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Abstract: The dragonfly algorithm is a swarm intelligence optimization algorithm based on simulat-
ing the swarming behavior of dragonfly individuals. An efficient algorithm must have a symmetry of
information between the participating entities. An improved dragonfly algorithm is proposed in this
paper to further improve the global searching ability and the convergence speed of DA. The improved
DA is named GGBDA, which adds Gaussian mutation and Gaussian barebone on the basis of DA.
Gaussian mutation can randomly update the individual positions to avoid the algorithm falling
into a local optimal solution. Gaussian barebone can quicken the convergent speed and strengthen
local exploitation capacities. Enhancing algorithm efficiency relative to the symmetric concept is a
critical challenge in the field of engineering design. To verify the superiorities of GGBDA, this paper
sets 30 benchmark functions, which are taken from CEC2014 and 4 engineering design problems to
compare GGBDA with other algorithms. The experimental result show that the Gaussian mutation
and Gaussian barebone can effectively improve the performance of DA. The proposed GGBDA,
similar to the DA, presents improvements in global optimization competence, search accuracy, and
convergence performance.

Keywords: dragonfly algorithm; swarm intelligence; Gaussian mutation; Gaussian barebone; engi-
neering design problem

1. Introduction

The swarm intelligence optimization algorithm (SIOA) mainly simulates biological
individuals’ group behavior, such as cooperation and competition, to obtain the optimal
solution to complex problems. Moreover, SIOA has the benefit of an uncomplicated
structure, few parameters, and uncomplicated implementations [1]. To date, varies of
SIOA had been proposed by domestic and foreign scholars, namely the whale optimization
algorithm (WOA) [2,3]; differential evolution [4] (DE); genetic algorithm (GA) [5]; ant
colony optimization (ACO) [6,7]; particle swarm optimization (PSO) [8,9]; firefly algorithm
(FA) [10]; fruit fly optimization algorithm (FOA) [11–13]; slime mould algorithm (SMA) [14];
moth flame optimization (MFO) [15–17]; grey wolf optimizer (GWO) [18,19]; bat algorithm
(BA) [20,21]; grasshopper optimization algorithm (GOA) [22,23]; Harris hawks optimization
(HHO) [24]; colony predation algorithm (CPA) [25]; hunger games search (HGS) [26];
Runge–Kutta optimizer (RUN) [27] and weighted mean of vectors (INFO) [28].

SIOA found its application in many fields, namely expensive optimization prob-
lems [29,30]; performance optimization [31]; object tracking [32,33]; multi-objective or
many optimization problems [34–36]; traveling salesman problem [37]; neural network
training [38]; scheduling problems [39]; big data optimization problems [40]; fault diag-
nosis of rolling bearings [41]; evolving deep convolutional neural networks [42]; gate
resource allocation [43,44], and combination optimization problems [45]. The dragonfly
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algorithm (DA) is a population-based heuristic search algorithm that was first proposed by
Mirjalili, S. [46] in 2015 and has since gained widespread adoption. It has a high level of
performance and a broad range of applications in real life. Many applications, including
parameter optimization [47], feature selection [48], load balancing [49], modeling [50], and
others [51], have been effectively implemented using it. Many trials with complicated,
high-dimensional, and multi-modal functions, on the other hand, demonstrated that DA
had some drawbacks in some situations. For example, the DA lacks internal memory, has
a poor convergence time, and is prone to falling into the local optimum when running in
the background. As a result, several researchers are putting forth an attempt to increase
the DA.

1.1. Related Works

When it comes to solving the challenge of numerical optimization, Sree Ranjini and
colleagues [52] suggested a new memory-based hybrid DA (HMDA). The drawback of the
DA was remedied by combining the advantages of the DA and the PSO together. Moreover,
N. S. et al. [53] integrated the crow search algorithm (CSA) with the D-Crow optimization
algorithm, presented a D-Crow optimization method, and applied this algorithm to opti-
mize the configuration of virtual machines migrating. A method combining the dynamic
analysis and the pattern search algorithm was presented by Khadanga and colleagues [54]
to improve the performance and optimize the controller settings, in order to improve the
control efficiency of the frequency of Microgrid. Using a trained multi-layer perceptron,
Ghanem et al. [55] developed a novel hybridized metaheuristic method with improved
properties in terms of attaining the best optimal value, convergence speed, avoiding local
minima, and accuracy compared to previous algorithms. They created a hybrid algorithm
by combining the artificial bee colony (ABC) algorithm with the distributed algorithm (DA).
Shilaja and colleagues [56] used a combination of the enhanced grey wolf optimization
and dynamic programming to handle the nonlinearity problems. Furthermore, it has been
demonstrated to be more efficient than the conventional method. Using a dragonfly-based
clustering method, CAVDO, Aadil et al. [57] proposed a solution to difficulties associated
with the Internet of vehicles, such as scalability, dynamic topology changes, and finding
the shortest path for routing. For the DA to be more random, Aci and colleagues [58] used
the Brownian motion, which they found to be more effective. Furthermore, the results
of the experiments revealed that the new DA had superior properties when compared to
the old algorithm. Bao and colleagues [59] proposed a new DA that was changed using
opposition-based learning. It also had a faster convergence time and a more balanced
exploration–exploitation ratio, according to the results of the studies. Li et al. [60] improved
the performance of DA by incorporating the adaptive learning factor and differential
evolution (DE) approach into the algorithm. Sayed and colleagues [61] proposed a novel
chaotic DA (CDA). In order to increase the DA, the researchers included chaotic maps
in the searching iterations of the algorithm. Conforming to the experimental findings,
CDA outperformed the control group in classification performance and was capable of
identifying more suitable feature subsets.

Mafarja et al. [62] collected eight transfer functions (s-type function and v-type func-
tion) in BDA for evaluation, and proposed the time-varying s-type BDA, which made
the algorithm have a high probability of changing the element position in the early op-
timization period, but with a low probability in the late optimization period. Hariharan
et al. [63] proposed an improved binary dragonfly optimization algorithm (IBDFO) to
solve the dimension problem and combined it with a feature extraction based on a wavelet
packet to improve the accuracy of identifying the type of infant crying. Zhang et al. [64]
used the DA to improve the prediction accuracy of the support vector machine (SVM)
to obtain the optimal combination of parameters, and proposed the DA-SVM model to
realize the short-term load prediction of the micro grid. Yuan et al. [65] tended to obtain an
algorithm with better exploration capability as they combined the DA with the Coulomb
force search strategy (CFSS). The resultant algorithm gained both a high accuracy and a



Symmetry 2022, 14, 331 3 of 26

remarkably improved convergence rate. Zhang et al. [66] quantized dragonfly behaviors
to improve the search efficiency of the DA to obtain a quantized dragonfly algorithm
(QDA). Furthermore, they put forward a new electric load forecasting model, based on
the complete ensemble empirical mode decomposition adaptive noise, QDA, and support
vector regression model, to accurately forecast the electric load. Suresh et al. [67] adopted
the DA as the optimization algorithm to solve static economic dispatch incorporating solar
energy. Based on the modified dragonfly algorithm (MDA) and bat search algorithm (BSA),
Sureshkumar et al. [68] put forward a new method that adopted the MDABSA technique
to control power flow more efficiently. In this method, MDA was used to develop the
control signals of the voltage source. Xie et al. [69] adopted the DA to create a cancer
classification algorithm. Furthermore, the comparative experiments proved it had a higher
classification accuracy on cancer datasets. Xu et al. [70] adopted the DA and DE for color
image segmentation. In this method, the DA was used for global search, and DE was used
for local search.

1.2. Needs for Research

However, despite the fact that the literature discussed above made significant ad-
vances to the DA, it is not optimal enough to stabilize the algorithm’s exploration and
exploitation capabilities. With the goal of further improving the exploration and exploita-
tion exactness of the DA, as well as avoiding falling into the local optimum, this work
proposes an upgraded DA that incorporates Gaussian mutation and Gaussian barebone
to further improve these aspects. With the use of Gaussian mutation, we were able to
update the dragonfly’s unique location while also improving the global search capabilities.
Additionally, the Gaussian barebone was used to increase the local exploitation capabilities
as well as the speed with which the searches could be conducted. The results of the simu-
lations demonstrated that the algorithm’s accomplishments were superior to those of the
original DA, and that its global optimization capabilities, search accuracy, and convergence
performance were all greatly enhanced as a consequence. In summary, the innovations and
contributions of this paper are as follows.

• An improved dragonfly algorithm (GGBDA) is proposed in this paper to further
improve the global searching ability and the convergence speed of DA.

• GGBDA achieves a great improvement in the ability of exploitation and exploration.
• The performance of GGBDA is verified by comparison with some excellent algorithms.
• GGBDA is applied to optimize the engineering optimization problems.

The following is a summary of the rest of this article. Section 2 introduces the DA;
Section 3 describes the enhanced DA based on Gaussian mutation and Gaussian barebone;
Section 4 presents the experimental findings of the benchmark functions; and Section 5
concludes the paper and provides an overview of the previous work as well as a forecast
for future work.

2. Materials and Methods
2.1. Dragonfly Algorithm (DA)

DA was inspired by two states of idealized behaviors of dragonflies in nature. There
are three principles in the core mathematical backgrounds of this method.

Separation aims to prevent search individuals from collisions with others in a static
state within a partial range. The following is the calculation function:

Si = −
N

∑
j=1

X− Xj (1)

where X is the position agents, Xj is j-th neighboring individual’s position, and N is
neighboring individuals’ number.
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Alignment is aimed at matching velocity between individuals within a partial range.
The following is the calculation function:

Ai =
∑N

j=1 Vj

N
(2)

where Vj is the j-th velocity of the neighboring individual.
Cohesion is aimed at making individuals move closer towards the center of swarm

aggregation. The following is the calculation function:

Ci =
∑N

j=1 Xj

N
− X (3)

where X is the current individual’s position, N is neighborhoods’ number, and Xj is j-th
neighboring individual’s position.

The following is the attraction towards a food source:

Fi = X+ − X (4)

where X is the current individual’s position and X+ is he food source’s position.
The following is the distraction outwards an enemy source:

Ei = X− + X (5)

where X is the current individual’s position and X− is the enemy’s position.
Step (∆X) and position(X) are prerequisites to update and record the location of agents

in the search domain. The step vector can be considered as the velocity vector in PSO.
It is the direction of the agents’ motion. The following is the calculation function of the
position vector:

∆Xt+1 = sSi + aAi + cCi + f Fi + eEi + w∆t (6)

where Si, Ai, Ci, Fi, Ei indicates the separation, alignment, cohesion, food source and an
enemy of the i-th individual’s position. s, a, c, f, e represent the weights, w is the inertia
weight, i is the i-th individual, and t is the number of the current iteration. The following is
the calculation function of the position vector:

Xt+1 = Xt + ∆Xt+1 (7)

Search agents have some deficiencies in terms of random behavior and exploration
ability, and they also lack adjacent solutions. Therefore, Levy flight-based patterns are used
to update the position of agents. The following is the function to update location:

Xt+1 = Xt + Levy(d)× Xt (8)

where t is the current iteration number and d is the dimension of the position vector.

2.2. Gaussian Mutation

To improve the performance of DA, this paper used the Gaussian mutation to up-
date the individual position of the dragonfly. Gaussian mutation has applied to many
optimizers [3,16,71,72]. The following is the mutation function of the Gaussian mutation:

temp = Xj ∗ (1 + k) (9)

where X is the position agents, temp is a temporary individual position, Xj is j-th neighbor-
ing individual position, N is neighboring individuals’ number, and k is a random number
between 0 and 1.
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After updating the individual position of the dragonfly with this mutation function,
whether the result of the Gaussian mutation is better than the previous result needs to be
verified. If the temporary individual position can obtain a better result, it will be used as the
new individual position of the dragonfly. With the population iterates, the DA may fall into
local optimum. The Gaussian mutation has randomness, thereby quickening the scouting
speed, avoiding slipping into the local optimum effectively, improving the global optimiza-
tion capacity, and eventually obtaining the global optimum or a satisfactory solution.

2.3. Gaussian Barebone Mechanism

The speed of scouting for the optimal solution is a significant indicator of the per-
formance of the algorithm. However, in the iteration, the scouting speed of the DA is
dissatisfactory; thereby, this paper employed a Gaussian barebone to improve it. The
Gaussian barebone mechanism hast been shown great potential in other optimizers [71,72].
The Gaussian barebone mechanism could help the DA scout the global optimum faster
and more effectively by gathering individuals into a food source. There are two methods
to gather individuals. The first method calculates the middle position between the food
source and individual’s position and the distance between them. Then, it generates a
random position where the values of each dimension are normally distributed based on
the two calculated variables. The second method obtains the distances for each dimension
of two random individuals. Additionally, it uses them and the position of the food source
to calculate a new position. The following is the function:

Vi,j =

{
normal(mu + sigma), rand() < CR

FPj + k ∗
(

Xk1,j − Xk2,j

)
, rand() ≥ CR

(10)

where CR is a freely settable parameter; rand is a random number between 0 and 1; Vi,j is a
new temporary position; mu is the middle position between the food source’s position and
Xj; sigma is the distance between the j-th dimension of the i-th neighboring individual and
the j-th dimension of food source; the normrnd function generates random numbers that
follow a normal distribution with the mu parameter representing the mean value and the
sigma parameter representing standard deviation; FPj is the j-th dimension of food source;
k is a random number; and Xk1,j and Xk2,j are j-th dimension of two random individuals in
the population.

3. Proposed Method

The DA lacks internal memory, has a slow convergence speed, and quickly falls into the
local optimum. As a result of these defects, this paper puts forward a new DA improved by
Gaussian mutation and a Gaussian barebone named GGBDA. It uses the Gaussian barebone
to gather individuals to food to quicken the speed of scouting the optimal solution and
strengthen local exploitation capacities. It can update the individuals’ positions based on
the position of the food source. However, Gaussian barebone could make the population
fall into local optimums. Therefore, this paper employs the Gaussian mutation to improve
the global search capacities, search accuracy, and convergence performance by preventing
it from trapping into local optimums.

The Gaussian mutation is mainly used to randomly update individuals’ positions
to escape the local optimums based on the Gaussian mutation function. The flowchart
of the improved DA is shown in Figure 1. And The pseudocode of GGBDA is shown in
Algorithm 1.
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Algorithm 1. Pseudocode of GGBDA

Begin
Initialize the dragonflies’ population Xi(i = 1, 2, . . . , n)
Initialize the step vectors ∆Xi(i = 1, 2, . . . , n)
while the end condition is not satisfied

Calculate the population fitness of all the dragonflies
Update the food source and enemy
Update w, s, a, c, f, and e
Calculate S, A, C, F, and E by Equations (1)–(5)
Update the neighboring radius
if a dragonfly has at least one neighboring dragonfly

Update the velocity and vector by Equation (6)
Update the position vector by Equation (7)

else
Update the position vector by Equation (8)

end if
Check and correct the new position according to the boundaries of the variables
Update with the Gaussian mutation and Gaussian barebone

end while
End
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Figure 1. Flowchart of GGBDA.

4. Experimental Results

In this part, the GGBDA was evaluated on CEC2014 benchmarks and practical engi-
neering problems. To obtain unbiased results, all the experiments were carried out in the
same environments, and the maximum number of iterations and the population size were
set to 500 and 30, respectively. Each algorithm was run 30 times independently on each



Symmetry 2022, 14, 331 7 of 26

function to decrease the weight of unpredictability. Regarding the parameters that affect
the algorithms involved in the comparison, we adopted the same values as in the original
paper. In this paper, the average value and standard deviation of the experimental results
of the optimization function were used to evaluate and analyze the potential of related
technologies. To show the experimental result intuitively, the best values of each function
are shown in bold.

4.1. Benchmark Functions

To compare the proposed algorithm and other algorithms, this experiment used 30 clas-
sical functions, including unimodal functions, multi-modal functions, hybrid functions,
and composition functions.

These 30 functions are all taken from CEC2014 [73]. Thirty different types of bench-
marks can more comprehensively estimate the performance of the proposed algorithm.
The details of the thirty benchmarks are listed in Table 1.

Table 1. Description of the 30 benchmark functions.

ID Function Equation Search Range Optimum Value

CEC 2014 Unimodal Functions

F1 Rotated High Conditioned
Elliptic Function [−100,100] f1{Xmin} = 100

F2 Rotated Bent Cigar Function [−100,100] f2{Xmin} = 200
F3 Rotated Discus Function [−100,100] f3{Xmin} = 300

CEC 2014 Simple Multi-Modal Functions

F4 Shifted and Rotated Rosenbrock
Function [−100,100] f4{Xmin} = 400

F5 Shifted and Rotated Ackley
Function [−100,100] f5{Xmin} = 500

F6 Shifted and Rotated Weierstrass
Function [−100,100] f6{Xmin} = 600

F7 Shifted and Rotated Griewank
Function [−100,100] f7{Xmin} = 700

F8 Shifted Rastrigin Function [−100,100] f8{Xmin} = 800

F9 Shifted and Rotated Rastrigin
Function [−100,100] f9{Xmin} = 900

F10 Shifted Schwefel Function [−100,100] f10{Xmin} = 1000

F11 Shifted and Rotated Schwefel
Function [−100,100] f11{Xmin} = 1100

F12 Shifted and Rotated Katsuura
Function [−100,100] f12{Xmin} = 1200

F13 Shifted and Rotated HappyCat
Function [−100,100] f13{Xmin} = 1300

F14 Shifted and Rotated HGBat
Function [−100,100] f14{Xmin} = 1400

F15
Shifted and Rotated Expanded

Griewank Plus Rosenbrock
Function

[−100,100] f15{Xmin} = 1500

F16 Shifted and Rotated Expanded
Scaffer F6 Function [−100,100] f16{Xmin} = 1600

CEC 2014 Hybrid Functions
F17 Hybrid Function 1 (N = 3) [−100,100] f17{Xmin} = 1700
F18 Hybrid Function 2 (N = 3) [−100,100] f18{Xmin} = 1800
F19 Hybrid Function 3 (N = 4) [−100,100] f19{Xmin} = 1900
F20 Hybrid Function 4 (N = 4) [−100,100] f20{Xmin} = 2000
F21 Hybrid Function 5 (N = 5) [−100,100] f21{Xmin} = 2100
F22 Hybrid Function 6 (N = 5) [−100,100] f22{Xmin} = 2200
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Table 1. Cont.

ID Function Equation Search Range Optimum Value

CEC 2014 Composition Functions
F23 Composition Function 1 (N = 5) [−100,100] f23{Xmin} = 2300
F24 Composition Function 2 (N = 3) [−100,100] f24{Xmin} = 2400
F25 Composition Function 3 (N = 3) [−100,100] f25{Xmin} = 2500
F26 Composition Function 4 (N = 5) [−100,100] f26{Xmin} = 2600
F27 Composition Function 5 (N = 5) [−100,100] f27{Xmin} = 2700
F28 Composition Function 6 (N = 5) [−100,100] f28{Xmin} = 2800
F29 Composition Function 7 (N = 3) [−100,100] f29{Xmin} = 2900
F30 Composition Function 8 (N = 3) [−100,100] f30{Xmin} = 3000

4.2. Comparison with Classical Algorithms

In order to validate the effectiveness of the improved GGBDA, there are some repre-
sentative algorithms employed for comparison: OBSCA [74], m_SCA [75], SCADE [76],
ASCA_PSO [77], ACWOA [78], MFO [15], SCA [79], FA [80], and DA.

In the experimental part, the parameter values of the compared algorithms were
set, as shown in Table 2. To ensure the fairness of the experiments as far as possible, the
experimental environment of algorithms stayed the same. The experimentations used 30D
classical functions for comparing the proposed method and other rivals. Table 3 recorded
the experimental results on 30D. Each algorithm ran independently 30 times. The average
(Ave) and standard deviation (Std) of the optimal solutions obtained are shown in these
tables. “AVR” expresses the average of the algorithm’s ranking results on all functions. In
this experiment, the maximum number of iterations and the population size (Pop) were set
to 1000 and 30. Each algorithm was performed in every function with 30 dimensions for the
test of scalabilities, respectively. The symbol “+/=/−” refers to whether the performance
of GGBDA is greater, equal, or worse than other algorithms compared.

Table 2. Parameter settings of the algorithms in the experiment.

Algorithms Pop Maximum Iterations Others

GGBDA
OBSCA
m_SCA

30 1000 w ∈ [0.9 0.2]; s = 0.1; a = 0.1;
c = 0.7; f = 1; e = 1

30 1000 a = 2
30 1000 a = 2

SCADE
ASCA_PSO

30 1000 a = 2; CR = 0.8; LSF = 0.8; USF = 0.2

30 1000
M = 4; N = 9; Vmax = 6; wMax = 0.9; wMin =

0.2; c1 = 2;
c2 = 2;

ACWOA
MFO
SCA
FA

30 1000 B = 1
30 1000 B = 1
30 1000 a = 2
30 1000 alpha = 0.5; betamin = 0.2; gamma = 1;

DA
GGBDA

30 1000 w ∈ [0.9 0.2]; s = 0.1; a = 0.1; c = 0.7; f = 1; e = 1
30 1000 w ∈ [0.9 0.2]; s = 0.1; a = 0.1; c = 0.7; f = 1; e = 1

4.2.1. Results on 30D Functions

F1–F7 do not have local optimal solutions. They are very suitable for measuring the
exploration competence of the algorithm. In F2, F3, and F6, the results of GGBDA are far
superior to all the others. Furthermore, in the rest functions, the results of GGBDA are
better than most comparison algorithms. The results of F1–F7 show that GGBDA has an
advantage over other algorithms in the ability to explore in the unimodal locality.
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Table 3. Experimental results of the 30 dimensions (30Ds).

F1 F2 F3
Ave Std Ave Std Ave Std

GGBDA 3.3428 × 107 2.3615 × 107 5.7799 × 107 1.32174 × 107 2.2502 × 103 1.0237 × 103

OBSCA 3.8095 × 108 1.2188 × 108 2.4577 × 1010 3.9982 × 109 5.1744 × 104 7.3043 × 103

m_SCA 7.2766 × 107 3.9039 × 107 6.4809 × 109 2.7501 × 109 2.6967 × 104 7.4237 × 103

SCADE 4.3235 × 108 1.0258 × 108 2.9383 × 1010 4.9065 × 109 5.3542 × 104 6.3130 × 103

ASCA_PSO 1.5733 × 107 7.8447 × 106 5.7234 × 108 7.6338 × 108 2.0200 × 104 5.3347 × 103

ACWOA 1.3598 × 108 5.9536 × 107 7.6372 × 109 3.3593 × 109 5.1123 × 104 8.7487 × 103

MFO 7.0131 × 107 8.4361 × 107 1.3759 × 1010 7.4030 × 109 9.8036 × 104 6.1005 × 104

SCA 2.2033 × 108 7.5726 × 107 1.6600 × 1010 3.2678 × 109 3.5442 × 104 6.2559 × 103

FA 2.5375 × 108 5.0283 × 107 1.5600 × 1010 2.0292 × 109 6.3396 × 104 9.7529 × 103

DA 8.11892 × 108 4.3376 × 108 2.2171 × 1010 2.2383 × 1010 5.9107 × 104 1.5850 × 104

F4 F5 F6
Ave Std Ave Std Ave Std

GGBDA 5.9527 × 102 8.7643 × 101 5.2093 × 102 5.5872 × 10−2 6.2033 × 102 4.0175 × 100

OBSCA 2.4186 × 103 8.0598 × 102 5.2097 × 102 4.9147 × 10−2 6.3202 × 102 1.7351 × 100

m_SCA 7.5730 × 102 1.0198 × 102 5.2061 × 102 1.4096 × 10−1 6.2114 × 102 3.2807 × 100

SCADE 2.4370 × 103 5.6808 × 102 5.2094 × 102 6.3764 × 10−2 6.3419 × 102 2.3689 × 100

ASCA_PSO 5.7201 × 102 1.5123 × 102 5.2094 × 102 4.1898 × 10−2 6.2512 × 102 3.2965 × 100

ACWOA 1.0827 × 103 2.3891 × 102 5.2083 × 102 1.2246 × 10−1 6.3454 × 102 3.1803 × 100

MFO 1.4154 × 103 1.1476 × 103 5.2026 × 102 2.0197 × 10−1 6.2398 × 102 3.0738 × 100

SCA 1.4155 × 103 3.0882 × 102 5.2093 × 102 4.4333 × 10−2 6.3375 × 102 2.6530 × 100

FA 1.5386 × 103 1.7232 × 102 5.2095 × 102 5.1811 × 10−2 6.3392 × 102 6.4751 × 10−1

DA 7.2148 × 103 5.0944 × 103 5.2096 × 102 3.8523 × 10−2 6.3831 × 102 3.8669 × 100

F7 F8 F9
Ave Std Ave Std Ave Std

GGBDA 7.0154 × 102 1.4093 × 10−1 8.8953 × 102 1.4755 × 101 1.0718 × 103 3.5377 × 101

OBSCA 9.1188 × 102 3.2095 × 101 1.0564 × 103 1.5937 × 101 1.2007 × 103 1.8331 × 101

m_SCA 7.5112 × 102 2.7312 × 101 9.4797 × 102 2.0587 × 101 1.0570 × 103 2.4289 × 101

SCADE 8.9697 × 102 3.1487 × 101 1.0680 × 103 1.3258 × 101 1.2072 × 103 1.7261 × 101

ASCA_PSO 7.1122 × 102 1.5224 × 101 9.5707 × 102 2.6319 × 101 1.1114 × 103 3.7255 × 101

ACWOA 7.2872 × 102 1.6207 × 101 9.9483 × 102 2.5768 × 101 1.1277 × 103 2.1651 × 101

MFO 8.1621 × 102 7.0326 × 101 9.3286 × 102 3.1243 × 101 1.1154 × 103 4.2025 × 101

SCA 8.3820 × 102 2.6572 × 101 1.0372 × 103 1.6583 × 101 1.1745 × 103 1.5443 × 101

FA 8.3255 × 102 9.9991 × 100 1.0236 × 103 1.5241 × 101 1.1575 × 103 8.8945 × 100

DA 1.0796 × 103 2.5224 × 102 1.0603 × 103 8.6112 × 101 1.1875 × 103 4.3320 × 101
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Table 3. Cont.

F10 F11 F12
Ave Std Ave Std Ave Std

GGBDA 2.1632 × 103 4.0569 × 102 4.3103 × 103 5.8058 × 102 1.2016 × 103 6.4654 × 10−1

OBSCA 6.1914 × 103 3.3800 × 102 7.3712 × 103 3.8870 × 102 1.2022 × 103 3.8380 × 10−1

m_SCA 4.2173 × 103 6.7303 × 102 4.6926 × 103 5.6709 × 102 1.2007 × 103 2.8914 × 10−1

SCADE 7.3873 × 103 2.0852 × 102 8.2043 × 103 2.8866 × 102 1.2026 × 103 2.9637 × 10−1

ASCA_PSO 5.3236 × 103 6.1947 × 102 6.0330 × 103 1.0051 × 103 1.2024 × 103 3.2840 × 10−1

ACWOA 4.3616 × 103 9.4361 × 102 6.5284 × 103 8.8174 × 102 1.2018 × 103 5.3507 × 10−1

MFO 4.2961 × 103 1.0010 × 103 5.2553 × 103 5.8399 × 102 1.2004 × 103 1.6921 × 10−1

SCA 6.9536 × 103 5.2169 × 102 8.1744 × 103 2.6469 × 102 1.2024 × 103 2.8490 × 10−1

FA 7.5877 × 103 2.4931 × 102 7.8979 × 103 2.2794 × 102 1.2024 × 103 3.1798 × 10−1

DA 7.8983 × 103 8.8564 × 102 8.2497 × 103 7.2246 × 102 1.2024 × 103 3.9165 × 10−1

F13 F14 F15
Ave Std Ave Std Ave Std

GGBDA 1.3006 × 103 1.1023 × 10−1 1.4003 × 103 4.9476 × 10−2 1.5246 × 103 3.8702 × 100

OBSCA 1.3037 × 103 4.2284 × 10−1 1.4669 × 103 1.1727 × 101 1.7547 × 104 9.8027 × 103

m_SCA 1.3007 × 103 3.3452 × 10−1 1.4142 × 103 1.1462 × 101 2.2627 × 103 8.4352 × 102

SCADE 1.3038 × 103 2.5871 × 10−1 1.4902 × 103 1.1514 × 101 2.0450 × 104 8.8527 × 103

ASCA_PSO 1.3006 × 103 1.4205 × 10−1 1.4035 × 103 7.1583 × 100 1.5545 × 103 1.2124 × 102

ACWOA 1.3017 × 103 1.0761 × 100 1.4166 × 103 1.0655 × 101 1.9949 × 103 5.8404 × 102

MFO 1.3019 × 103 1.2975 × 100 1.4267 × 103 1.5955 × 101 3.3650 × 105 8.2577 × 105

SCA 1.3029 × 103 3.7934 × 10−1 1.4443 × 103 9.4586 × 100 5.0147 × 103 3.4034 × 103

FA 1.3029 × 103 1.9248 × 10−1 1.4403 × 103 4.8273 × 100 1.5752 × 104 4.4028 × 103

DA 1.3068 × 103 1.9095 × 100 1.5637 × 103 8.3347 × 101 2.4757 × 104 7.1463 × 104

F16 F17 F18
Ave Std Ave Std Ave Std

GGBDA 1.6122 × 103 3.8012 × 10−1 2.1700 × 106 2.7205 × 106 1.5189 × 104 5.2280 × 104

OBSCA 1.6130 × 103 1.4281 × 10−1 1.1486 × 107 5.1039 × 106 1.9793 × 108 1.4800 × 108

m_SCA 1.6115 × 103 5.1409 × 10−1 1.5833 × 106 1.7905 × 106 3.4874 × 107 4.7812 × 107

SCADE 1.6127 × 103 1.9941 × 10−1 1.4197 × 107 6.7951 × 106 1.6517 × 108 1.1211 × 108

ASCA_PSO 1.6126 × 103 3.3022 × 10−1 1.2265 × 106 1.0213 × 106 3.6646 × 106 1.0393 × 106

ACWOA 1.6123 × 103 4.6588 × 10−1 1.6366 × 107 1.4017 × 107 4.6377 × 107 3.8096 × 107

MFO 1.6128 × 103 4.8526 × 10−1 4.0035 × 106 5.0310 × 106 3.9147 × 107 1.0322 × 108

SCA 1.6127 × 103 2.8567 × 10−1 6.9907 × 106 3.6926 × 106 1.6756 × 108 8.8211 × 107

FA 1.6129 × 103 2.3262 × 10−1 6.7491 × 106 2.2624 × 106 2.6476 × 108 7.8340 × 107

DA 1.6129 × 103 2.4315 × 10−1 8.5018 × 107 4.2101 × 107 4.0928 × 109 1.8915 × 109
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Table 3. Cont.

F19 F20 F21
Ave Std Ave Std Ave Std

GGBDA 1.9217 × 103 8.2441 × 100 2.2795 × 103 6.9312 × 101 1.9235 × 105 2.8749 × 105

OBSCA 2.0091 × 103 1.1149 × 101 3.0362 × 104 1.2377 × 104 2.3649 × 106 1.5032 × 106

m_SCA 1.9453 × 103 2.5699 × 101 1.0286 × 104 4.6386 × 103 4.6439 × 105 4.6037 × 105

SCADE 2.0209 × 103 1.7879 × 101 2.7828 × 104 1.2075 × 104 2.7903 × 106 1.0593 × 106

ASCA_PSO 1.9258 × 103 2.5713 × 101 6.0026 × 103 2.2111 × 103 3.2508 × 105 2.5701 × 105

ACWOA 2.0062 × 103 3.5162 × 101 4.0828 × 104 1.8916 × 104 5.1240 × 106 4.8145 × 106

MFO 1.9722 × 103 6.5003 × 101 6.7453 × 104 3.5593 × 104 7.3786 × 105 1.1693 × 106

SCA 1.9950 × 103 2.2940 × 101 1.7570 × 104 5.4464 × 103 1.3486 × 106 6.6249 × 105

FA 2.0029 × 103 1.1339 × 101 2.1545 × 104 8.6661 × 103 1.8937 × 106 6.2858 × 105

DA 2.2044 × 103 1.3085 × 102 7.3418 × 104 4.0133 × 104 2.4506 × 107 2.0130 × 107

F22 F23 F24
Ave Std Ave Std Ave Std

GGBDA 2.6667 × 103 1.3749 × 102 2.5001 × 103 8.2205 × 10−2 2.6001 × 103 4.2571 × 10−2

OBSCA 3.0956 × 103 1.6521 × 102 2.6865 × 103 1.6694 × 101 2.6000 × 103 2.6232 × 10−4

m_SCA 2.6529 × 103 1.6213 × 102 2.6396 × 103 1.0453 × 101 2.6000 × 103 6.3375 × 10−4

SCADE 3.1130 × 103 1.5936 × 102 2.5000 × 103 0.0000 × 100 2.6000 × 103 1.0671 × 10−7

ASCA_PSO 2.7768 × 103 1.7913 × 102 2.6237 × 103 3.9400 × 100 2.6366 × 103 8.2081 × 100

ACWOA 3.0574 × 103 2.1215 × 102 2.5367 × 103 7.4780 × 101 2.6000 × 103 8.5021 × 10−6

MFO 2.9977 × 103 2.5111 × 102 2.6671 × 103 4.5312 × 101 2.6827 × 103 3.0780 × 101

SCA 2.9493 × 103 1.4065 × 102 2.6668 × 103 1.2152 × 101 2.6001 × 103 5.8342 × 10−2

FA 2.9399 × 103 1.0040 × 102 2.7354 × 103 1.4354 × 101 2.7065 × 103 4.4005 × 100

DA 1.3035 × 104 1.1958 × 104 2.8764 × 103 2.2534 × 102 2.6261 × 103 5.0498 × 100

F25 F26 F27
Ave Std Ave Std Ave Std

GGBDA 2.7000 × 103 1.3977 × 10−3 2.7006 × 103 1.8063 × 10−1 2.9000 × 103 1.8895 × 10−3

OBSCA 2.7000 × 103 1.0817 × 10−3 2.7039 × 103 4.7598 × 10−1 3.2360 × 103 4.5158 × 101

m_SCA 2.7134 × 103 2.6641 × 100 2.7008 × 103 3.4050 × 10−1 3.1926 × 103 1.5161 × 102

SCADE 2.7000 × 103 0.0000 × 100 2.7037 × 103 6.1565 × 10−1 3.1829 × 103 2.6437 × 102

ASCA_PSO 2.7125 × 103 5.1192 × 100 2.7006 × 103 1.2849 × 10−1 3.5114 × 103 2.3638 × 102

ACWOA 2.7000 × 103 0.0000 × 100 2.7471 × 103 5.0332 × 101 3.6882 × 103 3.2535 × 102

MFO 2.7190 × 103 1.0042 × 101 2.7023 × 103 1.5257 × 100 3.6672 × 103 1.8397 × 102

SCA 2.7242 × 103 1.1442 × 101 2.7023 × 103 5.9638 × 10−1 3.4473 × 103 3.1999 × 102

FA 2.7342 × 103 4.0567 × 100 2.7023 × 103 2.8881 × 10−1 3.8003 × 103 2.8675 × 101

DA 2.7109 × 103 4.7079 × 100 2.7740 × 103 4.0242 × 101 4.2646 × 103 2.7086 × 102
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Table 3. Cont.

F28 F29 F30

Ave Std Ave Std Ave Std
GGBDA 3.0000 × 103 2.8946 × 10−2 3.1087 × 103 5.4266 × 100 3.5861 × 103 6.0874 × 102

OBSCA 5.3347 × 103 3.2181 × 102 1.8861 × 107 1.0186 × 107 4.5744 × 105 1.5327 × 105

m_SCA 3.9404 × 103 2.3055 × 102 1.6245 × 106 4.3077 × 106 4.6418 × 104 2.2798 × 104

SCADE 5.2213 × 103 5.2511 × 102 1.5436 × 107 7.9392 × 106 4.1012 × 105 1.8490 × 105

ASCA_PSO 4.4056 × 103 3.2811 × 102 5.1473 × 106 6.2012 × 106 4.1476 × 104 3.1316 × 104

ACWOA 4.2050 × 103 1.1911 × 103 2.1367 × 107 1.7150 × 107 3.9650 × 105 2.1202 × 105

MFO 3.9192 × 103 1.3812 × 102 2.6412 × 106 3.4748 × 106 5.7740 × 104 4.9279 × 104

SCA 4.7438 × 103 2.5806 × 102 1.1250 × 107 6.3057 × 106 2.4763 × 105 7.9063 × 104

FA 4.2782 × 103 1.8313 × 102 3.2845 × 106 1.2612 × 106 1.7562 × 105 4.0487 × 104

DA 8.5874 × 103 1.1741 × 103 2.7820 × 108 2.7534 × 108 4.1499 × 106 2.4981 × 106

Overall Rank

Rank +/=/−
GGBDA 1 ~
OBSCA 9 28/0/2
m_SCA 2 23/0/7
SCADE 8 27/0/3

ASCA_PSO 3 24/0/6
ACWOA 5 26/0/4

MFO 4 28/0/2
SCA 6 28/0/2
FA 7 30/0/0
DA 10 30/0/0
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F8–F13 represents the multi-modal functions that have numerous local optimal solu-
tions. They are very suitable for evaluating the local optimal prevention of the search ability
of the algorithm. For F10 and F11, the results of GGBDA are near to the global optimal
solution. However, the other comparison algorithm is easy to fall into the non-global
optimal solution to different degrees. For the rest functions, GGBDA still obtains results
that are better than most other algorithms. In conclusion, the experimental result verifies
the global exploration ability of GGBDA.

From the convergence in Figure 2, we can estimate and evaluate the convergence
performance of the algorithm. In F3, F10, F18, F20, F27, F28, F29, and F30, the convergence
of GGBDA is better than other comparison algorithms in the early iterations. From the
convergence of F6 and F11, GGBDA does not obtain the best adaptive in the early iteration
but in the later iteration. In summary, the symbol “+/=/−” shows that GGBDA ranks
first with the avg far lower than the second SCA, and the performance is even better than
OBSCA, m_SCA, SCADE, ASCA_PSO, ACWOA, MFO, SCA, FA, and DA.
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4.2.2. Balance Analysis

In this section, we conduct a qualitative analysis of GGBDA on the 30 functions of
CEC14. The original DA was selected for comparison with GGBDA. Figure 3 shows the
results of the feasibility analysis of GGBDA and the DA. There are five columns in the
figure. The first column (a) is the location distribution of the GGBDA search history on
the three-dimensional plane. The second column (b) is the location distribution of the
GGBDA search history on the two-dimensional plane. The third column (c) is the trajectory
of the first dimension of GGBDA during the iteration. The fourth column (d) shows the
change of the average fitness of GGBDA during the iteration. The fifth column (e) shows
the convergence curves of GGBDA and DA. In Figure 3b, the red dot represents the location
of the optimal solution, and the black dot represents the search location of GGBDA. In the
selected 5 function images, the black dots are denser in the area around the red dots, which
shows that GGBDA has developed the area in which the optimal solution is located. In
Figure 3c, we can see that the first-dimensional trajectory of GGBDA fluctuates greatly
in the early period. Early volatility indicates that the algorithm has conducted extensive
searches. The average fitness change of GGBDA in the whole iterative process is shown in
Figure 3d. We can see that the average fitness of GGBDA dropped to a lower level in the
mid-term. This shows that GGBDA has a good convergence speed. In Figure 3e, we can
clearly see that the convergence curve of GGBDA is lower than that of DA, which shows
that GGBDA can obtain a better solution.

The balance analysis and diversity analysis are carried out on the same functions.
Figure 4 shows the results of the balanced analysis of GGBDA and DA. In Figure 4, there
are three curves in each graph. As shown in the Figure, the blue curve and red curve
represent exploitation and exploration, respectively. The larger value of the curve means
that the corresponding behavior is dominant in the algorithm. The green curve indicates
incremental–decremental. The curve can more intuitively reflect the changing trends of the
two behaviors of the algorithm. When the value of the curve increases, it means that the
exploration activity is dominant. Instead, exploitative behavior predominates. When the
curve drops to a negative value, the curve will be set to zero. Comparing the curves of the
two algorithms shows that both algorithms were dominated by exploration behavior in the
early stage. This is because the swarm intelligence optimization algorithm performs a global
search first, at the beginning. However, the difference between the two algorithm curves
is also very obvious. The DA spends more time on exploration behavior than GGBDA.
The exploration behavior of DA almost accounts for half of the entire iteration process.
However, the exploitative behavior of GGBDA quickly became dominant, indicating that it
spent more time exploiting the target area. This is the impact of the two mechanisms added
to GGBDA on its balance.

Figure 5 is the result of the diversity analysis of GGBDA and DA. In Figure 5, the
ordinate represents the population diversity. We can see that the diversity of the two
algorithms is very high at the beginning. This is because the initial population of the
algorithm is randomly generated. Then, in the iterative process, the algorithm continues to
narrow the search range so that the diversity of the population will reduce, although the
diversity curves of the two algorithms almost reached the lowest in the iteration. However,
the descent process of the two algorithms is very different. We can clearly observe that the
DA maintained a high diversity in the early stage. The diversity curve of the DA dropped to
its lowest value very quickly in the mid-term. This change was completed in a concise time.

In contrast, the curve of GGBDA declined more gently. GGBDA only declines rapidly
at the initial stage, and then the rate of decline slows down. This is obvious for F2 and
F14. This shows that the two added mechanisms have an impact on the diversity of the
DA. Owing to the strong search capability, the proposed GGBDA can also be applied
to other optimization problems, such as fault detection [81]; metabolomic data process-
ing [82,83]; urban road planning [84]; multivariate time series analysis [85]; gene signature
identification [86]; drug target discovery [87]; drug discovery [88]; pharmacoinformatics
data mining [89]; service ecosystem [90,91]; information retrieval services [92–94]; kayak
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cycle phase segmentation [95]; covert communication system [96–98]; location-based ser-
vices [99,100]; and human motion capture [101].
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4.3. Real-World Problems
4.3.1. Pressure Vessel Design (PVD) Problem

The PVD problem is a common engineering design problem. There are four constraints
and four parameters in the PVD problem. The main aim is to obtain a pressure vessel that
meets the conditions with relatively minimal costs.

The formula of this problem is listed below.
Consider:

X = [x1 x2 x3 x4] = [Ts Th R L]
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Range of parameters:
0 ≤ x1 ≤ 99
0 ≤ x2 ≤ 99

10 ≤ x3 ≤ 200
10 ≤ x4 ≤ 200

Minimize:

f
(→

x
)
= 0.6224x1x3x4 + 1.7781x3x2

1 + 3.1661x4x2
1 + 19.84x3x2

1

Subject to:
g1(X) = −x1 + 0.0193x3 ≤ 0

g2(X) = −x3 + 0.00954x3 ≤ 0
g3(X) = −πx4x2

3 −
4
3 πx3

3 + 1296000 ≤ 0
g4(X) = x4 − 240 ≤ 0
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Table 4 shows the results GGBDA for the optimization for the PVD problem, compared
with other peers in the literature. The results show that the optimal value obtained by the
GGBDA was 6059.7298, which was better than CPSO, WOA, and Branch-bound. Moreover,
GGBDA has a similar effect with MFO, HPSO, and BA.

Table 4. Comparison results of the PVD problem between GGBDA and other approaches.

Algorithm Optimum Variables Optimum
CostTs Th R L

GGBDA 0.8125 0.4375 42.0983 176.6380 6059.7298
MFO [15] 0.8125 0.4375 42.0984 176.6366 6059.7143
BA [102] 0.8125 0.4375 42.0984 176.6366 6059.7143

HPSO [103] 0.8125 0.4375 42.0984 176.6366 6059.7143
CSS [104] 0.8125 0.4375 42.1036 176.5727 6059.0888

CPSO [105] 0.8125 0.4375 42.0912 176.7465 6061.0777
ACO [106] 0.8125 0.4375 42.1036 176.5727 6059.0888
GWO [18] 0.8125 0.4345 42.0892 176.7587 6051.5639
WOA [2] 0.8125 0.4375 42.0983 176.6390 6059.7410

MDDE [107] 0.8125 0.4375 42.0984 176.6360 6059.7017
Branch-bound [108] 1.1250 0.6250 47.7000 117.7010 8129.1036
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4.3.2. Hydrostatic Thrust Bearings Design (HTBD) Problem

The goal of the HTBD problem is to minimize power loss. At the same time, the
design needs to meet some constraints. There are four design variables: bearing step radius
(R), recess radius (R0), oil viscosity (µ), and flow rate (Q). The mathematical model of this
problem is shown as below.

Minimize:
f(x) =

QP0
0.7

+ Ef

Subject to:

g1(x) =
πP0

2
× R2 − R2

0
ln(R/R0)

−Ws ≥ 0

g2(x) = Pmax − P0 ≥ 0

g3(x) = ∆Tmax − ∆T ≥ 0

g4 = h− hmin ≥ 0

g5(x) = R− R0 ≥ 0

g6(x) = 0.001− γ/gP0(Q/2πRh) ≥ 0

g7(x) = 5000− W
π
(

R2 − R2
0
) ≥ 0

where

P0 =
6µQ
πh3 ln

(
R
R0

)
E f = 9336QγC∆T

∆T = 2
(
10P − 560

)
P =

log
(
log
(
8.122× 106 + 0.8

))
− C1

n

h =

(
2πN

60

)2
2πµ
E f

(
R4

4
− R4

0
4

)
C1 = 10.04

n = −3.55, Pmax = 1000, Ws = 101000

∆Tmax = 50

hmin = 0.001

g = 386.4, N = 750

5 ≤ De, Di ≤ 15

0.01 ≤ t ≤ 6

0.05 ≤ h ≤ 0.5

Table 5 shows the results of the HTBD problem. It can be seen that the optimal value
of GGBDA is 19,508.76, which is better than PSO, SQP, and GASO. Moreover, GGBDA has
almost the same effect as TNE and TLBO.
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Table 5. Comparison results of the hydrostatic thrust bearing problem between GGBDA and
other approaches.

Algorithm Optimum Variables Optimum
CostR R0 µ Q

GGBDA 5.956071 5.389334 5.36 × 10−6 2.271766 19,508.7584
PSO [8] 5.956868 5.389175 5.4021 × 10−6 2.301546 19,586.5788

NDE [109] 5.955781 5.389013 5.3586 × 10−6 2.269656 19,506.0090
TLBO [110] 5.955781 5.389013 5.3586 × 10−6 2.269656 19,505.3132
SQP [111] 5.955800 5.389040 8.6332 × 10−6 8.000010 26,114.5450

GASO [112] 6.271000 12.90100 5.6050 × 10−6 2.938000 23,403.4320

4.3.3. Welded Beam Design (WBD) Problem

WBD problem aims to minimize the cost of welded beams subject to the four con-
straints of shear stress (τ), bending stress (θ), buckling load (P_c), and deflection (δ). The
variables in this problem are composed of welding seam thickness (h), welding joint length
(l), beam width (t), and beam thickness (b). The mathematical model of this problem is
listed as below.

Consider:
→
x = [x1, x2, x3, x4] = [ h l t b]

Minimize:
f
(→

x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x4)

Subject to:

g1

(→
x
)
= τ

(→
x
)
− τmax ≤ 0

g2

(→
x
)
= σ

(→
x
)
− σmax ≤ 0

g3

(→
x
)
= δ

(→
x
)
− δmax ≤ 0

g4

(→
x
)
= x1 − x4 ≤ 0

g5

(→
x
)
= P− PC

(→
x
)
≤ 0

g6

(→
x
)
= 0.125− x1 ≤ 0

g7

(→
x
)
= 1.10471x2

1 + 0.04811x3x4(14.0 + x2)− 5.0 ≤ 0

Variable range:
0.1 ≤ x1 ≤ 2

0.1 ≤ x2 ≤ 10

0.1 ≤ x3 ≤ 10

0.1 ≤ x4 ≤ 2
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where
τ
(→

x
)
=
√
(τ′)2 + 2τ′τ′′ x2

2R + (τ′′ )2

τ′ =
P√

2x1x2

τ′′ =
MR

J

τ′′ =
MR

J

R =

√
x2

2
4 +

(
x1 + x3

2

)2

J = 2

{
√

2x1x2

[
x2

2
4

+

(
x1 + x3

2

)2
]}

σ
(→

x
)
=

6PL
x4x32

δ
(→

x
)
=

6PL3

Ex2
3x4

PC

(→
x
)
=

4.013E

√
x2

3x6
4

36
L2

(
1− x3

2L

√
E

4G

)
P = 60001b

L = 14 ∈ δmax = 0.25 ∈

E = 30× 16psi

G = 12× 106psi τmax = 13600psi

σmax = 30000psi

The results of the WBD problem are shown in Table 6. The optimal value of GGBDA
is 1.724527, which is the lowest among all the algorithms. It can be seen that GGBDA has a
better effect than other peers in the experiment.

Table 6. Comparison results of the WBD problem between GGBDA and other approaches.

Algorithm Optimal Values for Variables Optimum
Costh l t b

GGBDA 0.187156 3.615020 9.056672 0.206464 1.724527
RO [113] 0.203687 3.528467 9.004233 0.207241 1.735344
SSA [114] 0.205700 3.471400 9.036600 0.205700 1.724910
CDE [115] 0.203137 3.542998 9.033498 0.206179 1.733462
GWO [18] 0.205700 3.478400 9.036800 0.205800 1.726240
GSA [116] 0.182129 3.856979 10.00000 0.202376 1.879950
NDE [109] 0.205729 3.470488 9.903662 0.205729 1.724852

4.3.4. Tension–Compression String Design (TCSD) Problem

The TCSD problem is to design a tension–compression spring with the minimum
weight and meets the constraints. The three variables in the problem are the wire diameter
(d), mean coil diameter (D), and the number of active coils (N). The mathematical model of
this problem is listed as below.

Consider:
→
x = [x1 x2 x3] = [d D N]
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Objective function:
Minimize f (x) = x2

1x2x3 + 2x2
1x2

Subject to:

h1

(→
x
)
= 1−

x3
2x3

71785x4
1
≤ 0,

h2

(→
x
)
=

4x2
2 − x1x2

12566
(
x2x3

1 − x4
1
) + 1

5180x2
1
− 1 ≤ 0

h3

(→
x
)
= 1− 140.45x1

x3
2x3

≤ 0

h4

(→
x
)
=

x1 + x2

1.5
− 1 ≤ 0

Variable ranges:
0.05 ≤ x1 ≤ 2.00

0.25 ≤ x2 ≤ 1.30,

2.00 ≤ x3 ≤ 15.0

Table 7 shows the results of the TCSD problem. The optimal values of GGBDA and
NDE are both 0.012665, which is the lowest among the algorithms. It can be seen that
GGBDA still has a good effect on the TCSD problem.

Table 7. Comparison results of the TCSD problem between GGBDA and other approaches.

Algorithm
Optimal Values for Variables

Optimum Cost
d D N

GGBDA 0.051652 0.355837 11.34081 0.012665
GA [117] 0.051480 0.351661 11.63220 0.012705
RO [113] 0.051370 0.349096 11.76279 0.012679
IHS [118] 0.051154 0.349871 12.07643 0.012671
ES [119] 0.051989 0.363965 10.89052 0.012681

GSA [116] 0.050276 0.323680 13.52541 0.012702
WOA [2] 0.051207 12.00430 0.345215 0.012676
PSO [8] 0.015728 11.24454 0.357644 0.012675

NDE [109] 0.051689 0.356718 11.28896 0.012665

5. Conclusions

The purpose of this research was to propose an enhanced DA that anticipates engi-
neering design problems more efficiently and precisely. The Gaussian mutation and the
Gaussian barebone are embedded into the DA, termed as GGBDA. The Gaussian mutation
was used to prevent slipping into local optimal situations and to update the individual
locations in a random manner. To further enhance local exploitation capacities, Gaussian
barebone was used in conjunction with the improvement of Gaussian mutation, the global
searching ability, and the convergence efficiency of GGBDA to accelerate the convergent
speed and strengthen local exploitation capacities. This study compared the performance
of GGBDA with other competitive peers on 30 benchmarks and 4 engineering design issues.
The experimental findings demonstrate that GGBDA outperforms DA and other competing
algorithms in terms of solution accuracy and convergence speed.

GGBDA’s performance and time cost will be improved in future developments. For
example, we will address GGBDA’s design issues. GGBDA may also be used to anticipate
and optimize the parameters for energy optimization, image segmentation, and parameter
optimization of machine learning methods.
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