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Abstract: The algebras of the symmetry operators for the Hamilton–Jacobi and Klein–Gordon–Fock
equations are found for a charged test particle, moving in an external electromagnetic field in a
spacetime manifold on the isotropic (null) hypersurface, of which a three-parameter groups of
motions acts transitively. We have found all admissible electromagnetic fields for which such algebras
exist. We have proved that an admissible field does not deform the algebra of symmetry operators for
the free Hamilton–Jacobi and Klein–Gordon–Fock equations. The results complete the classification of
admissible electromagnetic fields, in which the Hamilton–Jacobi and Klein–Gordon–Fock equations
admit algebras of motion integrals that are isomorphic to the algebras of operators of the r-parametric
groups of motions of spacetime manifolds if (r ≤ 4).

Keywords: Klein–Gordon–Fock equation; algebra of symmetry operators; theory of symmetry;
separation of variables; linear partial differential equations

1. Introduction

The Klein–Gordon–Fock equation describes the dynamics of massive spinless test
particles interacting with fields of a gauge nature. It is used to study quantum field effects
in external electromagnetic and gravitational fields for scalar particles, as well as to build
approximate models for fermions. In this case, the problem of finding the exact basic
solutions of the Klein–Gordon–Fock equation in the external intensive fields is of great
importance. The basic solution is a common eigenfunction of the complete set of symmetry
operators. In order to obtain the exact basic solution, it is necessary to find a commutative
algebra consisting of three linear differential symmetry operators no more than quadratic
in momenta. The problem of constructing such algebras has been sufficiently studied.
Suppose this algebra forms the traditional complete set of symmetry operators for the
Klein–Gordon–Fock equation. In this case, spacetime admits a complete set of geometric
objects, consisting of mutually commuting vector and tensor killing fields, and belongs to
the set of Stäckel spaces.

A Stäckel space (Vn) is an n-dimensional Riemannian space of an arbitrary signature,
in which the free n-dimensional Hamilton–Jacobi equation for a massive test particle is
integrated by the method of the complete separation of variables. The Stäckel space admits
the complete set of killing fields. It is proved that the n-dimensional Klein–Gordon–Fock
equation can be integrated by the method of complete separation of variables, only if it
admits the traditional complete set of symmetry operators.

This is only possible in certain classes of Stäckel spaces. The method for finding basic
solutions based on the complete separation of variables is also called the commutative
integration method. For information on the method of the complete separation of the
variables and results obtained with its help, see [1–16] and the articles cited there.
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In the paper [17,18], a method for the integration of linear partial differential equations
in n-dimensional Riemannian spaces (and also in the Hamilton–Jacobi equation) of an
arbitrary signature admitting noncommutative groups of motions (Gr) was proposed (these
spaces are also denoted by Vn) The algebras of the symmetry operators of the Klein–Gordon–
Fock equation of rank r(n− 1 ≤ r ≤ n), constructed using the algebras of operators of the
noncommutative group of motions of the space Vn, are complemented to a commutative
algebra by the operators of differentiation of the first order in n essential parameters. Basic
solutions are found using these parameters. By analogy with the method of complete
separation of variables, such algebras are called complete sets, and the integration method
is called noncommutative integration. The methods are related because they both reduce
the problem of finding the basic solution of the test particle equation of motion to the
problem of integrating systems of ordinary differential equations.

The noncommutative integration method is based on the complete classification of
spacetime manifolds admitting groups of motions, as described in the book [19]. The method
made it possible to considerably extend the set of fields in which the construction of a
complete system of solutions of the classical and quantum equations of a charged test
particle motion is reduced to the integration of compatible systems of first-order differential
equations. For the further development of the method and its application in gravitational
theory, it is necessary (using the proposed classification) to make a classification of electro-
magnetic fields in which the classical and quantum equations of motion of a charged test
particle (the Hamilton–Jacobi and Klein–Gordon–Fock equations) admits noncommutative
algebras of symmetry operators that are linear in momenta. Such electromagnetic fields are
called admissible.

For the first time, this problem was formulated and partially solved in [20,21], where
the potentials of all admissible electromagnetic fields in spacetime manifolds, admitting
the transitive action of four-parameter groups of motions, are given. A similar classification
problem was solved for homogeneous spaces with a three-parameter group of motions [22],
as well as for spaces with a two-parameter movement group [23]. Moreover, the problem
is solved for the case when a four-parameter group of motions, with a three-dimensional
hypersurface of transitivity, acts on a spacetime manifold [24]. In the present work, the clas-
sification of admissible fields is carried out when the three-parameter group of motions (G3)
acts transitively on the isotropic hypersurfaces of the space (V4) with a spacetime signature.
We have found all relevant admissible electromagnetic fields.

The article is organized as follows.
The second section contains the necessary information and definitions required for

the implementation of this classification. The conditions that must be met by admissible
electromagnetic fields are obtained and investigated for compatibility.

In the third and fifth sections, the obtained conditions are used to find the potential of
the admissible electromagnetic field for resolvable groups of motion. The cases of groups
with a singular operator are considered separately.

In the fourth section, unsolvable groups of motion are considered.
In conclusion, possible applications of the obtained results are considered.

2. Admissible Electromagnetic Fields
2.1. Conditions for the Existence of the Symmetry Operators Algebra in the Case of a Charged Test
Particle Motion

Consider a spacetime manifold (V4) on an null hypersurface, on which the three-
parameter movement group (G3) acts transitively. The coordinate indices of the canonical co-
ordinate system [ui] of the space V4 are denoted by lower case Latin letters: i, j, k = 0, 1 . . . 3.
The coordinate indices of the canonical coordinate system on the isotropic hypersurface
V∗3 will be denoted by lower case Greek letters: α, β, γ=1, . . . 3. A non-ignored variable is
indexed as 0. The repeated superscripts and subscripts are summed within the limits of the
indices change. The papers [20,22] show that, for a charged test particle in an external electro-
magnetic field, with potential Ai, the Hamilton–Jacobi and Klein–Gordon–Fock equations:
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H = gijPiPj = m, Pi = pi + Ai, pi = ∂i ϕ (1)

Ĥϕ = (gij P̂i P̂j)ϕ = mϕ, P̂j = −ı∇̂i + Ai, (2)

admit algebras of symmetry operators (in the case of the Hamilton–Jacobi equation, inte-
grals of motion) in the same electromagnetic fields.

Here, ∇̂i is the operator of the covariant derivative corresponding to the operator of
the partial derivative ∂̂i = ı p̂i along the coordinate ui; ϕ is the field of a scalar particle with
mass m.

Therefore, for the implementation of the admissible electromagnetic fields classifi-
cation, the Hamilton–Jacobi equation would suffice. The integrals of motion of the free
Hamilton–Jacobi equation have the form:

Yα = ξ i
α pi, (3)

where ξ
j
α are the killing vector fields, satisfying the equations:

gikξ
j
α ,k + gjkξ i

α ,k − gij
,kξk

α = 0. (4)

ξ
j
α defines the movement groups (G3) of the space V4. It can be shown that if the Equation (1)

has r independent integrals of motion of the first order, then these operators have the form
Equation (2). The Hamilton–Jacobi equation Equation (1) admits a motion integral of the
form if H and Yα commute, with respect to the Poisson brackets:

[H, Yα]P =
∂H
∂pi

∂Yα

∂xi −
∂H
∂xi

∂Yα

∂pi
= (5)

(gikζ
j
α ,k + gjkζ i

α ,k − gij
,kζk

α)PiPj + 2gik(ξ
j
αFji + (ζ

β
α Aβ),i)Pk = 0.

It is possible if and only if the potential of the electromagnetic field satisfies the system
of equations:

(ξ
j
α Aj),i = ξ

j
αFij, Fji = Ai,j − Aj,i. (6)

Unlike the free Hamilton–Jacobi equation, the Equation (1), in a space with a group of
motions, in the general case, has no integrals of motion. The system of Equation (5) defines
the set of admissible electromagnetic fields, in which Equation (1) has the first-order r
integrals of motion, given by the algebra of the group G3. It can be shown [24] that, since
the vector fields (ξ j

α) define the movement group of the space (V4), the set Equation (5) can
be represented in the form:

Aα|β = Cγ
βαAfl, (7)

A0|α = −ξ i
α,0 Ai, (8)

where Aα = ξ i
α Ai, Aα = λ

β
αAβ, X|α = ξ i

αX,i, λ
β
αξ

γ
β = δ

γ
β , Cγ

αβ—structural constants of the
group Gr. For arbitrary r and n, the following statement is true [24]:

If the group of motions (Gr) of the space (Vn) acts transitively on the subspace (Vr,),
Equations (6) and (7) form a completely integrable system. This system specifies the
necessary and sufficient conditions for the existence of symmetry operators that are linear
in momenta.

2.2. Notations and Necessary Information from Petrov Group Classification

Petrov classification of spacetime manifolds (V4,), according to the groups of motions
(Gr), is based on the works of Petrov, Fubini, and Kruchkovich (see [19]). The method of
constructing the classification consists of using the group structural constants to find the
killing vector fields components in the simplest (canonical) holonomic coordinate system.
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Then, the integration of the killing equations allows for determining the components of the
metric tensor. Structural constant groups (G3) are known, due to the classification of real
groups of motions by real non-isomorphic structures for two- and three-parameter Bianchi
groups [25].

According to Bianchi classification, there are nine nonisomorphic structures for three-
parameter movement groups (G3).

Seven classes consist of solvable groups (containing a two-parameter subgroup (G2)).

G3(I) : Cγ
αβ = 0;

G3(I I) : Cα
12 = 0, Cα

13 = 0 Cα
23 = δα

1 ;
G3(I I I) : Cα

12 = 0, Cα
13 = δα

1 Cα
23 = 0;

G3(IV) : Cα
12 = 0, Cα

13 = δα
1 Cα

23 = δα
1 + δα

2 ;
G3(V) : Cα

12 = 0, Cα
13 = δα

1 Cα
23 = δα

2 ;
G3(VI) : Cα

12 = 0, Cα
13 = δα

1 , Cα
23 = qδα

2 . (q 6= 0, 1);
G3(VII) : Cα

12 = 0, Cα
13 = δα

1 Cα
23 = 2δα

2 cos α, α = const.

(9)

Two classes consist of unsolvable groups:{
G3(VII I) : Cα

12 = δα
1 , Cα

13 = 2δα
2 Cα

23 = −δα
3 .

G3(IX) : Cα
12 = δα

3 , Cα
13 = −δα

2 Cα
23 = δα

1 .
(10)

Crucial step in constructing the Petrov classification is to find the canonical coordinate
system. Since, in our case, G3 acts transitively on the isotropic (null) hypersurface (V∗3 ),
the canonical coordinate system can be chosen as semi-geodesic. In this case, the hypersur-
face itself will be given by the equation:

u0 = const.

Groups (G3(N)), except G3(IX), have a two-parameter subgroup (G2). Thus, we can
first construct the operators of the subgroup, and then define the canonical coordinate
system. If the subgroup (G2) is abelian and contains a singular operator, it acts on the null
subspace (V∗2 ) of the hypersurface (V∗3 ). In this case, the canonical coordinate system can
be chosen, so that the operators of the group X1, X2 have the form:

X1 = p1, X2 = p2.

In the case when G2 does not contain a special operator, the operators of the group
X1, X2, in the canonical coordinate system, can be reduced to one of the following forms:

A : X1 = p2, X2 = p3;
B : X1 = p2, X2 = p1 + u3 p2;
C : X1 = p2, X2 = p2 + u0 p2.

(11)

Subgroups (G2), in this case, are denoted as G2(K), where K can take the value A, B, C.
Among the unsolvable groups, only the group G2(VII I) contains an (abelian) subgroup
G2. By choosing the canonical coordinate system, the operators X1, X2 can be reduced to
the form:

X1 = p2, X2 = p1 + u2 p2.

The operator X3 is found from the equations of the structure, whereupon the killing
equations are integrated.

The group G3(IX) has no subgroup (G2) or special operator. In this case, the operator
X1 can be reduced to the form: X1 = p1. The remaining operators of the group and
canonical coordinate system follow from the equations of the structure.

Note that, in all cases, the metric tensor components contain specific functions of the
variables of the local coordinate system [uα] of the hypersurface (V∗3 ) (we call them ignored)
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and arbitrary functions of the variable u0 (we call this variable non-ignored). As before, we
will stick to the notations accepted in the work of A.Z. Petrov [19], with minor exceptions.
For example, a non-ignored variable (x4) would be denoted by u0, etc. The letters a, b, α, β, γ
(with and without indices) denote functions that depend only on the variable u0).

3. Solvable G3 Groups. Killing Vector Fields Do Not Depend on a
Non-Ignored Variable

When a three-parameter group of motions acts transitively on a null hypersurface,
the components of the vector ξ i

α may depend on the nonignored variable u0. In this
section, we consider groups in which (ξα

β),0 = 0. According to Equation (7), this implies:

A0 = A0(u0), which is equivalent to the condition:

A0 = 0.

This is used in Sections Equations (3) and (4). Each subsection is devoted to integration
of Equations (6) and (7) for specific groups. The metrics and group operators are given in
the canonical coordinate system (taken from [19])).

In addition, the explicit form of equations Equation (6), and its solutions are given,
as well as holonomic components of the vector potential Ai, which are calculated in
accordance with the given relations to Equations (6) and (7). Note another fact that dis-
tinguishes the variant considered in this paper from the case with homogeneous spaces.
For all G3 groups (except G3(IX)) acting on isotropic (null) hypersurfaces, there are several
nonequivalent sets of killing vectors, depending on which G2(K) subgroup they contain
(see (11)). Therefore, for each such set, there are several nonequivalent solutions of the
killing equations. Groups G3(N), with a subgroup G2(K), will be denoted as G3(N[K]).
In the following the results of the sets of Equations (7) and (8) integration integration in
the following order. First, using information from work [19], the metrics of the spaces on
which the considered groups, group operators, and structure constants act are presented.
Then, the matrix λ̂, as well as the nonholonomic and holonomic components of the vector
potential of the electromagnetic field (Aα and Aα), are given (with explanations of the
integration procedure, if necessary).

3.1. Groups G3(I I)− G3(VI) with the Singular Operators

If the groups G3(I I) − G3(VI) acts on the hypersurface V∗3 , the subgroup G2 may
contain a singular operator. In this case, the subgroup G2 acts on the null subspace V∗2
of the hypersurface V∗3 . The metrics of appropriate spaces and group operators can be
represented as:

ds2 = 2 exp (−ku3)du0(du1 − εu3du2) + a1 exp (−2lu3)du22
+ 2a2 exp (−lu3)du2du3 + a3du22

.

The group operators can be presented as follows:

X1 = p1, X2 = p2, X3 = (ku1 + εu2)p1 + lu2 p2 + p3

From here the structural constants follow:

Cγ
12 = 0, Cα

13 = kδα
1 , Cγ

23 = εδα
1 + lδα

2 .

Matrix λ̂, has the form:

||λα
β|| =

 1 0 0
0 1 0

−(ku1 + εu2) −lu2 1

.



Symmetry 2022, 14, 346 6 of 18

Set Equation (6) can be represented in the form:

A1|β = δ3βkA1 → A1 = α1(u0) exp (−ku3);

A2|β = −δ3β(εA1 + lA2);

A3|β = kδ1βA1 + δ2β(εA1 + lA2)

One can find next solutions of the set:

(A) l 6= k.
A1 = α1 exp (−ku3);

A2 = (
ε

k− l
)α1 exp (−ku3) + α2 exp (−lu3);

A3 = α3 + k(u1 +
εu2

k− l
)α1 exp (−ku3) + lu2α2 exp (−lu3).

The holonomic components of the electromagnetic potential are as follows:

Aα = Aβλ
β
α (12)

and have the form:

A1 = α1 exp (−ku3), A2 = (
ε

k− l
)α1 exp (−ku3) + α2 exp (−lu3), A3 = α3.

(B) k = l.

The non-holonomic components of the electromagnetic potential are as follows:

A1 = α1 exp (−ku3);

A2 = (α2 − εα1u3) exp (−ku3);

A3 = α3 + (kα1u1 + u2(εα1 + k(α2 − εα1u3)) exp (−ku3).

The holonomic components of the electromagnetic potential are as follows:

A1 = α1 exp (−ku3), A2 = (α2 − εα1u3) exp (−ku3), A3 = α3.

This exhausts the classification of admissible electromagnetic fields for movement
groups of spacetime with a special operator. Groups without a special operator are consid-
ered below.

3.2. Groups G3(I I I)

The metrics of the spaces and the group operators can be represented as:

ds2 = 2du0du1 + 2du0(
du2b0 + du3(b1 − a0u1)

u3 )+

2du2du3(
a3 − a1u1

u32 ) + du22
(

a1

u32 ) + du32
(

a1u12 − 2a3u1 + a2

u32 ).

The group operators can be presented as follows:

X1 = p1 + u3 p2, X2 = p2, X3 = u2 p2 + u3 p3
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From here the structural constants follow:

Cα
12 = Cα

31 = 0, Cα
23 = δα

2 .

λ̂ has the form:

||λα
β|| =

1 −u3 0
0 1 0
0 − u2

u3
1

u3

.

Set Equation (6) can be represented in the form:

A1,β = 0 A2|β = −δ3βA2, A3|β = δ2βA2 →

A1 = α1, A2 =
α2

u3 ; A3 = α3 +
α2u2

u3 .

The holonomic components of the electromagnetic potential are as follows:

A1 = (α1 − α2), A2 =
α2

u3 , A3 =
α3

u3 .

3.3. Groups G3(IV[A])

The metrics of the spaces and the group operators can be represented as:

ds2 = 2du0du1 + 2du0(b0du2 + (b1 − b0u1)du3)) exp (−u1) + (a1du22
+

2(a3 − a1u1)du2du3 + (a1u12 − 2a2u1 + a3)du32
) exp (−2u1).

The group operators can be presented as follows:

X1 = p1 + (u2 + u3)p2 + u3 p3, X2 = p2, X3 = p3

From here the structural constants follow:

Cγ
12 = δα

2 , Cγ
31 = δα

2 + δα
2 , Cα

23 = 0.

Matrix λ̂ has the form:

||λα
β|| =

1 −(u2 + u3) −u3

0 1 0
0 0 1

.

Set Equation (6) can be represented in the form:

A1,1 + A2(u2 + 2u3) + u3A3 = 0, A1,2 = A2, A1,3 = A2 + A3;

A2,1 = −A1, A2,2 = A2,3 = 0;

A3,1 = −(A2 + A3), A3,2 = A3,3 = 0;

→ A1 = α1 + (u2 + u3)A2 + u3A3, A2 = α2 exp(−u1);

A3 = α3 exp(−u1)− u1A2.

The holonomic components of the electromagnetic potential are as follows:

A1 = α1, A2 = α2 exp−u1, A3 = (α3 − α2u1) exp−u1.

3.4. Groups G3(IV[B])

The metrics of the spaces and the group operators can be represented as:
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ds2 = 2du0du1 exp u3 + 2du0du3a0+

2du2du3(a3 exp u3 − a2u1 exp 2u3) + du22
a1 exp 2u3 + du32

(u12
a1 exp 2u3 − 2a3u1 exp u3 + a2).

The group operators can be presented as follows:

X1 = p2 + u3 p2, X2 = p1,+u3 p2 X3 = u1 p1 + u2 p2 − p3

From here the structural constants follow:

Cα
12 = 0, Cα

31 = δα
1 , Cα

23 = δα
1 + δα

2 .

λ̂ has the form:

||λα
β|| =

 −u3 1 0
1 0 0

(u2 − u1u3) u1 −1.

.

Set Equation (6) can be represented in the form:

A1,2 = A1,1 = 0, A1,3 = A1, A2,2 = A2,1 = 0, A2,3 = A1 + A2,

A3,2 = A1, A3,1 + u3A3,2 = A1 + A2, u1A3,1 + u2A3,2 −A3,3 = 0.

One can find next solutions of the set:

A1 = α2 exp u3, A2 = (α1u3 + α2) exp u3, A3 = −α3 + (α1(u2 + u1) + α2u1) exp u3.

The holonomic components of the electromagnetic potential are as follows:

A1 = α2 exp u3, A2 = α1 exp u3, A3 = α3 − α1u1 exp u3.

3.5. Groups G3(V[A])− G3(VI[A])

The metrics of the spaces and the group operators can be represented as:

ds2 = 2du0du1 + 2du0(b0du2 + (b1 − b0u1)du3)) exp (−u1) + (a1du22
+

2(a3 − a1u1)du2du3 + (a1u12 − 2a2u1 + a3)du32
) exp (−2u1).

ds2 = 2du0du1 + 2du0(b0du2 exp (−u1) + b1du3 exp (−qu1)) + a1du22
exp (−2u1)+

2a3du2du3 exp (−(q + 1)u1) + a3du32
exp (2qu1).

The group operators can be presented as follows:

X1 = p1 + u2 p2 + qu3 p3, X2 = p2, X3 = p3

From here the structural constants follow:

Cγ
12 = δα

2 , Cγ
31 = qδα

3 , Cα
23 = 0.

If q = 1, the group of motions is of type G3(V). In opposite case it has type G3(VI).
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Matrix λ̂ has the form:

||λα
β|| =

1 −u2 −qu3

0 1 0
0 0 1

.

Set Equation (6) can be represented in the form:

A1,1 + u2A1,3 + q2u3A1,3 = 0, A1,2 = A2, A1,3 = qA3;

A2,1 = −A2, A3,1 = −qA3, A3,2 = A3,3 = A2,2 = A2,3 = 0;

→ A1 = α1 + qu3α3 exp−qu1 + u2α2 exp−u1, A2 = α2 exp−u1, A3 = α3 exp−qu1.

The holonomic components of the electromagnetic potential are as follows:

A1 = α1, A2 = α2 exp−u1, A3 = α3 exp−qu1.

3.6. Group G3(VII[A])

The metrics of the spaces and the group operators can be represented as:

ds2 = 2du0du3 + 2du0du1(a4 cos(u3 sin c) + a0 sin(u3 sin c)) exp(−u3 cos c)+

2du0du2((a0 sin c− a4 cos c) cos(u3 sin c)− (a0 cos c + a4 sin c) sin(u3 sin c)) exp(−u3 cos c)+

2du1du2(a1 cos c + 2a2 cos 2(u3 sin c) + 2a3 sin 2(u3 sin c)) exp(−2u3 cos c)+

du12
(2a1 + 2(a3 sin c + a2 cos c) cos 2(u3 sin c) + 2(a3 cos c− a2 sin c) sin 2(u3 sin c)) exp(−2u3 cos c)−

du22
(2a1 − 2(a3 sin c− a2 cos c) cos 2(u3 sin c) + 2(a3 cos c + a2 sin c) sin 2(u3 sin c)) exp(−2u3 cos c).

The group operators can be presented as follows:

X1 = p1, X2 = p2, X3 = p3 + (2u2 cos c + u1)p2 − u2 p1

From here the structural constants follow:

Cγ
12 = 0, Cα

13 = δα
2 , Cα

23 = −δα
1 + 2δα

2 cos c.

where c = const. Matrix λ̂ has the form:

||λα
β|| =

 1 0 0
0 1 0
u2 −(u1 + 2u2 cos c) 1

.

Set of Equation (7) has the form:

A1,1 = A1,2 = 0, A1,3 = A2, A2,1 = A2,2 = 0, A2,3 = 2A2 cos c−A1 (13)

A3|β = 0→ A3 = α3.

From Equation (12) it follows:

A1 = D1(u3, u0), A2 = D2(u3, u0).

Let us denote:
D2 = B(u3, u0) exp(u3 cos c).
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Then, set Equation (12) can be present in the form (the dot denotes the derivative, with
respect to u3):

Ḋ1 = B exp(u3 cos c), B̈ + B sin2 c = 0→ B = α1 sin (α2 + u3 sin c).

Set Equation (6) has the form:

A1 = α1 exp(u3 cos c) sin (α2 + u3 sin c), A2 = α1 exp(u3 cos c) sin(sin c + α2 + u3 sin c),

The holonomic components of the electromagnetic potential are as follows:

A1 = A1, A2 = A2,

A3 = α3 − α1 exp(u3 cos c)(u1 sin (sin c + α2 + u3 sin c) + u2 sin (2 sin c + α2 + u3 sin c)).

3.7. Group G3(VI[B])

The metrics of the spaces and the group operators can be represented as:

ds2 = 2du0du1u3(1+ω)
+ 2du0du3 a0

u3 +

2du2du3(a3u3(ω−1) − a1u1u32ω
) + a1u32ω

du22
+ du32

(a1u12
u32ω − 2a3u1u3(ω−1)

+
a2

u32 ),

where it is denoted as: ω = 1
q−1 , q = const.

The group operators can be presented as follows:

X1 = p2, X2 = p1 + u3 p2 X3 = qu1 p1 + u2 p2 + (1− q)p3

From here the structural constants follow:

Cα
12 = 0, Cα

31 = δα
1 , Cα

23 = δα
1 + δα

2 .

Matrix λ̂ has the form:

||λα
β|| =

 −u3 1 0
1 0 0

(u2−qu1u3)
u3(q−1)

qu1

u3(q−1) − 1
u3(q−1) .

.

Set Equation (6):
Aα|β = Cγ

βαAγ

has the form:
A1,2 = A1,1 = 0, (q− 1)u3A1,3 = A1;

A2,2 = A2,1 = 0, (q− 1)u3A2,3 = qA2;

A3,2 = A1, A3,1 + u3A3,2 = qA2 qu1A3,1 + u2A3,2 + (1− q)u3A3,3 = 0.

One can find next solutions of the set:

A1 = α1u3ω
, A2 = α2u3(ω+1)

, A3 = −α3 + α1u2u3ω
+ (qα2 − α1)u1u3ω+1

.

The non-holonomic components of the electromagnetic potential are as follows:

Aα = Aβλ
β
α ,→ A1 = (α2 − α1)u3(ω+1)

, A2 = α1u3ω
, A3 =

α3

u3 − α1u1u3ω
.
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3.8. Group G3(VII[B])

The metrics of the spaces and the group operators can be represented as:

ds2 = 2du0du1r3S + 2du0du2(a0 − u3)r3
−1S + 2du0du3(u3 − a0)u1r3

−1S

2du2du3(a3r3
−3S− a1u1a1r3

−1S2)+ du22
a1r3

−2S2 + du32
(a1u12

r3
−2S2− 2a3r3

−3S+ a2r3
−4).

The group operators can be presented as follows:

X1 = p2, X2 = p1 + u3 p2 X3 = (u2 + u1(u3 − 2 cos c))p1 + u2u3 p2 + r3
2 p3

From here the structural constants follow:

Cα
12 = 0, Cα

31 = δα
2 , Cα

23 = qδα
2 − δα

1 ,

where r3 = (u32 − 2u3 cos c + 1), S = exp(−2ctgcarctg u3−cos c
sin c ) ai = ai(u0), c = const.

Matrix λ̂ has the form:

||λα
β|| =

 −u3 1 0
1 0 0

u1u3(2 cos c−u3)
r3

− u2+u1(2 cos c−u3)
r3

− 1
r3

.

.

Set Equation (6):
Aα|β = Cγ

βαAfl

has the form:
A1,2 = A1,1 = 0, r3A1,3 + A2 = 0; (14)

A2,2 = A2,1 = 0, r3A2,3 −A1 + qA2 = 0; (15)

A3,2 = A2, A3,1 + u3A3,2 + A1 − 2 cos cA2 = 0; (16)

(u2 + u1(2 cos c− u3))A3,1 + u2u3A3,2 + r3A3,3 = 0.

From Equations (13) and (14) it follows:

A1 = B(u0, u3), A2 = −r3B,3.

The function B satisfies the equation:

r3(r3B,3)3 + 2(r3B,3) cos c + B = 0. (17)

Equation (16) has the form:

B = sin (α2 + arctg(
u3 − cos c

sin c
)) exp (α1 − (ctgc)arctg(

u3 − cos c
sin c

)).

First two equations of Equations (18) have a solution:

A3 = u1((u3 − 2 cos c)r3B,3 − B)− u2r3B,3 + b3(u0, u3).

From the last equation of the set it follows: b3 = α3. As a result, we obtain the
nonholonomic components of the potential of the electromagnetic field:

A1 = sin (α1 + arctg(
u3 − cos c

sin c
)) exp (α2 − (ctgc)arctg(

u3 − cos c
sin c

)),

A2 = − sin (α1 − c + arctg(
u3 − cos c

sin c
)) exp (α2 − (ctgc)arctg(

u3 − cos c
sin c

))
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A3 = α3 − ((u2 + u1(2 cos c)) sin (α1 − c + arctg(
u3 − cos c

sin c
))+

u1 sin (α1 + arctg(
u3 − cos c

sin c
))) exp (α2 − (tgc)arctg(

u3 − cos c
sin c

)).

The holonomic components of the electromagnetic potential are as follows:

A1 = − exp (α1 − ctgcarctg
(u3 − cos c)

sin c
)(sin (α1 − c + arctg

(u3 − cos c)
sin c

)+

u3 sin (α1 + c + arctg
(u3 − cos c)

sin c
),

A2 = exp (α1 − (ctgc)arctg
(u3 − cos c)

sin c
) sin (α0 − c + arctg

(u3 − cos c)
sin c

),

A3 =
α3

(u3 − cos c)2 + sin c2 − u1 exp (α1 − (ctgc)arctg
(u3 − cos c)

sin c
) sin (α1 + arctg

(u3 − cos c)
sin c

).

4. Insolvable Groups G3(N)

4.1. Groups G3(VII I)

Let us represent operators of the group:

X1 = p2, X2 = p3 + u2 p2 X3 = exp u3 p1 + (u22
+ ε exp u32

)p2 + 2u2 p3,

where ε = 0,−1,+1
From here the structural constants follow:

Cα
12 = 0, Cα

13 = 2δα
2 , Cα

23 = δα
2 − δα

1 .

Matrix λ̂ has the form:

||λα
β|| =

(u22 − ε exp 2u3) exp−u3 −2u2 exp−u3 exp−u3

1 0 0
−u2 −1 0.

.

Set Equation (6) has the form:

A1,2 = 0, A1,3 = −A1, A1,1 = 2(u2A1 −A2) exp−u3;

A2,2 = A1, A2,3 = −u2A1, A2,1 exp u3 + (u22 − ε exp 2u3)A1 + A3 = 0;

A3,2 = 2A2, A3,3 = A3 − 2u2A2 A3,1 exp u3 + 2(u22
+ ε exp 2u3)A2 + 2u2A3,3 = 0.

This implies:

A1 = 2B(u1, u0) exp−u3, A2 = 2Bu2 exp(−u3)− Ḃ,

A3 = (B̈− 2εB) exp(−u3)− 2u2Ḃ + 2Bu22
exp u3),

where B is a function of (u0, u1), satisfying the equation:

Ḃ,11 = 4εḂ → Ḃ,1 = α + 4εB. (18)

Dots denote the derivatives, with respect to u1. The holonomic components of the
electromagnetic potential are as follows:

A1 = α, A2 = 2B exp(−u3), A3 = −Ḃ.
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Depending on the value of ε, the function B and metric of the space admitting this
group have the form:

1. for ε = 0:
B = cu12

+ βu1 + γ;

ds2 = 2du0du1 + 2du0du2(a0 − 2u1a4 − u12
) exp−u3 + 2du0du3(a4 − u1)+

2du2du3(2a1u1 + a2) exp−u3 + du22
(4a1u12

+ 4a2u1 + a3) exp−2u3 + du32
a1.

2. for ε = −1:
B = α1 sin 2(u1 + α2) +

α

4
;

ds2 = 2du0du1 + 2du0du2(a4 cos 2u1 + a0 sin 2u1 − 1
2
) exp−u3 + 2du0du3

(a0 cos 2u1 − a4 sin 2u1) + 2du2du3(a3 cos 4u1 − a2 sin 4u1) exp−u3 + du22
(a2 cos 4u1+

a3 sin 4u1 − a1

2
) exp−2u3 − du32

(a2 cos 4u1 + a3 sin 4u1 +
a1

2
).

3. for ε = 1:

B = α1sh2u1 + α2sh2u1 − α

4
.

ds2 = 2du0du1 + 2du0du2(a4 exp−2u1 + a0 exp 2u1 +
1
2
) exp−u3 + 2du0du3(a4 exp−2u1

−a0 exp 2u1) + 2du2du3(a2 exp−4u1 + a3 sin 4u1) exp−u3 + du22
(a2 exp−4u1+

a3 exp 4u1 +
a1

2
) exp−2u3 + du32

(a2 exp−4u1 + a3 exp 4u1 − a1

2
).

4.2. Groups G3(IX)

The metrics of the spaces and the group operators can be represented as:

ds2 = 2du0du1 + du22
(a1 sin 2u1 − a2 cos 2u1 + a3)cos2u3−

2du2du3(a1 cos 2u1 + a2 sin 2u1) cos u3 + du32
(a2 cos 2u1 − a1 sin 2u1 + a3)+

2du0du2(sin u3 + (a0 cos u1 + a4 sin u1) cos u3) + 2du0du3(a0 sin u1 − a4 cos u1).

The group operators can be represented as follows:

X1 = p2, X2 =
cos u2

sin u3 p1 − tgu3 cos u2 p2 + sin u2 p3

X3 = ∂2(X2) = −
sin u2

sin u3 p1 + tgu3 sin u2 p2 + cos u2 p3

From here the structural constants follow:

Cα
12 = δα

3 , Cα
13 = −δα

2 , Cα
23 = δα

1 .

Matrix λ̂ has the form:

||λα
β|| =

 sin u32

cos u3 cos u2 sin u3 − sin u2 sin u3

1 0 0
0 sin u2 cos u2.

.

Set Equation (6) has the form:
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A1,2 = 0, A1,1
cos u2

sin u3 + A1,3 sin u2 + A3 = 0;

A1,1
sin u2

sin u3 −A1,3 cos u2 + A2 = 0;

A2,2 = A3, A2,1
cos u2

sin u3 −A2,2tgu3 cos u2 + A2,3 sin u2 = 0;

−A2,1
sin u2

sin u3 + A2,2tgu3 sin u2 + cos u2A2,3 + A1 = 0;

A3,2 = −A2, A3,1
cos u2

sin u3 −A3,2tgu3 cos u2 + A3,3 sin u2 −A1 = 0;

−A3,1
sin u2

sin u3 + A3,2tgu3 sin u2 + cos u2A3,3 = 0.

This implies:

A1 = α1 sin u3, A2 = α1 cos u2 cos u3, A3 = −α1 cos u3 sin u2.

The holonomic components of the electromagnetic potential are as follows:

A1 = α1tgu3, A2 = α1 cos u2 cos u3, A3 = 0.

5. Killing Vector Fields Depend on the Non-Ignored Variable U0

5.1. Group G3(I I[C])

The metrics of the spaces and group operators can be represented as:

ds2 = 2du0(a0du1 + ε(2a2u1 + a3)du2) + (a1 + ε(2a2u12
+ 3a3u1 + a4)u1)du3)+

εu1(a2u13
+ 2a3u12

+ a4u1 + 2a1)du02
+ 4(a3 + 2a2u1)du3du2 + 4a2du22

+ (a4 + 4a3u1 + 4a2u12
)du32

.

The group operators can be presented as follows:

X1 = p2, X2 = p3, X3 = −p1 + u3 p2 + εu0 p3, ε = 0, 1

From here the structural constants follow:

Cγ
12 = Cγ

13 = 0, Cα
23 = δα

1 .

Matrix λ̂ has the form:

||λα
β|| =

u3 εu0 −1
1 0 0
0 1 0

.

From Equation (6):
Aff|fi = Cγ

βαAfl

it follows:
A1|fi = 0 → A1,fi = 0→ A1 = 2α1;

A2|fi = −δ3βA1,→ A2 = 2α1u1 + α2;

A3|fi = δ2βA1,→ A3,2 = 0, A3,3 = A1, A3,1 = εu0A1 → A3 = 2α1(u3 + εu0u1)− α3.
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The holonomic components of the electromagnetic potential are as follows:

Aα = Aβλ
β
α ,→ A1 = α3 + α2εu0, A2 = 2α1, A3 = α2 + 2α1u1.

The holonomic component A0 can be found from the equation:

A0|α = −ξ
β
α,0 Aβ,→ A0 = ε(α1u1 + α2)u1 + α0.

5.2. Group G3(I I I[C])

The metrics of the spaces and group operators can be represented as:

ds2 = (a0 + εa2u12
)du02

+ 2(a1du1 − εu1(a3 exp (−u1)du3 + a2du2))du0 + a2du22
+

2a3 exp (−u1)du2du3 + a4 exp (−2u1)du32
.

The group operators can be presented as follows:

X1 = p1 + εu0 p2 + u3 p3, X2 = p2, X3 = p3, ε = 0, 1

From here the structural constants follow:

Cγ
12 = 0, Cα

13 = −δα
3 , Cγ

23 = 0.

Matrix λ̂ has the form:

||λα
β|| =

1 −εu0 −u3

0 1 0
0 0 1

.

Set Equation (6) has the form:

A1|fi = δ3βA3 → A1,3 = A3;

A2|fi = 0,→ A2 = α2(u0);

A3|fi = −δ1βA3,→ A3,1 = −A3 → A3 = α3(u0) exp (−u1)→ A1 = α1 + u3α3 exp (−u1).

The holonomic components of the electromagnetic potential are as follows:

A1 = α1 − α2εu0, A2 = α2, A3 = −εα2u1.

The holonomic component A0 can be found from the equation:

A0|α = −ξ
β
α,0 Aβ,→ A0 = ε(u0α2 − α1)u1.

5.3. Groups G3(V[C]) with the Singular Operators

The metrics of the spaces and the group operators can be represented as:

ds2 = du02
a1u12

exp 2u3 + 2du0[du1 exp u3 − du2a1u1 exp 2u3+

(a0 − a2u1 exp u3)du3] + du22
a1 exp 2u3 + 2du2du3a2 exp u3.

The group operators can be represented as follows:

X1 = p2, X2 = p1 + u0 p2, X3 = u1 p1 + u2 p2 − p3,

where ai = ai(u0),
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From here the structural constants follow:

Cγ
12 = 0, Cα

13 = δα
1 , Cγ

23 = δα
2 .

Matrix λ̂ has the form:

||λα
β|| =

 −u0 1 0
1 0 0

u2 − u0u1 u1 −1

.

From the set Equation (6):

Aff|fi = Cγ
βαAfl,

it follows:
A1|fi = −δ3βA1 → A1,3 = α1(u0) exp u3;

A2|fi = −δ3βA2,→ A2 = α2(u0) exp u3;

A3|fi = δ1βA1 + δ2βA2,→ A3 = −α3(u0) + (α1u2 + (α2 − α1u0)u1) exp u3.

The holonomic components of the electromagnetic potential are as follows:

Aα = Aβλ
β
α ,→ A1 = (α2 − α1u0) exp u3, A2 = α1 exp u3, A3 = α3.

The holonomic component A0 can be found from the equation:

A0|α = −ξ
β
α,0 Aβ → A0 = α1 exp u3.

6. Conclutions

All admissible electromagnetic fields of greatest interest to gravitational theory have
been found. The metric tensor for these admissible fields contains arbitrary functions
of nonignorable variables, so that considerable arbitrariness is preserved for them. This
arbitrariness can be used, for example, in the search for self-consistent solutions of the
gravitational field equations in the general theory of relativity, Brans–Dicke scalar-tensor
theory (see, e.g., [16]), or other alternative theories of gravity. The non-ignored variable is
either temporary (for homogeneous spaces) or (as in this article) isotropic (null). This is
important when considering cosmological problems and obtaining and studying models of
spaces with gravitational waves. Let us mention other directions for further research in the
framework of the obtained classification.

First, it is possible to consider a similar problem of admissible electromagnetic fields
classification for the Dirac–Fock equation, since the method of noncommutative integration
is also applicable to this equation (see, e.g., [26]). At the same time, from the physical
point of view, the construction of this classification is most justified in the framework of the
already obtained classification of admissible electromagnetic fields for the Klein–Gordon–
Fock equation.

Second, a complement to the classification carried out in this work will be the classi-
fication of generalized privileged coordinate systems, in which the basic solutions of the
Klein–Gordon–Fock equation can be found by the method of noncommutative integration.

Third, the resulting classification can be used to find the basic solutions of the Klein–
Gordon–Fock equation and other quantum-mechanical equations of motion by the method
of noncommutative integration. Note that this problem attracts the attention of many
researchers (see, e.g., [27,28]).

Note that group approaches remain the most effective methods for constructing and
studying realistic quantum mechanical models in linear and nonlinear physics [29,30].
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