation Model of Service Ecosystem
Evolution. IEEE Trans. Serv. Comput. 2020. [CrossRef]

92. Wu, Z.; Li, R.; Xie, J.; Zhou, Z.; Guo, J.; Xu, X. A user sensitive subject protection approach for book search service. J. Assoc. Inf.
Sci. Technol. 2020, 71, 183–195. [CrossRef]

93. Wu, Z.; Shen, S.; Lian, X.; Su, X.; Chen, E. A dummy-based user privacy protection approach for text information retrieval.
Knowl.-Based Syst. 2020, 195, 105679. [CrossRef]

94. Wu, Z.; Shen, S.; Zhou, H.; Li, H.; Lu, C.; Zou, D. An effective approach for the protection of user commodity viewing privacy in
e-commerce website. Knowl.-Based Syst. 2021, 220, 106952. [CrossRef]

95. Qiu, S.; Hao, Z.; Wang, Z.; Liu, L.; Liu, J.; Zhao, H.; Fortino, G. Sensor Combination Selection Strategy for Kayak Cycle Phase
Segmentation Based on Body Sensor Networks. IEEE Internet Things J. 2021, in press. [CrossRef]

96. Zhang, L.; Zou, Y.; Wang, W.; Jin, Z.; Su, Y.; Chen, H. Resource Allocation and Trust Computing for Blockchain-Enabled Edge
Computing System. Comput. Secur. 2021, 105, 102249. [CrossRef]

97. Zhang, L.; Zhang, Z.; Wang, W.; Waqas, R.; Zhao, C.; Kim, S.; Chen, H. A Covert Communication Method Using Special Bitcoin
Addresses Generated by Vanitygen. Comput. Mater. Contin. 2020, 65, 597–616.

98. Zhang, L.; Zhang, Z.; Wang, W.; Jin, Z.; Su, Y.; Chen, H. Research on a Covert Communication Model Realized by Using Smart
Contracts in Blockchain Environment. IEEE Syst. J. 2021, in press. [CrossRef]

99. Wu, Z.; Li, G.; Shen, S.; Cui, Z.; Lian, X.; Xu, G. Constructing dummy query sequences to protect location privacy and query
privacy in location-based services. World Wide Web 2021, 24, 25–49. [CrossRef]

100. Wu, Z.; Wang, R.; Li, Q.; Lian, X.; Xu, G. A location privacy-preserving system based on query range cover-up for location-based
services. IEEE Trans. Veh. Technol. 2020, 69, 5244–5254. [CrossRef]

101. Qiu, S.; Zhao, H.; Jiang, N.; Wu, D.; Song, G.; Zhao, H.; Wang, Z. Sensor network oriented human motion capture via wearable
intelligent system. Int. J. Intell. Syst. 2021, 37, 1646–1673. [CrossRef]

102. Gandomi, A.; Yang, X.-S.; Alavi, A.; Talatahari, S. Bat algorithm for constrained optimization tasks. Neural Comput. Appl. 2013, 22,
1239–1255. [CrossRef]

103. He, Q.; Wang, L. A Hybrid Particle Swarm Optimization with a Feasibility-based Rule for Constrained Optimization. Appl. Math.
Comput. 2007, 186, 1407–1422. [CrossRef]

104. Kaveh, A.; Talatahari, S. A Novel Heuristic Optimization Method: Charged System Search. Acta Mech. 2010, 213, 267–289.
[CrossRef]

105. He, Q.; Wang, L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems. Eng.
Appl. Artif. Intell. 2007, 20, 89–99. [CrossRef]

106. Kaveh, A.; Talatahari, S. An improved ant colony optimization for constrained engineering design problems. Eng. Comput. 2010,
27, 155–182. [CrossRef]

107. Mezura-Montes, E.; ACoello Coello, C.; Velázquez-Reyes, J.; Muñoz-Dávila, L. Multiple trial vectors in differential evolution for
engineering design. Eng. Optim. 2007, 39, 567–589. [CrossRef]

http://doi.org/10.3390/app11125385
http://doi.org/10.1038/s41596-021-00636-9
http://doi.org/10.1093/nar/gkx449
http://doi.org/10.3390/app112311202
http://doi.org/10.1016/j.enconman.2021.114484
http://doi.org/10.1093/bib/bbz049
http://www.ncbi.nlm.nih.gov/pubmed/31157371
http://doi.org/10.1093/bib/bby130
http://www.ncbi.nlm.nih.gov/pubmed/30689717
http://doi.org/10.1073/pnas.1107336108
http://doi.org/10.1093/nar/gkz779
http://doi.org/10.1109/TII.2018.2871167
http://doi.org/10.1109/TSC.2020.3016660
http://doi.org/10.1002/asi.24227
http://doi.org/10.1016/j.knosys.2020.105679
http://doi.org/10.1016/j.knosys.2021.106952
http://doi.org/10.1109/JIOT.2021.3102856
http://doi.org/10.1016/j.cose.2021.102249
http://doi.org/10.1109/JSYST.2021.3057333
http://doi.org/10.1007/s11280-020-00830-x
http://doi.org/10.1109/TVT.2020.2981633
http://doi.org/10.1002/int.22689
http://doi.org/10.1007/s00521-012-1028-9
http://doi.org/10.1016/j.amc.2006.07.134
http://doi.org/10.1007/s00707-009-0270-4
http://doi.org/10.1016/j.engappai.2006.03.003
http://doi.org/10.1108/02644401011008577
http://doi.org/10.1080/03052150701364022

Symmetry 2022, 14, 331 26 of 26

108. Sandgren, E. Nonlinear integer and discrete programming in mechanical design. In Proceedings of the International Design
Engineering Technical Conferences and Computers and Information in Engineering Conference, Kissimmee, FL, USA, 25–28
September 1988; The American Society of Mechanical Engineers: New York, NY, USA, 1988; Volume 14.

109. Wagdy, A. A novel differential evolution algorithm for solving constrained engineering optimization problems. J. Intell. Manuf.
2018, 29, 659–692.

110. Rao, V.R.; Savsani, J.V.; Vakharia, P.D. Teaching–learning-based optimization: A novel method for constrained mechanical design
optimization problems. Comput. Aided Des. 2011, 43, 303–315. [CrossRef]

111. Kentli, A.; Sahbaz, M. Optimisation of Hydrostatic Thrust Bearing Using Sequential Quadratic Programming. Oxid. Commun.
2014, 37, 1144–1152.

112. He, S.; Prempain, E.; Wu, Q. An improved particle swarm optimizer for mechanical design optimization problems. Eng. Optim.
2004, 36, 585–605. [CrossRef]

113. Kaveh, A.; Khayatazad, M. A new meta-heuristic method: Ray Optimization. Comput. Struct. 2012, 112–113, 283–294. [CrossRef]
114. Mirjalili, S.; Gandomi, A.H.; Mirjalili, S.Z.; Saremi, S.; Faris, H.; Mirjalili, S.M. Salp Swarm Algorithm: A bio-inspired optimizer

for engineering design problems. Adv. Eng. Softw. 2017, 114, 163–191. [CrossRef]
115. Huang, F.-Z.; Wang, L.; He, Q. An effective co-evolutionary differential evolution for constrained optimization. Appl. Math.

Comput. 2007, 186, 340–356. [CrossRef]
116. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. GSA: A Gravitational Search Algorithm. Inf. Sci. 2009, 179, 2232–2248. [CrossRef]
117. Coello Coello, C.A. Use of a self-adaptive penalty approach for engineering optimization problems. Comput. Ind. 2000, 41,

113–127. [CrossRef]
118. Sandgren, E. Nonlinear Integer and Discrete Programming in Mechanical Design Optimization. J. Mech. Des. 1990, 112, 223–229.

[CrossRef]
119. Mezura-Montes, E.; Coello, C.A.C. An empirical study about the usefulness of evolution strategies to solve constrained optimiza-

tion problems. Int. J. Gen. Syst. 2008, 37, 443–473. [CrossRef]

http://doi.org/10.1016/j.cad.2010.12.015
http://doi.org/10.1080/03052150410001704854
http://doi.org/10.1016/j.compstruc.2012.09.003
http://doi.org/10.1016/j.advengsoft.2017.07.002
http://doi.org/10.1016/j.amc.2006.07.105
http://doi.org/10.1016/j.ins.2009.03.004
http://doi.org/10.1016/S0166-3615(99)00046-9
http://doi.org/10.1115/1.2912596
http://doi.org/10.1080/03081070701303470

	Introduction
	Related Works
	Needs for Research

	Materials and Methods
	Dragonfly Algorithm (DA)
	Gaussian Mutation
	Gaussian Barebone Mechanism

	Proposed Method
	Experimental Results
	Benchmark Functions
	Comparison with Classical Algorithms
	Results on 30D Functions
	Balance Analysis

	Real-World Problems
	Pressure Vessel Design (PVD) Problem
	Hydrostatic Thrust Bearings Design (HTBD) Problem
	Welded Beam Design (WBD) Problem
	Tension–Compression String Design (TCSD) Problem

	Conclusions
	References

