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Abstract: In this paper, a novel adaptive sliding-mode control algorithm is proposed for the attitude
control of quadrotor unmanned aerial vehicles (UAVs) under the delta operator framework. First, the
delta operator technique is used to discretize the attitude control systems of a quadrotor UAV. Then,
based on the linear matrix inequality technique, a linear sliding surface is designed to ensure the
asymptotical stability of the quadrotor UAV attitude control system during the sliding motion process.
Second, by the estimated external disturbance using a radical basis function (RBF) neural network,
an adaptive sliding-mode attitude controller is designed such that the states of the quadrotor UAV
attitude systems can be driven towards the desired sliding surface, and thus the attitude control
objective of the qudarotor UAV is achieved. Compared with the traditional adaptive sliding-mode
control algorithm, the proposed adaptive sliding-mode control algorithm can effectively realize
the attitude control of a quadrotor UAV subject to strong disturbances and couplings. Finally,
comparisons of the simulation results verify the effectiveness and superiority of the control algorithm
proposed in this paper.

Keywords: quadrotor UAV; attitude control; sliding mode control; delta operator

1. Introduction

Quadrotor unmanned aerial vehicles (UAVs) are multi-rotor aircraft that can take off,
land and hover freely. Due to the high flexibility, low cost and strong concealment, they
are widely used in various fields, such as rescue and disaster relief, aerial photography
mapping, agricultural plant protection, inspection etc. A quadrotor UAV is a typical multi-
input multi-output, under-actuated and strongly coupled nonlinear system. In the process
of flight, attitude transformation and flight stability are the top priorities; therefore, it is
particularly important to study the flight attitude control [1]. The research on the flight
control of quadrotor UAVs has become a hotspot in recent years.

Currently, all kinds of control methods, including proportional-integral-differential
(PID) control [2], active disturbance rejection control [3,4], sliding mode control [5–8] and
neural network control [9], have been utilized in the attitude control of quadrotor UAVs. The
article [2] shows the property of stability and robustness for a nonlinear implicit PID control
algorithm of finite-time stabilization of quadrotor UAVs subject to constraints bounded
external disturbance. Active disturbance rejection control comes from the improvement of
PID control [3].

This is mainly composed of a tracking differentiator, state observer and nonlinear state
error feedback control law. In [4], by the combination of adaptive control technique, a linear
active disturbance rejection control strategy was developed to address the attitude control
problem for the quadrotor UAV systems. Sliding mode control, as a well-known robust
control method [5,6], has also been used in quadrotor flight control.

For instance, in [7], a discrete-time sliding-mode control algorithm was proposed
for solving the position and attitude tracking control of a small quadrotor UAV. In [8], a
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sliding-mode attitude tracking control of the quadrotor UAVs with time-varying mass was
designed. As an advanced intelligent control algorithm, an RBF neural network has a pow-
erful learning ability, can learn complex uncertain models online and can deal with highly
nonlinear control problems. The authors of [9] proposed a fault-tolerant control algorithm
for quadrotors, which effectively enhanced the robustness of the system by combining the
advantages of non-singular terminal sliding mode control and neural network.

To make full use of the advantages of sliding mode control and adaptive control
methods, adaptive sliding mode control design of the quadrotor have also been investigated
to improve robustness and adaptability in the literature. In [10], on the basis of Udwadia–
Kalaba theory, the adaptive robust tracking control problem is considered for quadrotor
UAVs with mismatched uncertainties.

In [11,12], adaptive fuzzy global sliding mode control methods are presented for
quandrotor UAVs subject to parameter uncertainties and control chattering problems. A
finite-time adaptive integral backstepping sliding mode control design method is intro-
duced in [13], where adaptive control is used to compensate the unknown disturbance
upper bound, and semi-global practical stability of the fight attitude control of the quadrotor
is achieved.

It is worth noting that most of the results on adaptive sliding mode control of the
quadrotor are based on the continuous-time controller, and the controller structure is
relative complex. In fact, it was said in [14] that a discrete-time control scheme is much
more suitable in practicable situations since the utilization of computer and network in the
quadrotor, which is a challenging task has not been well solved so far.

On the other hand, signal discrete sampling in modern control theory is essential
due to the wide application of digital controllers. Middleton and Goodwin introduced
the delta operator discretization method to the modern control fields [15,16]. Compared
with the discretization technique based on traditional shift operator method, the delta
operator method is more suitable for high-speed sampling [17,18]. The authors in [19]
studied the robust fault-tolerant stabilization of uncertain switched systems under delta
operator framework.

In [20,21], the insensitive robust output tracking controller design and H∞ filter design
for discrete-time systems were studied in a unified delta operator approach framework.
The results showed that the delta-domain model was better than the standard shift-domain
model in avoiding the inherent numerical ill-conditions at high sampling rates. Recently,
using the delta operator approach, the consensus problem of muli-agent systems are well
investigated in [22,23]. It is worth noticing that few results have been published associated
with the control design of quadrotor UAVs under a delta operator framework, which is a
high-speed discrete sampling system.

Inspired by the above research works, this paper is concerned with adaptive sliding-
mode attitude control design problem for quadrotor UAVs based on delta operator frame-
work. The main contribution of this paper is summarized as follows. First, the delta
operator technique is used to discretize the attitude system of the quadrotor UAV. Then,
the designs of linear sliding surface and an adaptive sliding mode reaching control law are
shown in the delta domain. The design of the linear sliding surface is on the basis of linear
matrix inequality technique, and it ensures the asymptotic stability of the quadrotor UAVs
on sliding motion.

By the estimated external disturbance using radial basis function (RBF) neural network,
the adaptive sliding mode controller is designed for ensuring all attitudes of the quadrotor
UAVs can be driven to the proposed sliding surface and thus the attitude control is achieved.
Finally, simulation result comparisons demonstrate the effectiveness and superiority of the
proposed attitude control algorithm.

The remainder of this paper is organized as follows. In Section 2, a system model of
quadrotor UAVs is presented. In Section 3, a sliding-mode attitude control design algorithm
is presented, which includes the design of a sliding surface and the design of an adaptive
sliding mode controller. In Section 4, an illustrative simulation example is provided to
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demonstrate the effectiveness and superiority of the proposed method. Our conclusions
are given in Section 5.

2. System Model Description of Quadrotor UAV

The quadrotor UAV has a simple appearance and can take off and land vertically
with high control flexibility. It consists of four electrical motors with propellers, which are
attached to a rigid cross frame. Supposing the quadrotor UAV has a symmetrical structure,
the drag and the thrust forces are proportional to the square of the rotors speed, and
ignoring blade flapping and gyro effect, the linearized quadrotor UAV model is obtained
from [24–26]: 

J1φ̈(t) = −K1lφ̇(t) + lu1(t) + f1(t),
J2θ̈(t) = −K2lθ̇(t) + lu2(t) + f2(t),
J3ψ̈(t) = −K3ψ̇(t) + cu3(t) + f3(t),

(1)

where φ(t), θ(t) and ψ(t) are the roll angle, pitch angle and yaw angle of the quadrotor
UAV, respectively. J1, J2 and J3 represent the moments of inertia of each axis of the UAV, K1,
K2 and K3 are the drag coefficients and are positive constants, l represents the distance from
the center of each rotor to the center of the body, c is the proportional coefficient of force and
torqu, ui(t) represent the control input to the quadrotor UAVs with u1(t) = F1(t)− F2(t)−
F3(t)+ F4(t), u2(t) = F1(t)+ F2(t)− F3(t)− F4(t) and u3(t) = F1(t)− F2(t)+ F3(t)− F4(t),
Fi(t) represents the lift of propeller. In addition, f1(t), f2(t) and f3(t) represent unknown
external disturbances and coupling terms.

Remark 1. If the unknown external disturbances and couplings are ignored, the attitude control
model of the quadrotor UAVs can be described as follows.

J1φ̈(t) = −K1lφ̇(t) + lu1(t),
J2θ̈(t) = −K2lθ̇(t) + lu2(t),
J3ψ̈(t) = −K3ψ̇(t) + cu3(t),

(2)

Research works based on model (2) can be seen in [27–31]. Clearly, the dynamic
model (1) in this paper is more suitable in practical situations than (2).

Let x1(t) =

[
φ(t)
φ̇(t)

]
, x2(t) =

[
θ(t)
θ̇(t)

]
, x3(t) =

[
ψ(t)
ψ̇(t)

]
, Ā1 =

[
0 1
0 −K1l

J1

]
,

Ā2 =

[
0 1
0 −K2l

J2

]
, Ā3 =

[
0 1
0 −K3

J3

]
, B̄1 =

[
0
l

J1

]
, B̄2 =

[
0
l

J2

]
and B̄3 =

[
0
c
J3

]
,

the linearized quadrotor UAVs can be rewritten as

ẋi(t) = Āixi(t) + B̄iui(t) + B̄i fi(t), (3)

where i = 1, 2, 3, xi(t) ∈ R2 is the state variable of the ith attitude control system, Āi ∈ R2×2

and B̄i ∈ R2×1 are the system matrix and control input matrix, respectively.
Applying the delta operator technique to discretize the system (3), one can find the

quadrotor UAVs in the delta domain

δxi(tk) = Aixi(tk) + Biui(tk) + Bi fi(tk), (4)

where δxi(tk) is the delta operator calculation for the state variable xi(tk). It is defined
mathematically as

δxi(tk) =

{
d
dt xi(t), T = 0,

xi(tk+T)−xi(tk)
T , T 6= 0,

(5)
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where tk = kT, T is the sampling period. Clearly, when T → 0, the delta operator δxi(tk) is
a derivative operation ẋ(t) and can be used to describe a continuous time dynamic system.
When T = 1, the delta operator δxi(tk) is a difference operation of traditional shift operator,
which can be used to describe a traditional discrete time dynamical system. In terms of the
definition of the delta operator, one can see that Ai = (eĀiT − I)/T, Bi = (

∫ T
0 eĀiT B̄idt)/T,

i = 1, 2, 3.
For the control design of the quadrotor UAVs (4) under the delta operator framework,

it is assumed that the pair (Ai, Bi) is controllable and that column Bi is full rank, i = 1, 2, 3.
To facilitate the proof, the relevant lemmas are introduced. Lemma 1 shows the

definition of the asymptotical stability in the delta domain, Lemma 2 and Lemma 3 will be
used to the theoretical proof of Theorem 1, where Lemma 2 is used to the mathematical
calculation of delta operator, and Lemma 3 is used as a technique to convert a nonlinear
linear matrix inequality into a linear matrix inequality.

Lemma 1 ([32]). For the delta operator system

δ(x(tk)) = g(x(tk)), (6)

where g(x(tk)) with g(0) = 0, is a linear or nonlinear function, if there exists a positive definite
function V(x(tk)) in the delta domain, such that for any state x(tk) satisfies

δV(x(tk)) =
V(x(tk + T))−V(x(tk))

T
< 0, (7)

then the system (6) is asymptotical stable in the delta domain.

Lemma 2 ([16]). (Differentiation of Product). For any time functions x(tk) and y(tk), we have the
following fact.

δ[x(tk)y(tk)] = (δx(tk))y(tk) + x(tk)(δy(tk)) + Tδx(tk)δy(tk). (8)

Lemma 3 ([33]). (Schur–Complement Lemma) For a given symmetric matrix S =

[
S11 S12
S21 S22

]
,

where S11 = ST
11, S22 = ST

22, S12 = ST
21, the inequalities (9)–(11) are equivalent to each other,

S < 0, (9)

S11 < 0, S22 − S21S−1
11 S12 < 0, (10)

S22 < 0, S11 − S12S−1
22 S21 < 0. (11)

3. Design of the Sliding Mode Attitude Control Algorithm

The design of the sliding-mode attitude control algorithm of the quadrotor UAVs is
divided into two steps. The first step is to design a linear sliding surface σi(k) = 0 to ensure
the stability of the quadrotor UAVs during sliding motion process. The second step is to
design an adaptive sliding mode attitude controller such that all attitudes of the quadrotor
UAVs can be driven to the designed sliding surface σi(k) = 0.

3.1. Sliding Surface Design

Let xi(tk) =

[
xi1(tk)
xi2(tk)

]
, Ai =

[
Ai11 Ai12
Ai21 Ai22

]
and Bi =

[
0

Bi2

]
, the quadrotor

UAV (4) can be rewritten as:

δxi1(tk) = Ai11xi1(tk) + Ai12xi2(tk), (12)
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δxi2(tk) = Ai21xi1(tk) + Ai22xi2(tk) + Bi2ui(tk) + Bi2 fi(tk). (13)

The linear sliding surface is designed as

σi(tk) = Sixi(tk) = 0, (14)

where i = 1, 2, 3, Si = [ Zi 1 ] is the sliding vector with Zi ∈ R to be determined.
Substituting σi(tk) = Zixi1(tk) + xi2(tk) into (12), the sliding dynamics, i.e. , the reduced
order quadrotor UAVs system δxi1(tk) is described as

δxi1(tk) = (Ai11 − Ai12Zi)xi1(tk). (15)

To make the sliding motion on (15) be asymptotical stable, it is necessary to design the
appropriate parameter Zi of the sliding surface.

Theorem 1. If there exist positive real parameters Xi and Wi and a real number Yi, such that the
following linear matrix inequality −2Wi Ai11Xi − Ai12Yi TWi

∗ He(Ai11Xi − Ai12Yi) 0
∗ ∗ −TXi

 < 0 (16)

is satisfied for a given sampling period T > 0, then the reduced order quadrotor UAVs system (15) is
asymptotical stable, where He(Ai11Xi − Ai12Yi) = Ai11Xi − Ai12Yi + (Ai11Xi − Ai12Yi)

T . The
symbol ∗ is used to represent a term that is induced by symmetry. Furthermore, the sliding surface
is designed as

σi(tk) = [ YiX−1
i 1 ]xi(tk) = 0. (17)

Proof of Theorem 1. Let Ai1 = Ai11 − Ai12Zi, one can see that the sliding motion obeys
δxi1(tk) = Ai1xi1(tk). Now, the Lyapunov function candidated is chosen as

V1(tk) = xT
i1(tk)Pixi1(tk), (18)

where Pi is a positive definite symmetric matrix.
In terms of Lemma 2, one has

δV1(tk) = 2xT
i1(tk)Piδxi1(tk) + T(δxi1(tk))

T Piδxi1(tk). (19)

Furthermore, let us introduce

0 = −2(δxi1(tk))
TŴi[δxi1(tk)− Ai1xi1(tk)], (20)

where Ŵi is a positive definite matrix, and by the combination of the sliding motion
Equations (15) and (20), the state trajectory of (19) along the reduced-order system (15)
becomes

δV1(tk) = −
[

δxi1(tk)
xi1(tk)

]T

Θi

[
δxi1(tk)
xi1(tk)

]
, (21)

where

Θi = −
[

TPi − Ŵi − ŴT
i Ŵi Ai1

∗ Pi Ai1 + AT
i1Pi

]
. (22)
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It is clear that, when Θi > 0, the reduced-order system of the quadrotor UAV (15) is
asymptotically stable by Lemma 1. Now, multiplying the left and right sides of Equation (22)
with diag

[
Ŵ−1

i , Pi
−1
]
, we have

[
TŴ−T

i PŴ−1
i − 2Ŵ−1

i Ai1Pi
−1

∗ Pi
−1 AT

i1 + Ai1Pi
−1

]
< 0. (23)

Using the Schure–Complement Lemma, one can obtain the condition (16) for asymp-
totically stable of the sliding motion, where Xi = Pi

−1, Wi = Ŵ−1
i , Yi = ZiXi. The proof of

Theorem 1 is therefore completed.

3.2. Adaptive Sliding Mode Controller Design

To design the adaptive sliding mode controller, a RBF neural network is first used
online to approximate the unknown nonlinear external disturbance fi(tk). The RBF neural
network usually consists of three parts: Input layer, hidden layer and output layer. How
to configure the RBF neural network has been well investigated in the existing works,
please see [34] for details. In this paper, the RBF neural network with 2− 5− 1 structure is
adopted and shown in Figure 1.

Figure 1. RBF neural network structure diagram.

The input and output algorithm of a single RBF network is

hj(υ) = exp

(
−
∥∥υ− cj

∥∥2

2bj
2

)
, (24)

f (tk) = (W∗)Thj(υ) + η, (25)

where υ is the input of the neural network, j is the jth node of the hidden layer, cj is the
center vector of the hidden layer node, bj is the width vector of the hidden layer neurons, W∗

is the network approximation ideal weight, η ≤ ηmax is the network approximation error.
For the attitude control system of quadrotor UAVs (4), the neural network input is

taken as υi =
[

xi1(tk) xi2(tk)
]T , and the estimated output of the RBF neural network

for the unknown nonlinear function fi(tk) is:

f̂i(tk) = ŴT
i hij(υi), (26)
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where Ŵi is the estimated weight of the network, i = 1, 2, 3. The adaptive adjustment law
of the estimated weight of the network is designed in the delta domain as follows.

δŴi(tk) = γiσi(tk)SiBihij(υi). (27)

The designed adaptive sliding mode controller is shown as follows.

ui(tk) = −(SiBi)
−1[Si Aixi(tk) + SiBi f̂i(tk) + εisign(σi(tk)) + βiσi(tk)], (28)

where εi and βi are adjustable positive parameters, i = 1, 2, 3.

Theorem 2. Considering the quadrotor UAVs (4) under the delta operator framework, the adaptive
sliding-mode attitude controller is designed as shown in (27) and (28), all the attitudes of the
quadrotor UAVs can be driven towards the designed sliding surface σi(tk) = 0 shown in (14), and
the asymptotical stablity is achieved.

Proof of Theorem 2. Take the Lyapunov function candidated in the delta domain as

V2(tk) =
σi

T(tk)σi(tk)

2
+

1
2γi

W̃T
i (tk)W̃i(tk), (29)

where γi > 0 is the network tuning parameter, and W̃i(tk) = Ŵi −Wi
∗, i = 1, 2, 3. By

Lemma 2, one can see that

δV2(tk) =σi(tk)δσi(tk) +
1

2γi
(δW̃i(tk))

TW̃i(tk) +
1

2γi
W̃T

i (tk)δW̃i(tk) +
T
2
(‖δσi(tk)‖)2

+
T

2γ

∥∥δW̃i(tk))
∥∥2 (30)

=σi(tk)δσi(tk) +
1
γi

W̃T
i (tk)(δŴi(tk)) + ∏

i
(tk),

where ∏i(tk) =
T
2 (‖δσi(tk)‖)2 + T

2γi

∥∥δW̃i(tk))
∥∥2, i = 1, 2, 3.

On the other hand, noticing that

δσi(tk) = Si[Aixi(tk) + Biui(tk) + Bi fi(tk)]. (31)

Substituting the designed adaptive sliding mode controller (28) into (31), one can
further obtain

δσi(tk) = SiBi[ fi(tk)− f̂i(tk)]− εisign(σi(tk))− βiσi(tk). (32)

Noticing, from (25) and (26), that fi(tk)− f̂i(tk) = −W̃T
i (tk)hij(υi) + ηi, i = 1, 2, 3, In

terms of (30) and (32), it is not difficult to see that

δV2(tk) =σi(k)SiBi[−W̃T
i (tk)hij(υi) + ηi]− βiσi(tk)

2 − εiσi(tk)sign(σi(tk))

+
1
γi

W̃T
i (tk)δŴi(tk) + ∏

i
(tk)

≤(−σi(k)(SiBi))W̃T
i (tk)hij(υi) + |σi(tk)||SiBi|ηi − εi|σi(tk)|

− βi|σi(tk)|2 +
1
γi

W̃T
i (tk)δŴi(tk) + ∏

i
(tk) (33)

≤W̃T
i (tk)[−σi(tk)(SiBi)hij(υi) +

1
γi

δŴi(tk)] + |σi(tk)||SiBi|ηi

− βi|σi(tk)|2 − εi|σi(tk)|+ ∏
i
(tk).
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Substituting the adaptive law (27) into (33), one can see that

δV2(tk) ≤ |σi(tk)||SiBi|ηi − εi|σi(tk)| − βi|σi(tk)|2 + ∏
i
(tk). (34)

Since ∏i(tk) is reasonably bounded [18] and it is also small when the sampling period
T is close to 0; then, as long as εi and βi are large enough to satisfy εi + βi|σi(tk)| � ηi|SiBi|,
it is easy to obtain δV2(tk) < 0. Therefore, under the action of the RBF neural-network-
based adaptive law (27) and the sliding mode controller (28), the state of the quadrotor
UAVs (4) can reach the designed sliding surface σi(tk) = 0, and asymptotical stability can
be finally guaranteed.

The diagram of the RBF neural-network-based adaptive sliding-mode control algo-
rithm is shown in Figure 2, where the RBF network is used to estimate the unknown
external disturbances and couplings. The adaptive sliding mode controller was designed
to achieve the flight attitude control using the estimated information.

Figure 2. Diagram of the RBF neural-network-based adaptive sliding-mode control algorithm.

4. Illustrative Example

In this section, simulation results are shown to verified the effectiveness and superi-
ority of the proposed adaptive sliding mode control design method of quadrotor UAVs.
In Section 4.1, parameter settings and model of the quadrotor UAVs are given; and in
Section 4.2, the design of the linear surfaces is shown. Simulation results are shown in
Section 4.3.

4.1. Parameter Settings and Modelling of the Quadrotor UAV

To verify the effectiveness of adaptive sliding-mode attitude control algorithm for
quadrotor UAVs proposed in this paper, simulation experiments were performed. The
physical parameters of the quadrotor UAVs are shown in Table 1.

Table 1. Physical parameters of the quadrotor UAV.

Parameters Values Units

m 2.5 kg
l 0.245 m
g 9.8 m/s2

c 0.575 m
K1 0.148 N s/m
K2 0.148 N s/m
K3 0.164 N s/m
J1 0.05 kg·m2

J2 0.05 kg·m2

J3 0.12 kg·m2
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The continuous-time models of the roll angle, the pitch angle and the yaw angle are
expressed as[

φ̇(t)
φ̈(t)

]
=

[
0 1
0 −0.724

][
φ(t)
φ̇(t)

]
+

[
0

4.789

]
u(t) +

[
0

4.789

]
f (t). (35)

[
θ̇(t)
θ̈(t)

]
=

[
0 1
0 −0.724

][
θ(t)
θ̇(t)

]
+

[
0

4.789

]
u(t) +

[
0

4.789

]
f (t). (36)

[
ψ̇(t)
ψ̈(t)

]
=

[
0 1
0 −1.364

][
ψ(t)
ψ̇(t)

]
+

[
0

4.789

]
u(t) +

[
0

4.789

]
f (t). (37)

Setting the sampling time T = 0.01 s and taking the state x1(t) =
[

φ(t)
φ̇(t)

]
, now using

the delta operator discretization technique in [16], the roll angle system model in the delta
operator framework is established as follows.

δx1(tk) =

[
0 0.9964
0 −0.7214

]
x1(tk) +

[
0.0477
4.7545

]
u1(tk) +

[
0.0477
4.7545

]
f1(tk). (38)

Similarly, let x2(t) =
[

θ(t)
θ̇(t)

]
and x3(t) =

[
ψ(t)
ψ̇(t)

]
, one can also establish the pitch

angle system model after the discretization of the delta operator

δx2(tk) =

[
0 0.9964
0 −0.7214

]
x2(tk) +

[
0.0477
4.7545

]
u2(tk) +

[
0.0477
4.7545

]
f2(tk). (39)

and the yaw angle system model after discretization of the delta operator

δx3(tk) =

[
0 0.9932
0 −1.3547

]
x3(tk) +

[
0.0476
4.7241

]
u3(tk) +

[
0.0476
4.7241

]
f3(tk). (40)

4.2. Design of Linear Surfaces

For the quadrotor UAVs (38)–(40), by solving the linear matrix inequality (16) with
MATLAB LMI control toolbox, we can find X1 = X2 = X3 = 1.0133, Y1 = Y2 = 0.3357 and
Y3 = 0.3367. From Zi = YiX−1

i , the sliding vectors are S1 = S2 =
[

0.3313 1
]

and S3 =[
0.3323 1

]
. Thus, the sliding surfaces are designed as σ1(tk) = [ 0.3313 1 ]x1(tk) = 0,

σ2(tk) = [ 0.3313 1 ]x2(tk) = 0 and σ3(tk) = [ 0.3323 1 ]x3(tk) = 0.

4.3. Simulation Retsults

For the dynamical model shown in (38)–(40), the effectiveness and superiority of the
proposed control algorithm are verified via simulation comparisons. Comparison results
of the traditional adaptive sliding-mode control algorithm (AC+SMC) in [25] and the
proposed adaptive sliding-mode control algorithm (RBF+SMC) in this paper are given.

In [25], fi(tk) is supposed as ‖ fi(tk)‖ ≤ η1 + η2‖xi(tk)‖ with η1 and η2 are unknown
positive constants. Clearly, such an assumption is relatively strict, which requires not only
linear growth conditions but also ignores the coupling problem. Applying the design
method there, adaptive laws and controller used are designed as in (41)–(43).

δη̂i1(tk) = ‖σi(tk)‖‖SiBi‖, (41)

δη̂i2(tk) = ‖σi(tk)‖‖SiBi‖‖xi(tk)‖, (42)
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ui(tk) = −(SiBi)
−1[Si Aixi(tk) + (µi + η̂i1(tk)‖SiBi‖+ η̂i2(tk)‖SiBi‖‖xi(tk)‖)sign(σi(tk))], (43)

where η̂i1(tk) and η̂i2(tk) represent the estimated values of unknown interference coeffi-
cients ηi1 and ηi2, respectively.

Taking the initial value of the attitude angle of the quadrotor UAVs as
[

φ θ ψ
]
=[

30◦ −15◦ 10◦
]
, the center vector of each RBF neural network is cj = [ −1 −0.5 0

0.5 1 ], the width vector is bj = 3.
To show the effectiveness and superiority of the proposed method clearly. Two kinds

of disturbances are considered. The first is taken as

f1(tk) = 0.15 +
[

0.1 sin(0.2πtk) 0
]
x1(tk) + 30 cos(x11(tk)x12(tk)),

f2(tk) = 0.15 +
[

0.2 sin(0.4πtk) 0
]
x2(tk) + 15 cos(x21(tk)x22(tk)),

f3(tk) = 0.15 +
[

0.4 sin(0.3πtk) 0
]
x3(tk) + 40(1− x31(tk)x32(tk)).

The adaptive adjustment gain parameter µi in [25] is taken as 0.5 during simulation.
The parameters of the proposed adaptive sliding mode controller are shown in Table 2.

Table 2. Controller parameters of the quadrotor UAV.

Attitude Angle Systems εi βi γi

Roll angle system 100 20 30
Pitch angle system 200 20 30
Yaw angle system 120 20 40

The simulation results of the attitude angle response results of the quadrotor UAVs
under the action of the traditional adaptive sliding-mode control algorithm (AC+SMC) and
the proposed adaptive sliding-mode control algorithm (RBF+SMC) proposed in this paper
are shown in Figures 3–5. It can be seen from Figures 3–5 that the traditional adaptive
sliding-mode control algorithm (AC+SMC) cannot ensure that the attitude angle of the
UAVs converges to the origin, the curve of each attitude angle has a distinct mutation and
oscillation, and the overshoot is large, which cannot realize the stable control of the attitude
of the quadrotor UAV.

The approximation results of the external disturbances f1(tk), f2(tk) and f3(tk) by the
RBF neural network are shown in Figures 6–8. It can be seen that the RBF neural-network-
based adaptive scheme can estimate the unknown fi(tk) quickly and well. In addition,
Table 3, shows the performance comparisons for steady-state time and Table 4 shows the
approximation time of RBF neural network to fi(t). Clearly, the quadrotor UAVs under
proposed control offer a faster convergence speed.
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Table 3. Steady-state time of attitude angle under different control algorithms.

Attitude Angle Systems Roll Angle System Pitch Angle System Yaw Angle System

RBF + SMC 16.8 s 15.2 s 13.7 s
AC + SMC / / /

Table 4. Approximation time of RBF neural network to fi(t).

Attitude Angle Systems Roll Angle System Pitch Angle SystemYaw Angle System

Effective approximation time 4.6 s 7.5 s 1.45 s
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Figure 6. Neural network approximation results of the external disturbance f1(tk).
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Figure 7. Neural network approximation results of the external disturbance f2(tk).
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Figure 8. Neural network approximation results of the external disturbance f3(tk).

To further illustrate the advantages of the proposed adaptive sliding mode control
method, another kind of disturbances is taken as follows.

f1(tk)= 0.1 + x22(tk)x32(tk) + 0.02x22(tk),

f2(tk)= 0.3 + x12(tk)x32(tk) + 0.03x12(tk),

f3(tk)= 0.02 + x12(tk)x22(tk).

One can see that the cross-coupling is considered here. Now, the design parameters
of the traditional adaptive sliding mode control in [25] and the proposed adaptive sliding
mode controller are shown in Tables 5 and 6, respectively.

Table 5. Controller parameters of the quadrotor UAVs proposed in [25].

Attitude Angle Systems µi

Roll angle system 4
Pitch angle system 3
Yaw angle system 4

Table 6. Controller parameters of the quadrotor UAVs proposed in this paper.

Attitude Angle Systems εi βi γi

Roll angle system 120 20 10
Pitch angle system 200 20 5
Yaw angle system 300 20 5

It can be seen from Figures 9–11 that the traditional adaptive sliding-mode control
algorithm (AC+SMC) cannot well ensure that the attitude angle of the UAVs converges
to the origin. When there is a couplings problem, the curve of each attitude angle has a
distinct mutation and oscillation, and the overshoot is large, i.e., it cannot realize the stable
control of the attitude of the quadrotor UAV. At the same time, the flight attitude control
can still estimate the unknown disturbance well (see Figures 12–14) by the proposed design
method in this paper (see Figures 9–11). Table 7 also shows that the steady-state time of the
proposed method is quicker for each attitude angle, and Table 8 shows that the adaptive
RBF neural network can estimate fi(t) in a quick way.
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Table 7. Steady-state time of attitude angle under different control algorithms.

Attitude Angle Systems Roll Angle System Pitch Angle System Yaw Angle System

RBF + SMC 15.7 s 13.7 s 16.4 s
AC + SMC 21.6 s / 25.8 s

Table 8. Approximation time of RBF neural network to fi(t).

Attitude Angle Systems Roll Angle System Pitch Angle System Yaw Angle System

Effective approximation time 1.63 s 1.79 s 2.06 s

It can be seen from the above statements that the proposed adaptive sliding-mode
control algorithm in the delta operator framework can effectively compensate the unknown
nonlinear disturbances and achieve better control performance simultaneously, which is
more suitable for use in the flight attitude control of quadrotor UAVs. However, this is
based on the assumption that the actuator does not encounter various faults. How to design
a sliding mode fault-tolerant attitude controller is an interesting and challenging problem
to be solved and will be considered in our future works.

5. Conclusions

In this paper, we proposed an adaptive sliding-mode control algorithm in the delta
domain for the attitude control of a quadrotor UAVs subject to external disturbances and
couplings. First, the delta operator technique was used to discretize the attitude system of
a quadrotor UAV. Then, a linear sliding surface, which can ensure the asymptotic stability
of the sliding dynamics, was introduced in terms of the linear matrix inequality technique.
Second, an adaptive sliding mode controller, using an RBF neural network to estimate
external disturbances and couplings, was designed for the attitude reaching control.

We demonstrated, via Lyapunov stability theory, that the controller guaranteed that
all attitudes of the quadrotor UAVs could be driven to the designed sliding surface, and
thus attitude control was achieved. Finally, simulation result comparisons verified the
effectiveness and superiority of the proposed adaptive sliding-mode attitude control algo-
rithm proposed in this paper. In our future research, how to apply the proposed theoretical
method to an actual unmanned system will be our focus and will be studied in depth.
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