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Abstract: This paper considers the observer-based fault estimation and fault-tolerant control for
descriptor Markovian jump systems (DMJSs). The goal of this paper is to estimate the actuator faults,
sensor faults, and the state simultaneously, and then design a controller based on the estimation
to stabilize the DMJS. Firstly, the state, actuator faults, and sensor faults are extended to new state
variables to obtain an augmented system. Then, a lower triangular factor-based estimation observer
(LTFEO) is proposed to estimate the state and multiple faults and to eliminate the influence of sensor
faults. It is proved that the descriptor error system is derivative input-to-state stable (DISS) with
respect to the derivative of the faults. Furthermore, based on the fault estimation, a fault-tolerant
control scheme is proposed to guarantee the overall closed-loop system DISS. Finally, a numerical
example is given to verify the effectiveness of the proposed estimation scheme and control strategy.

Keywords: descriptor markovian jump systems; fault estimation; lower triangular factor; fault-
tolerant control; derivative input-to-state stable

1. Introduction

Descriptor systems, also called generalized state-space systems, differential-algebraic
systems, or singular systems, have been widely used due to their outstanding abilities
in modeling practical engineering such as electrical circuits [1,2], biological systems [3],
and mechanical systems [4,5]. Descriptor systems theory is an essential branch of modern
control theory [1,6]. Meanwhile, Markovian jump systems (MJSs) are a special kind of
multimodal stochastic hybrid system, and the modes can switch from one to another
at different times [7,8]. Descriptor Markovian jump systems (DMJSs) can be modeled
when descriptor systems experience sudden changes such as environmental mutation,
component failures, and changes in subsystem interconnection. Accordingly, scholars have
paid considerable attention to the analysis and study of the stability, robustness, and fault
estimation on DMJSs. Numerous substantive results have been proposed in the past twenty
years [9–13]. A super-twisting algorithm was developed to solve the integral sliding mode
control problem for T-S fuzzy DMJSs in [9,10], which investigated the issue of passivity
analysis for the DMJSs using delayed partitioning. The robust stabilization problem
of uncertain switching DMJSs was studied in [11,12], which considered the stochastic
stabilization of a class of DMJSs with partly unknown transition rates. The robust H∞
control problem was investigated for DMJSs in [13], where the stochastic stability conditions
of DMJSs were proposed.

In another area of research, the control systems are not completely reliable because
faults may inevitably occur in normal system operations. It is usually caused by the aging
of sensors and actuators, the wear and tear of internal components, and the abrupt changes
in the working environment. These faults can dramatically affect the performance of
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the systems and even lead to significant accidents. Hence, it is of great significance to
diagnose and estimate the faults from a stable system operation. Fault-tolerant control
(FTC) is a control technique that can ensure the stable operation of the overall system in
case of faults within the system [14,15]. Therefore, as a significant method of FTC, fault
estimation has been widely studied [16,17]. There are plenty of methods and techniques
that have been proposed for observer-based estimation, including the robust observer (RO)
approach [18], adaptive observer (AO) approach [19,20], and others [21–23]. In the existing
fault estimation approaches, AO improves the estimation accuracy by considering adaptive
law compared with the RO. In [19], the authors proposed an adaptive polytopic observer
for linear parameter varying descriptor systems, where actuator faults were estimated by
an adaptive algorithm. In [23], a more comprehensive form of estimation observer without
sensor faults was proposed based on the lower triangular factor. However, faults on the
measurement probably influence the closed-loop system performance, and thus it could not
be neglected. As we all know, actuator faults and sensor faults often unavoidably appear
in practical control systems simultaneously. The adverse effects caused by multiple faults
need to be fully considered in the design process. Although the existing works have solved
the issues of fault estimation and FTC, which focus on either actuator faults [15,23–27] or
sensor faults [21,28]. So far, few related works have considered the case of the actuator
faults and sensor faults appearing simultaneously. This case often occurs in practice, which
is what motivated us to conduct this study.

In this paper, we study the fault estimation and FTC design problems for DMJS.
Through appropriate design, the DMJS considered in this paper can achieve DISS property
with respect to the derivative of the faults. Compared to existing literature, the main
contributions of the paper are as follows:

(i) In contrast to the literature [15,21,23–28], in which either actuator faults or sensor
faults were considered, this paper considers the case of the actuator faults, and sensor
faults appear simultaneously. A lower triangular factor-based estimation observer (LTFEO)
is designed to estimate the state, actuator faults, and sensor faults. This paper extends
the LTFEO of non-singular fuzzy systems in [23] to DMJS. Based on the estimation, the
influence of sensor faults is eliminated in the LTFEO such that the estimation of the state
can be used in FTC design.

(ii) The designed LTFEO guarantees that the descriptor error system is derivative
input-to-state stable (DISS) with respect to the derivative of the faults, which means the
state of the descriptor error system asymptotically converges within the region defined by
|x| ≤ γ(‖ ḟ (t)‖[0,∞)), where f (t) is the fault vector and γ is the gain function. In addition,
the state converges to zero when the derivative of the faults converges to zero. It is different
from the existing results in [22,23]. The current literature [22,23] shows that the state of the
error system is asymptotically stable only when the derivative of the faults is equal to zero.

The remainder of this paper is organized as follows: In Section 2, preliminaries and
problem formulation are given. In Section 3, an LTFEO is proposed to simultaneously
estimate the state, actuator faults, and sensor faults. Then, an observer-based FTC strategy
is given. In Section 4, a numerical example is exhibited to verify the effectiveness of the
proposed estimation method and control strategy. Section 5 summarizes the whole work of
the paper.

Notations: | · | represents the Euclidean norm. C is the complex plane. ‖z‖∆ stands for
the essential supremum of the truncation of z on ∆, that is ‖z‖∆ = ess sup{|z(t)| : t ∈ ∆}.
λmax(·) and λmin(·) are the maximum and minimum eigenvalues of (·), respectively. diag
(·) denotes the diagonal matrix. A function α : R+ → R+ is said to be a class K function
if it is nondecreasing, continuous, and α(0) = 0; it is said to be a class K∞ function if it
is a class K function and satisfies α(s) → ∞ as s → ∞. A function ρ : R+ × R+ → R+

is said to be a class KL function if for each t ∈ R+, function ρ(·, t) is a class K function,
and for each s ∈ R+, function ρ(s, ·) is decreasing and satisfies lim

t→∞
ρ(s, t) = 0. ` denotes

the weak infinitesimal operator. ∗ denotes the symmetric parts of the symmetric matrices.
f k(k ∈ N+) denotes the kth derivative of function f .
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2. Problem Formulation and Preliminaries

Consider the following DMJS with multiple faults:{
Eẋ(t) =A(r(t))x(t) + B(r(t))u(t) + Da(r(t)) fa(t),

y(t) =C(r(t))x(t) + Ds(r(t)) fs(t).
(1)

where E ∈ Rn×n is a singular matrix with rank(E) = r < n, x(t) ∈ Rn is the state, u(t) ∈ Rd

is the control input, and y(t) ∈ Rp is the measurement output. fa(t) ∈ Rq and fs(t) ∈ Rs are
actuator and sensor faults, respectively. A(r(t)), B(r(t)), C(r(t)), Da(r(t)), Ds(r(t)) are real
constant matrices with appropriate dimensions, {r(t), t ≥ 0} is a right-continuous Markov
chain taking values from a finite set S = {1, 2, . . . , N} with a generator Π = (πij)(i, j ∈ S),
referred to as the transition rate matrix:

Pr{r(t + ∆) = j|r(t) = i} =
{

πij∆ + o(∆) i f i 6= j,
1 + πij∆ + o(∆) i f i = j,

where ∆ > 0 and lim
∆→0

o(∆)
∆

= 0, πij is the switching rate from i to j and satisfies πij > 0,

with i 6= j and πii = −∑j 6=i πij < 0 for ∀i, j ∈ S.
For simplicity, the matrices A(r(t)), B(r(t)), C(r(t)), Da(r(t)), and Ds(r(t)) are rep-

resented by Ai, Bi, Ci, Dai, and Dsi, respectively. Now, System (1) can be rewritten as
follows: {

Eẋ(t) = Aix(t) + Biu(t) + Dai fa(t),

y(t) = Cix(t) + Dsi fs(t).
(2)

The following definitions, assumptions, and lemmas are given before presenting our
main result:

Definition 1. In [1,6], the DMJS (10) is said to be

• regular—if there is a constant scalar s such that

det(sE− Ai) 6= 0, ∀i ∈ S

or equivalently, the polynomial det(sE− Ai) is not identically zero for ∀i ∈ S.
• impulse free—if deg(det(sE− Ai)) = rank(E), ∀i ∈ S.

Definition 2. Consider the following n-dimensional descriptor system:

Eẋ = f (x, u), (3)

where f (x, u) : Rn ×Rd → Rn is the locally Lipschitz function. System (3) is said to be input-to-
state stable (ISS) if for any initial state x(t0) = x0 ∈ Rn and any measurable, locally essentially
bounded input u, there exist β ∈ KL and γ ∈ K such that the solution x(t) satisfies the following
equation:

|x(t)| ≤ β(|x0|, t− t0) + γ(‖u‖[t0,t]), ∀t ≥ t0. (4)

Definition 3. In [29], System (3) is said to be kth derivative input-to-state stable (DkISS) if for any
initial state x(t0) = x0 ∈ Rn and any measurable, locally essentially bounded input u, there exist
β ∈ KL and some K functions γ0, γ1,. . . , γk, such that the solution x(t) satisfies the following
equation:

|x(t)| ≤β(|x0|, t− t0) + γ0(‖u‖[t0,t]) + γ1(‖u̇‖[t0,t]) + · · ·+ γk(‖uk‖[t0,t]), ∀t ≥ t0 (5)

Remark 1. We say that System (3) is DISS when k = 1. The kth derivative input-to-state stability
reduces to input-to-state stability when k = 0. Similar to the ISS property, the kth derivative
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input-to-state stability becomes a globally asymptotic stability when u is absent. The state vector x
converges to zero when ui(i = 0, 1, . . . , k) converges to zero. The above properties correspond to a
uniformly bounded-input bounded-state (UBIBS) property and a converging-input converging-state
(CICS) property for nonlinear systems.

Assumption 1. System (2) is controllable, i.e., the following rank conditions hold:

rank
[
sE− Ai Bi

]
= n, ∀s ∈ C, ∀i = {1, 2, . . . , N} (6)

rank
[
E Bi

]
= n (7)

Assumption 2. The derivative of actuator faults and sensor faults is locally essentially bounded.

Remark 2. The fault estimation problems are discussed in [22,23]. The authors assume that the
derivative of the faults is bounded by a known constant. The error system is globally asymptotically
stable only when the derivative of faults is identically equal to zero. Different from the existing
literature, the designed LTFEO in this paper can estimate the unknown time-varying faults. The
error system asymptotically converges to zero when the derivative of the faults converges to zero.

In the following, a lemma is given to present a sufficient condition of DISS.

Lemma 1. In [29], descriptor System (3) is considered. If there exist matrix P such that ET P =
PTE ≥ 0, and positive scalar κ and γ ∈ K∞ such that

V(x) = xTET Px, (8)

`V(x) f (x, u) ≤ −κV(x) + γ(|u̇|). (9)

Then, System (3) is DISS, and the function V is called a DISS Lyapunov function for
System (3).

The following lemma is used in the proof of our main results.

Lemma 2. In [30], for any real matrices M, N, and Θ with an appropriate dimension, if Θ satisfies
ΘTΘ ≤ I, then the following inequality holds:

MΘN + (MΘN)T ≤ σ−1MMT + σNT N,

for any σ > 0.

In what follows, an augmented system is constructed, whose state is composed of the
original system state, actuator faults, and sensor faults.

First, we denote f (t) =
[

fa(t)
fs(t)

]
∈ Rm with m = q + s, and correspondingly we have

D̄ai =
[
Dai 0

]
, D̄si =

[
0 Dsi

]
. Then, the original System (2) is equivalently transformed

into the following system:{
Eẋ(t) = Aix(t) + Biu(t) + D̄ai f (t),

y(t) = Cix(t) + D̄si f (t).
(10)

We make the following lower triangular factor-based linear transformation on system (10):

x̄(t) = Fi

[
x(t)
f (t)

]
, (11)

where Fi =

[
In 0
J Im

]
, and J is an arbitrary constant matrix.
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Subsequently, an augmented system is described as follows:{
Ē ˙̄x(t) =Fi ĀiF−1

i x̄(t) + Fi B̄iu(t) + Īm ḟ (t),

y(t) =C̄iF−1
i x̄(t).

(12)

where

Ē =

[
E 0

J(E− Im) Im

]
, Āi =

[
Ai D̄ai
0 0

]
, B̄i =

[
Bi
0

]
, C̄i =

[
Ci
D̄si

]T

, Īm =

[
0
Im

]
.

Assumption 3. System (12) is observable, i.e.,

rank
[

sĒ− Ã
C̃

]
= n + m, ∀s ∈ C, ∀i = {1, 2, . . . , N}.

and

rank
[

Ē
C̃

]
= n + m.

where
Ã = Fi ĀiF−1

i , C̃ = C̄iF−1
i .

Remark 3. It should be noted that Fi is a lower triangular matrix. Therefore, the observer with
the factor is called the LTFEO. It is shown in [23] that LTFEO is more comprehensive, which can
be reduced to the RO in [31,32] and estimate the faults quickly when J = 0 and rank(E) = n. In
addition, the LTFEO can be reduced to the intermediate estimator in [22] when J = −ωD̄T

ai and the
accuracy of fault estimation is improved, where ω is a positive scalar.

Remark 4. System (10) has been converted to the augmented DMJS (12), whose state consists
of the original System (2) state, actuator faults, and sensor faults. Assumption 3 means that an
observer can be designed for System (12) such that the state of the original System (2), actuator
faults, and sensor faults can be estimated simultaneously.

3. Main Results

In this section, we propose a novel LTFEO to achieve a simultaneous estimation of
x(t), fs(t), and fa(t) for System (2). Then, an effective FTC strategy is designed to stabilize
the DMJS (2). The obtained overall closed-loop system is DISS with respect to the derivative
of the faults, which means that the state flows in a large range if the derivative of the faults
is large, and the state converges to zero if the derivative of the fault converges to zero.

3.1. Lower Triangular Factor-Based Estimation Observer Design

Inspired by Huang et al. [23], an improved observer for DMJS is proposed to estimate
the state and faults. The observer is in the form of:{

Ē ˙̄̂x(t) =Fi ĀiF−1
i

ˆ̄x(t) + Fi B̄iu(t) + Li(y(t)− ŷ(t)),

ŷ(t) =C̄iF−1
i

ˆ̄x(t),
(13)

where ˆ̄x ∈ Rn+m is the estimation of the state of System (12), ŷ ∈ Rp is the observer output,
and Li, i ∈ S = {1, 2, . . . , N} are the observer gain matrices to be designed.

Subsequently, the state estimation and fault estimation can also be derived as follows:

x̂(t) = Īn ˆ̄x(t) (14)

f̂a(t) = Īq[ ĪT
m ˆ̄x(t)− Jx̂(t)] (15)

f̂s(t) = Īs[ ĪT
m ˆ̄x(t)− Jx̂(t)] (16)
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where
Īn =

[
In 0

]
, Īq =

[
Iq 0

]
, Īs =

[
0 Is

]
.

Denote
ex̄(t) =

[
eT

x (t) eT
fa
(t) eT

fs
(t)
]T

, ex(t) = x(t)− x̂(t),

e fs(t) = fs(t)− f̂s(t), e fa(t) = fa(t)− f̂a(t).

Then, the estimation error system can be obtained by using (12) and (13):{
Ēėx̄(t) =(Fi ĀiF−1

i − LiC̄iF−1
i )ex̄(t) + Īm ḟ (t).

ey(t) =C̄iF−1
i ex̄(t).

(17)

Remark 5. The estimation of the state may not be accurate because of the appearance of the sensor
faults fs(t). Thanks to ŷ(t) = Ci x̂(t) + Dsi f̂s(t), the influence of fs(t) can be eliminated in the
designed LTFEO (13).

Remark 6. It is proved that the error system in [22,33] is uniformly bounded. In this paper, we
proved that the error System (17) is DISS with respect to the derivative of the faults, which means
that the error System (17) preserves UBIBS and CICS properties with respect to the derivative of
the faults.

In the following, we present the main result.

Theorem 1. The error System (17) is DISS if for each i ∈ S, given a positive scalar ε1, there exists
a set of nonsingular matrices Pi ∈ Rn×n such that the following linear matrix inequalities hold:

ĒT Pi = PT
i Ē ≥ 0, (18)

Π1 =

[
Π11 Pi Īm
∗ −ε1 I

]
< 0. (19)

where

Π11 =PiFi ĀiF−1
i − L̄iC̄iF−1

i + (Fi ĀiF−1
i )T Pi − (C̄iF−1

i )T L̄T
i +

N

∑
j=1

πijĒT Pj.

Hence, by defining L̄i = PiLi, the observer gains Li can be solved.

Proof of Theorem 1. First of all, we prove that the system is regular and impulse-free for
each i ∈ S. From (19), we know the following:

PiFi ĀiF−1
i − L̄iC̄iF−1

i + (Fi ĀiF−1
i )T Pi − (C̄iF−1

i )T L̄T
i < −

N

∑
j=1

πijĒT Pj < 0, (20)

as rank(Ē) < n+m, there exist non-singular matrices Ū and V̄ such that ŪĒV̄ = diag{In+m, 0}.
Moreover, we denote:

ŪĀiV̄ =

[
Ā11i Ā12i
Ā21i Ā22i

]
, V̄−T PiŪ−1 =

[
P̄11i P̄12i
P̄21i P̄22i

]
.

Since ĒT Pi = PT
i Ē, it is not difficult to prove P̄T

11i = P̄11i, P̄21i = 0 and det(P̄22i) 6= 0.
Then, pre- and post-multiplying (20) by V̄T and V̄, respectively, it follows that:[

? ?
? ĀT

22i P̄22i + P̄T
22i Ā22i

]
< 0, (21)



Symmetry 2022, 14, 382 7 of 14

where ? are the matrix blocks we do not need to know. Then, we can easily obtain
ĀT

22i P̄22i + P̄T
22i Ā22i < 0 so that Ā22i is nonsingular, which implies that the system is regular

and impulse-free.
Now, we are ready to prove that the system is DISS. Consider the following Lyapunov

candidate functions:
Vi(ex̄) = eT

x̄ (t)ĒT Piex̄(t), ∀i ∈ S. (22)

Let ` be the weak infinitesimal operator [34] of Vi(ex̄) along the trajectory of the system
described in (12), then for each i ∈ S, it can be shown that:

`Vi(ex̄) = lim
∆t→0+

1
∆t
{E{V(ex̄(t + ∆t)), r(t + ∆t)|ex̄(t), r(t) = i} −V(ex̄(t), r(t))}

= Vt(ex̄(t), r(t)) + Vex̄ (ex̄(t), r(t)) +
N

∑
j=1

πijV(ex̄(t), r(t))

= eT
x̄ (t)[Pi(Fi ĀiF−1

i − LiC̄iF−1
i ) + (Fi ĀiF−1

i − LiC̄iF−1
i )T Pi]ex̄(t)

+ eT
x̄ (t)

N

∑
j=1

πijET Pjex̄(t) + 2eT
x̄ (t)Pi Īm ḟ (t)

(23)

Based on Lemma 2, the following inequalities always hold:

2eT
x̄ (t)Pi Īm ḟ (t) ≤ 1

ε1
eT

x̄ (t)Pi Īm ĪT
mPT

i ex̄(t) + ε1| ḟ (t)|2. (24)

By substituting (24) in (23), it is obvious that:

`Vi(ex̄) ≤eT
x̄ (t)[Pi(Fi ĀiF−1

i − LiC̄iF−1
i ) + (Fi ĀiF−1

i − LiC̄iF−1
i )T Pi

+
N

∑
j=1

πijET Pj]ex̄(t) +
1
ε1

eT
x̄ (t)Pi Īm ĪT

mPT
i ex̄(t) + ε1| ḟ (t)|2

= eT
x̄ (t)Σ1ex̄(t) + ε1| ḟ (t)|2,

(25)

where

Σ1 =Pi(Fi ĀiF−1
i − LiC̄iF−1

i ) + (Fi ĀiF−1
i − LiC̄iF−1

i )T Pi +
N

∑
j=1

πijET Pj +
1
ε1

Pi Īm ĪT
mPT

i

Furthermore, from (22), we have the following equation:

Vi(ex̄) ≤ λmax(ĒT Pi)|ex̄(t)|2. (26)

It is not hard to be found that if Σ1 < 0, we have

`Vi(ex̄) ≤ λmax(Σ1)|ex̄(t)|2 + ε1| ḟ (t)|2

≤ −κVi(ex̄) + ε1| ḟ (t)|2
(27)

where

κ =
λmax(Σ1)

λmax(ĒT Pi)
. (28)

Therefore, by Definition 2 and Lemma 1, it can be shown that the descriptor error
System (17) is DISS with respect to the derivative of the faults. Moreover, by the Schur
complement, we can find out that Σ1 < 0 is equivalent to Condition (19) with L̄i = PiLi.
The proof is completed.
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3.2. Fault-Tolerant Control

In this section, a novel FTC scheme is proposed to eliminate the influence of actuator
faults, thereby stabilizing the closed-loop system.

Assumption 4. rank(Bi) = rank(
[
Bi Dai

]
), ∀i ∈ S.

Lemma 3. In [35], for any Penrose–Moore inverse B†
i of the matrix Bi, and any Dai that satisfies

Assumption 4, we have BiB†
i Dai = Dai.

An observer-based fault-tolerant controller is designed as follows:

u(t) = Ki x̂(t)− B†
i Dai f̂a(t), (29)

where Ki (i = 1, 2, . . . , N) are the controller gains to be designed. x̂ and f̂a are defined in
(14) and (15).

Substituting controller (29) into the system described in (2), we obtain the overall
closed-loop system as:

Eẋ(t) =Aix(t) + BiKi x̂(t) + Dai fa(t)− Dai f̂a(t)

=(Ai + BiKi)x(t)− BiKiex(t) + Daie fa(t)

=(Ai + BiKi)x(t) + Biµe(t),

(30)

where

Biµ =
[
−BiKi Dai

]
, e(t) =

[
eT

x (t) eT
fa
(t)
]T

.

Next, we will propose an important theorem, which can guarantee that the overall
closed-loop System (30) is DISS.

Theorem 2. The closed-loop System (30) is DISS if for each i ∈ S, given scalars ϕ > 0 and
ψ > 0, there exist nonsingular and appropriately dimensioned matrices Ti, matrices Ki, such that
the following matrix inequalities hold:

ETTi = TT
i E ≥ 0, (31)

Π2 =

TiΞi + ΞT
i Ti +

N
∑

j=1
πijETTj + ϕETTi TiBiµ

∗ −ψ2 I

 < 0, (32)

where Ξi = Ai + BiKi, Biµ is defined in (30).

Proof of Theorem 2. Choose the Lyapunov function as:

Vi(x) = xT(t)ETTix(t). (33)

The weak infinitesimal generator of Vi(x) along the trajectory of System (30) is derived
as follows:

`Vi(x) =xT(t)(TiΞi + ΞTTi)x(t) + 2xT(t)TiBiµe(t) + xT(t)
N

∑
j=1

πijETTjx(t)

≤xT(t)(TiΞi + ΞT
i Ti +

1
ψ2 TiBiµBT

iµTi +
N

∑
j=1

πijETTj)x(t) + ψ2|e(t)|2.

(34)
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On the other hand, by the Schur complement, if (32) holds, it follows that:

TiΞi + ΞT
i Ti +

N

∑
j=1

πijETTj +
1

ψ2 TiBiµBT
iµTi ≤ −ϕETTi. (35)

It further follows that:

`Vi(x) ≤ −ϕV3(x) + ψ2|e(t)|2. (36)

Therefore, the closed-loop System (30) is ISS with respect to e(t). Theorem 1 shows
that the descriptor error System (17) is DISS with respect to the derivative of the faults. By
the proof in [36], it can be easy to verify that a cascaded interconnected system composed
of an ISS subsystem followed by a DISS subsystem is still DISS. Therefore, by (36) and (27),
it means that the state of the overall closed-loop System (30) is also DISS with respect to the
derivative of the faults. This completes the proof.

Since (32) is a nonlinear matrix inequality, it needs to be linearized by the following
theorem.

Theorem 3. The state of the overall closed-loop System (30) is DISS if for each i ∈ S, given scalars
ϕ > 0 and ψ > 0, there exist matrices K̄i, and Φi > 0, such that the following linear matrix
inequalities hold:

ETΦi = ΦT
i E ≥ 0, (37)

Π3 =

Ξ̄i + Ξ̄T
i +

N
∑

j=1
πijETΦj + ϕETΦi Biµ

∗ −ψ2 I

 < 0, (38)

with Ξ̄i = AiΦi + BiK̄i.

Proof. Set Φi = T−1
i , and K̄i = KiΦi. If linear matrix inequalities (37) and (38) hold,

we have the following equation:

Π4 =

ΞiΦi + ΦiΞT
i +

N
∑

j=1
πijETΦj + ϕETΦi Biµ

∗ −ψ2 I

 < 0, (39)

where Ξi is defined in Theorem 2. Denote σ = diag{Ti, I}, then, we can further deduce that
Π2 = σΠ4σ < 0, that is, matrix inequality (32) holds. According to Theorem 2, the state of
the overall closed-loop System (30) is DISS. This completes the proof.

4. Simulation Examples

In this section, a numerical example is given to verify the effectiveness of the proposed
method. Consider a DMJS subject to actuator faults and sensor faults in the form of (1) with
two modes. The parameters are as follows:

Mode 1:

A1 =

[
−0.34 −1
−0.2 4.87

]
,

Mode 2:

A2 =

[
−2 0.87
1 1

]
.
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The transition rate matrix is given as follows:

Π =

[
−0.9 0.9

0.5 −0.5

]
,

and other parameters are set as follows:

E =

[
1 0
0 0

]
, J =

[
1 1
−0.1 −0.1

]
, B1 = B2 = Da1 = Da2 =

[
−1.43

1

]
,

C1 = C2 =

[
0.8 1
0 0.5

]
, Ds1 = Ds2 =

[
0.5
−1

]
, ε1 = 0.5, ψ = 0.8565.

In this example, the actuator fault and sensor fault have the following forms:

fa(t) =
{

cos(5t), 0 ≤ t < 10
e−0.5(t−10)cos(5t), 10 ≤ t < 50,

fs(t) =
{

sin(2t), 0 ≤ t < 4
e−0.2(t−4)sin(5t), 4 ≤ t < 50.

Next, the estimation observer and controller gains can be obtained by solving the
linear matrix inequalities in Theorems 1 and 3 using the LMI toolbox in MATLAB. In
addition, the differential equation is solved by Simulink module in MATLAB.

L1 =


17.7593 10.2740
−22.8709 −13.0845
−2.2039 −1.6566
−5.2407 −1.1382

, L2 =


15.9582 5.5072
−19.5472 −6.9700
−2.3499 −1.3230
−5.0178 0.0353

,

K1 =
[
2.7195 −1.4435

]
, K2 =

[
2.3801 −1.2598

]
.

The initial value of the system is x0 =
[
0.5 0.4

]T .
The actuator fault and sensor fault estimations using the proposed method are depicted

in Figures 1 and 2, respectively. Figures 3 and 4 show the trajectories of the states and
their estimation. One possible realization of the Markovian jumping mode is illustrated in
Figure 5.

0 5 10 15 20 25 30 35 40

Time/sec

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 1. fa(t) and its estimation.
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Figure 2. fs(t) and its estimation.
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Figure 3. x1(t) and its estimation.
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Figure 4. x2(t) and its estimation.
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Figure 5. The jumping modes.

Figures 1–4 show that the state, actuator faults, and sensor faults can be estimated
by the LTFEO (13). By defining the fault functions, it can easily be determined that their
derivatives oscillate at first and then converge to zero. According to Figures 3 and 4, we
can see that the state also oscillates at first and then converges to zero. It means that the
proposed controller guarantees the DISS of the overall closed-loop system with respect to
the derivative of the faults.

5. Conclusions

In this paper, the observer-based FTC problems for a class of descriptor Markovian
jump systems with actuator faults and sensor faults are considered. An improved LTFEO
is proposed to estimate the original system state, actuator faults, and sensor faults by
constructing a new augmented system. The influence of the sensor faults is eliminated
in the LTFEO such that the estimation of the original system state can be used for FTC
design. It is proved that the error system is DISS with respect to the derivative of the faults.
Compared with the FTC in the literature [23], an observer-based FTC strategy is proposed
to guarantee that the state of the closed-loop system is ISS with respect to estimation error.
It is shown that a cascaded, interconnected system composed of an ISS subsystem followed
by a DISS subsystem is still DISS. Therefore, the state of the closed-loop system described
in (30) is also DISS with respect to the derivative of the faults. Finally, a numerical example
is given to verify the effectiveness of the proposed method. However, there are some
limitations in this paper. For example, the controller designed in this paper cannot handle
an asynchronous phenomenon of system mode and controller mode. Future work will have
to focus on extending our designed methods to an asynchronous FTC for more complicated
systems such as time-delay DMJSs with general uncertain transition rates.
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