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Abstract: The accuracy of low probability of intercept (LPI) radar waveform recognition is an
important and challenging problem in electronic warfare. Aiming at the problem of the difficulty in
feature extraction and the low recognition rates of the LPI radar signal under a low signal-to-noise
ratio, and inspired by the symmetry theory, we propose a new approach for the LPI radar signal
recognition method based on a dual-channel convolutional neural network (CNN) and feature fusion.
Our new approach contains three main modules: the preprocessing module that converts the LPI
radar waveforms into two-dimensional time-frequency images using the Choi–Williams distribution
(CWD) transformation and performs image binarization, the feature extraction module that extracts
different features obtained from the images, and the recognition module that utilizes a multi-layer
perceptron (MLP) network to fuse these features and distinguish the type of LPI radar signals. In
the feature extraction module, a two-channel CNN model is proposed that extracts Histogram of
Oriented Gradients (HOG) features and deep features from time-frequency images, respectively.
Finally, the recognition module recognizes the radar signals using a Softmax classifier based on the
fused features from two channels. The experimental results from 12 types of LPI radar signals prove
the superiority and robustness of the proposed model. Its overall recognition rate reaches 97% when
the signal-to-noise ratio is −6 dB.

Keywords: LPI radar signal; CWD time-frequency analysis; CNN; HOG; signal recognition

1. Introduction

In recent years, as electromagnetic signals have become increasingly diversified in time
domain, frequency domain, spatial distribution, and modulation patterns, the electronic
countermeasure environment has become increasingly complex [1]. Low probability of
intercept (LPI) radar waveform recognition, as an important and challenging issue in
electronic countermeasures, has become a current research focus [2]. In the early days,
when the electromagnetic environment was simple, the pulse description word (PDW) was
mainly used to realize the sorting and recognition of radar pulse signals [3–6]. However,
with the increasing complexity of the electromagnetic environment, the pulse description
word with a single feature can no longer meet the identification requirements for the
LPI radar signal with large time width and strong interference [7–9]. More attention is
now paid to the intra-pulse characteristics of the radar signal. Some scholars describe the
characteristics of one-dimensional original waveforms through feature calculation. For
example, in [10], wavelet ridges and high-order statistics are used to extract signal features.
In [11], radar signal classification is achieved through the autocorrelation function and the
directed graph model. However, the features provided by the time domain signals are
limited. Through frequency domain transformation and time-frequency transformation of
radar signals, more intra-pulse information of the signals can be reflected.
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Recently, some scholars attempted to recognize radar signals in the time-frequency
domain [12,13]. The general process of radar signal recognition includes time-frequency
transformation, feature extraction, and classification, as shown in Figure 1. In [14], the
Choi–Williams distribution (CWD) is used to process radar signals in the time and fre-
quency domain simultaneously. Next, useful features extracted using image processing
techniques are used to realize the recognition of five kinds of radar signals. Under the
condition of SNR = 0 dB, the recognition accuracy reaches above 80%. Zhang et al. [15]
propose to extract features of radar signals from both time and time-frequency domain, and
achieve signal classification using the Elman neural network (ENN) based on the extracted
features. This method achieves 94% recognition accuracy for eight kinds of signals when
the signal-to-noise ratio is −2 dB, but shows a low recognition rate for Frank codes and P
codes. The literature in [14] and the literature in [15] employ traditional machine learning
methods to manually extract features from radar signals or signal time-frequency images.
However, manual feature extraction is time-consuming and requires the assistance of expert
knowledge.
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In the past few years, deeper learning techniques have made great breakthroughs
in various pattern recognition tasks, providing inspiration for radar signal recognition.
Therefore, deeper learning has gradually become more widely used in radar signal recog-
nition. Zhang et al. [16] presented two classifiers based on CNN and the Error-Encoding
Network (ENN), respectively, to identify 12 radar signals. When the signal-to-noise ratio is
−2 dB, the recognition accuracy is 94.5%, but the recognition rate of P code is low. In the
literature [17], Wan et al. proposed an LPI radar waveform recognition system based on
a convolutional neural network and a tree-based pipeline optimization tool (TPOT). The
system performs convolution training on the CWD time-frequency images, and then real-
izes signal classification through the TPOP classifier. However, it has a low recognition rate
for P3 and P4 codes. In the literature [18], Guo et al. proposed an automatic classification
and recognition system based on CWD and deep convolutional neural network transfer
learning. The CWD time-frequency image is sent to the pre-training model of the deep
convolutional network for feature extraction. Finally, the extracted features are sent to SVM
to realize signal recognition, but this algorithm has a low recognition rate for T1-T4 codes.
When the signal-to-noise ratio is −6 dB, the recognition accuracy of eight kinds of signals
is about 82%. Therefore, it is still a challenging problem to identify more types of LPI radar
signals under a low signal-to-noise ratio.

To solve the problem of the difficulty of feature extraction under low SNR and the
low recognition rate of various types of signals, in this paper, we propose a new approach
for LPI radar signal recognition based on an asymmetric dual-channel CNN and feature
fusion. Specifically, we first convert the 1D time-domain LPI radar signals into 2D time-
frequency images using the CWD transformation, and design a dual-channel CNN model
for feature extraction, which is different from the work in [16,17]. In the process of feature
extraction, the high-level features extracted by CNN have rich semantic information, but
some perceptual details may be lost. Therefore, we add a channel to extract the low-
level features of the images through the HOG operator, which contains more location
and detail information. Further, we use the MLP network to fuse these features from
two channels. Finally, the fused features are fed into the Softmax classifier to realize the
recognition of 12 LPI radar waveforms. Extensive experiments demonstrate the superiority
and robustness of the proposed approach in radar signal recognition. In summary, the
main contributions of the paper are listed below:
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(1) We present a new approach for LPI radar signal recognition based on a dual-channel
CNN model to improve the recognition accuracy under low SNR.

(2) A dual-channel CNN model is proposed to extract features of time-frequency
images at different levels, which are further fused via an MLP network to the mutual
benefit of both components.

(3) We give a comparison view to evaluate the proposed approach, and the experimen-
tal results show that the approach outperforms other state-of-the-art methods in recognition
accuracy and stability.

The structure of this article is mainly composed of the following sections: In Section 2,
we first introduce the overall framework of the proposed approach. Section 3 presents the
preprocessing method for the LPI radar signals. The feature extraction process and the
dual-channel CNN model are introduced in Section 4. In Section 5, we describe the details
of feature fusion and signal recognition. Section 6 presents the experimental results and
analysis. Finally, we conclude this work in Section 7.

2. Overview of the Proposed Approach

We first present the basic concepts used in this paper. We assume that the radar signal
received by the electronic reconnaissance broadband receiver is generally composed of the
signal and Gaussian white noise [19]. The signal model can be described as:

y(t) = s(t) + v(t)
= Aejφ(t) + v(t)

(1)

where s(t) and v(t) represent the signal and the noise, respectively. A is the signal ampli-
tude; φ(t) is the phase function. We consider 12 types of LPI radar waveforms: frequency-
shift keying (4FSK), linear frequency modulation (LFM), phase shift keying (BPSK), five
polyphase codes (P1–P4, Frank), and four polytime codes (T1–T4). In order to achieve the
recognition of these 12 radar signals under a low signal-to-noise ratio, we propose a new
approach based on two-channel CNN feature fusion.

Figure 2 presents an overview of the proposed approach, which is mainly composed
of three parts: preprocessing, feature extraction, and recognition. First, in the preprocess-
ing part, we perform CWD transformation on the received LPI radar signal to obtain a
two-dimensional time-frequency image. The time-frequency image is then processed by
cropping, graying, bicubic interpolation, and binarization. In the feature extraction part,
the pre-processed image is used for feature extraction through two channels, respectively.
The first channel extracts the HOG features of the image and subsequently reduces the
dimension of the HOG features based on one-dimensional CNN. The two-dimensional con-
volution channel directly extracts the convolutional features from the image. The features
obtained from the two channels are fused through an MLP network. In the recognition
part, the fused features are further dimensionally reduced and fed into the classifier to
output the corresponding class labels. Finally, the model is saved for signal prediction
after training. The details of each part of the framework will be described separately in the
following sections.
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3. Signal Preprocessing

The preprocessing of the LPI radar signal is the key step in the proposed framework;
this step involves the CWD transformation of 1D signals to 2D time-frequency images, as
well as some image processing operations. Moreover, due to the complex electromagnetic
environment, there is significant noise in the received signal. Although the time-frequency
processing of radar time-domain signals can effectively suppress noise interference, there
may still be interference information in the time-frequency images. Therefore, some image
processing operations, such as graying and binarization, are necessary to further eliminate
interference before feature extraction. In this section, we mainly introduce the specific
process involved in signal preprocessing.

3.1. CWD Transformation

The radar signal time-frequency analysis of CWD was proposed by H. Choi and J.
Williams in 1989; it can effectively prevent the occurrence of cross-terms. Therefore, CWD
is widely used in radar signal time-frequency analysis [20].

CWD(t, f ) =
x √

σ

4πτ2 f (s, τ)s
(

u +
τ

2

)
s∗
(

u− τ

2

)
e−j2π f τdudτ (2)

f (s, τ) = exp

[
−σ(s− t)2

4τ2

]
(3)

In the Equations (2) and (3), CWD(t, f ) represents the output of CWD time-frequency
analysis, t represents time, f represents frequency, f (s, τ) represents kernel function, and σ
represents attenuation factor. The parameter σ is a controllable factor which determines
the bandwidth of the filter, and the cross-interference can be effectively suppressed by
controlling the σ value. In this article, we chose σ = 1 to balance cross-interference and
signal resolution. Figure 3 shows the results of the CWD transformation of the 12 types of
LPI radar signals.
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3.2. Time-Frequency Image Preprocessing

The specific procedure for radar signal preprocessing is shown in Figure 4. The
received radar signal is first transformed into a time-frequency image; then, the original
image with 656 × 875 pixels is cropped into an image with 535 × 679 pixels, from which a
gray-scale image is derived by performing gray-scale processing. Subsequently, Wiener
filtering is conducted on the grayscale image to reduce the noise interference in the image.
Finally, bicubic interpolation and binarization are used to reduce both noise and the amount
of image matrix data; thus, an image of 224 × 224 pixels is obtained.
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4. Feature Extraction and Dual-Channel CNN Model Design

Feature extraction is the main element of the entire framework, which takes a time-
frequency image input and produces a latent-feature representation for each image using a
dual-channel CNN model. In this section, we mainly introduce the process of extracting
the features (including HOG features and image features) and designing the dual-channel
CNN model in detail.

4.1. Feature Extraction

In the feature extraction module, the features extracted from a time-frequency image
include two parts, i.e., the HOG features and the image features, which are obtained using
a dual-channel CNN model. The first channel based on the one-dimensional convolutional
neural network is used to extract the HOG features by gradient calculation and histogram
construction, and to perform dimensionality reduction. The specific process of HOG feature
extraction will be described in detail in conjunction with the dual-channel CNN model
in the following subsection. Moreover, to improve the signal recognition accuracy, we
employ a two-dimensional convolutional neural network as the second channel to obtain
discriminative features from time-frequency images. The features obtained through the
dual-channel CNN model are fused by an MLP and get a low-dimensional feature represen-
tation. For the feature extraction module, the whole CNN model takes the time-frequency
images of the LPI radar signals as input and is jointly trained with the downstream recogni-
tion task. In order to extract the optimal features, an adaptive learning rate method is used
during the training. The initial learning rate is set to 0.002, and each iteration is adjusted
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to 0.9 times the original learning rate, which can effectively avoid the falling into a local
optimum and prevent oscillations near the optimal solution due to too large a learning rate.
The CNN model stops training when the generalization error is no longer decreasing, and
the results are saved for prediction.

4.2. Dual-Channel Convolutional Neural Network Model

Inspired by the symmetry theory, we proposed an asymmetric dual-channel CNN
model for feature extraction that sufficiently integrates the signal spectral features and
signal contour features to improve the performance of radar signal recognition. The
inputs of both channels of the model are the binarized time-frequency images. The one-
dimensional CNN channel is used to extract the HOG features, and the two-dimensional
convolution channel is used to extract the image features. Then, the features extracted from
the two channels are fused. Finally, the fused features produced by the MLP network are
used for the classification task. The architecture of the proposed dual-channel CNN model
is shown in Figure 5.
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4.2.1. One-Dimensional Convolution Channel

In image processing, the HOG feature parameters are generally used for object detec-
tion by calculating gradient information in images. The HOG operator divides an image
into several cells and calculates the gradient of the pixel in each cell and the histogram
of the direction of the object edge. It then counts the amplitudes of the histograms and
combines them to form the HOG feature parameters. Because the gradient mainly exists
in the edge area of the object, the algorithm can describe the signal edge, inflection point,
and shape of the image through the calculated signal local area gradient and the direction
edge density [21]. Based on this idea, the HOG feature extraction is introduced into the
time-frequency image analysis to realize the detection of the edge, shape, and change char-
acteristics of the time-frequency domain signal. Moreover, after the CWD time-frequency
transformation and image binarization, the contour of the signal line is clearer and the
inflection point is more obvious, enhancing the ability of the HOG operator to extract
effective gradient values as feature parameters. The specific implementation process of the
HOG feature extraction algorithm is as follows:

1. Gradient calculation

Given an original image, it is convolved through the gradient operator [−1, 0, 1] to
obtain the gradient component Gx(x, y) in the x-axis direction (rightward is the positive
direction); then, the gradient component Gy(x, y) in the y-axis direction can be obtained by
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using the gradient operator [−1, 0, 1]T . H(x, y) represents the value of pixel (x, y) on the
image; the specific calculation is shown in Equations (4) and (5):

Gx(x, y) = H(x + 1, y)− H(x− 1, y) (4)

Gy(x, y) = H(x, y + 1)− H(x, y− 1) (5)

The gradient amplitude and gradient direction at pixel (x, y) can be expressed as
Equations (6) and (7), respectively:

G(x, y) =
√

Gx(x, y)2 + Gy(x, y)2 (6)

α(x, y) = tan−1
(

Gy(x, y)
Gx(x, y)

)
(7)

2. Gradient Direction Histogram Construction

The gradient direction is divided into nine angular regions at 180 degrees. These nine
corner areas are used as the abscissa of the histogram. Then, the gradient value and gradient
direction calculated for each pixel are mapped to nine corner regions. Finally, the nine ampli-
tudes of the histogram are counted as the nine-dimensional feature vector of the correspond-
ing cell [22]. Every 2 × 2 cell forms a block, and by moving the block on a 224 × 224 image,
the feature number of a picture can be obtained as 4 × 9 × 27 × 27 = 26,224.

We design a one-dimensional convolutional network to reduce the dimension of
the HOG features. Therefore, the 26,244-dimensional HOG features extracted above are
fed into the one-dimensional convolution channel to obtain the low-dimensional vector
representation. This channel mainly includes two modules. Each module contains a
convolutional layer, a pooling layer, a batch normalization layer, and a dropout layer. The
original HOG feature is extracted by two modules to obtain 8 × 821 data. In order to
prevent the data from overfitting, we add a Dropout layer. At the same time, we have also
added the batch standard layer, which will form a positive distribution through the data
of Dropout, which is conducive to highlighting the features. The obtained feature matrix
is then flattened and transformed into a one-dimensional feature vector that measures
256 × 1 through the fully connected layer.

4.2.2. Two-Dimensional Convolution Channel

The two-dimensional convolution channel is mainly used to extract discriminative
features from time-frequency images, and it includes four convolutional layers and two
fully connected layers. As is shown in Figure 4, the input image size is 224× 224, which
is fed into the convolutional layer with the convolution kernel size 3× 3, and we achieve
the C1 layer of size 224× 224. Before the next convolution, the features in the C1 layer
are selected by adding a sampling layer that can balance the relationship between the
previous convolutional layer and the next convolutional layer while reducing the amount
of calculation. Following the sampling layer and the convolutional layer, a C2 layer with
a size of 112× 112 is obtained. After two more convolutions and samplings, we finally
achieve a C4 layer of size 28× 28 and connect the feature map of the C4 layer to the two
fully connected layers to obtain a contact feature with 256 dimensions.

5. Feature Fusion and Recognition via MLP

The recognition module is the last part of the proposed framework in this work; it di-
rectly infers the class label of the LPI radar signals based on the signal feature representation
obtained in the previous stage. As mentioned above, the final feature representation of the
radar signal consists of 1D CNN features and 2D CNN features. To obtain consistent feature
representation, we fuse the features from the two sources using an MLP network with two
hidden layers before recognition, instead of directly concatenating them. The number of
the neurons for each hidden layer is determined from the output of the previous layer.



Symmetry 2022, 14, 570 8 of 13

Moreover, the feature fusion process further reduces the dimensionality of the features so
that the subsequent classifier can effectively complete the classification task.

In the recognition module, we adopt the most-used Softmax classifier [23], which is
an extension of the binary classification to multi-classification. Through Softmax calcula-
tion, the linearly weighted output value is converted into a probability distribution. The
mathematical expression of the Softmax classification is shown as Equation (8), where k
is the number of final output categories (i ∈ [1, k]), oi is the output vector of the MLP for
sample i, and pi is the probability calculated by Softmax. From the formula, we can see that
the Softmax function converts the output value of the multi-classification to a probability
distribution that takes it to 1. As shown in Figure 4, the features (512 dimensions) from the
two channels are purified and fused through the first hidden layer of the MLP to obtain a
256-dimensional feature. The resulting feature is connected to the second hidden layer to
obtain a 12-dimensional vector, which represents 12 different LPI radar waveforms. Finally,
the output vector is fed into the Softmax classifier for signal classification. At the same
time, we optimize the model through the cross-entropy loss function, which is expressed as
shown in Equation (9), where yi is the sign function, and L reflects the actual deviation of
the output from the expected output. In order to reduce the bias, we optimize the weights
and biases by gradient descent, and then acquire the optimal model.

pi(oi) =
exp(oi)

∑k
i=1 exp(oi)

(8)

L = −
k

∑
i=1

yi log(pi) (9)

6. Experimental Results and Analysis

In this section, we verify the effectiveness of the proposed approach on the simulation
platform with the specific parameters shown in Table 1. The section consists of four parts.
The first part gives the simulation parameters of the low probability interception radar
signals, the second part verifies the recognition accuracy of the model, the third part verifies
the effectiveness of the model with comparative experiments, and the last part verifies the
robustness of the approach.

Table 1. The experimental environment.

Item Model/Version

CPU Intel(R) Core(TM) i7-10875H
GPU NVIDIA GeForce RTX 2060
RAM 16 GB

SOFTWARE R2016b/Python 3.7

6.1. Signal Generation

In this work, we select 12 typical radar signals including 4FSK, LFM, BPSK, FRANK,
P1–P4, and T1–T4 for our experiments. Since different radar signals have different parame-
ters, for the convenience of description, a uniform distribution U(•) based on the sampling
frequency fs is used to uniformly represent the parameters; for example, U(1/16, 1/8)
represents a random number with a parameter range between [ fs/16, fs/8].The initial
frequency of the LFM signal is set between U(1/16) and U(1/8). The Barker code number
of the BPSK signal is randomly selected from 7, 11, and 13, and the center frequency is set
between U (1/8) and U (1/4). The four hopping frequencies of the 4FSK signal are between
U(1/80) and U(1/2). For the T1-T4 signals, we set the number of basic waveform segments
in the interval [4,5]. For the Frank signal, the phase control parameter M is 4–8. For the
P1–P4 polyphase codes, the parameters are similar to Frank codes. The detailed parameters
are shown in Table 2. In the experiment, the SNR range is −6~10 dB, and the step size is
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2 dB. In each SNR, 600 samples are generated for each signal, of which 420 samples are
used for training, and the remaining 180 samples are used for testing.

Table 2. The simulation parameter list [24].

Radar Waveform Simulation Parameter Ranges

Sampling frequency fs 1 ( fs = 200 MHz)

LFM Initial frequency f0
Bandwidth B

U(1/16, 1/8)
U(1/16, 1/8)

BPSK Barker codes Nc
Carrier frequency fc

{7, 11, 13}
U(1/8, 1/4)

4FSK Fundamental frequency fh U(1/80, 1/2)

Frank and P1 Carrier frequency fc
Samples of frequency stem M

U(1/8, 1/4)
[4, 8]

P2 Carrier frequency fc
Samples of frequency stem M

U(1/8, 1/4)
2× [2, 4]

P3 and P4 Carrier frequency fc U(1/8, 1/4)
T1-T4 Number of segments k [4, 5]

6.2. Recognition Accuracy Analysis

In order to prove the effectiveness of the dual-channel model, we compared the
recognition accuracy of the dual-channel convolutional neural network to that of the
respective single-channel convolutional neural networks. The simulation result is shown in
Figure 6.
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It can be seen from Figure 6 that the average recognition accuracy of the dual-channel
model is higher than that of the single-channel model. Since it is difficult for a single
feature to fully describe the features of radar signals, we propose a two-channel model that
extracts convolutional features and HOG features simultaneously. The convolutional neural
network can extract the rich hidden features of the signal time-frequency images, and the
HOG feature can enhance the stability and robustness of the model; thus, the fusion of the
two channel features can further improve the performance of the model. At the same time,
in order to solve the problem of network overfitting and gradient disappearance, we add
the Dropout layer and batch normalization layer to further improve the recognition rate for
the radar signals. When the signal-to-noise ratio is −6 dB, the accuracy of dual-channel
recognition is 7% higher than that of the 2D convolution channel and 26% higher than that
of the 1D convolution channel. When the signal-to-noise ratio is −4 dB, the dual-channel
recognition accuracy rate reaches 100%, which is 1.6% higher than that of the single-channel,
which verifies the effectiveness of the dual-channel model.



Symmetry 2022, 14, 570 10 of 13

6.3. Algorithmic Comparison Experiment

The following experiments mainly verify the relationship between the recognition
accuracy and different signal-to-noise ratios. There are 480 groups of sample data used for
training under each signal-to-noise ratio, and the remaining 120 groups are tested. At the
same time, we also compare our method with the methods proposed by Wan et al. [17] and
Zhang et al. [16]. The experimental results are shown in Figure 7.
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As shown in Figure 7, the first 12 subfigures show the recognition accuracy of the
algorithms for these 12 radar signals under varying SNR. Despite minor differences, these
subfigures exhibit the same trend, i.e., the recognition rate of the algorithms subsequently
increases significantly with the increasing SNR. When the signal-to-noise ratio is less than
−2 dB, the recognition rate increases rapidly. When the signal-to-noise ratio is greater than
−2 dB, the recognition rate increases slowly and eventually tends to be stable. Specifically,
when the signal-to-noise ratio is greater than−6 dB, the recognition accuracy of our method
on Costas, LFM, and T1–T4 signals is basically the same as that noted by Wan et al., which
is close to 100%. The recognition rate of our method for BPSK signals is 100%, but the
recognition rate of the method used by Wan et al. is about 94%. When the signal-to-noise
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ratio is −4 dB, the system’s recognition rate of P3 and P4 signals is 100%; the recognition
accuracy of Wan et al.’s method is about 90%, and the recognition accuracy of Zhang
et al.’s method is about 60%. Although the recognition accuracy of Frank and P1 signals at
−6 dB is lower than that using Wan et al.’s method, as the signal-to-noise ratio increases
to −4 dB, the recognition rate of this method reaches 100%, which is about 20% higher
than Wan et al.’s method. Moreover, the last subfigure in Figure 7 demonstrates the overall
recognition accuracy for the three approaches. At −4 dB, the recognition accuracy of this
system is about 5% higher than that of Wan et al.’s method and about 20% higher than
that of Zhang et al.’s method. With the increase of the signal-to-noise ratio, the accuracy of
Wan et al.’s method increases slowly. It can be seen that the proposed approach has better
performance under a low signal-to-noise ratio.

In addition, it can be seen from Figure 8 that some similar signal time-frequency
images are easily confused under the interference of noise when the SNR is −6 dB. In our
approach, the recognition accuracy for P1 codes is 80%, and 20% are misjudged as P4 codes.
The recognition rate for T2 signals is 90%, and 10% are misjudged as BPSK signals.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 14 
 

 

when the signal-to-noise ratio is greater than −6 dB, the recognition accuracy of our 
method on Costas, LFM, and T1–T4 signals is basically the same as that noted by Wan et 
al., which is close to 100%. The recognition rate of our method for BPSK signals is 100%, 
but the recognition rate of the method used by Wan et al. is about 94%. When the signal-
to-noise ratio is −4 dB, the system’s recognition rate of P3 and P4 signals is 100%; the 
recognition accuracy of Wan et al.’s method is about 90%, and the recognition accuracy of 
Zhang et al.’s method is about 60%. Although the recognition accuracy of Frank and P1 
signals at −6 dB is lower than that using Wan et al.’s method, as the signal-to-noise ratio 
increases to −4 dB, the recognition rate of this method reaches 100%, which is about 20% 
higher than Wan et al.’s method. Moreover, the last subfigure in Figure 7 demonstrates 
the overall recognition accuracy for the three approaches. At −4 dB, the recognition accu-
racy of this system is about 5% higher than that of Wan et al.’s method and about 20% 
higher than that of Zhang et al.’s method. With the increase of the signal-to-noise ratio, 
the accuracy of Wan et al.’s method increases slowly. It can be seen that the proposed 
approach has better performance under a low signal-to-noise ratio. 

In addition, it can be seen from Figure 8 that some similar signal time-frequency im-
ages are easily confused under the interference of noise when the SNR is −6 dB. In our 
approach, the recognition accuracy for P1 codes is 80%, and 20% are misjudged as P4 
codes. The recognition rate for T2 signals is 90%, and 10% are misjudged as BPSK signals. 

 
Figure 8. The confusion matrix of 12 kinds of signals under −6 dB SNR. 

6.4. Robustness Experiment 
In order to verify the robustness of the algorithm, the radar signals are trained and 

tested under a mixed signal-to-noise ratio, and the robustness of the model is verified by 
testing the accuracy. The experimental results are shown in Table 3. 

Table 3. The simulation parameter list. 

Saved Model/dB Test Data/dB Recognition Accuracy 
−6 0 95% 
−4 2 92.6% 
−2 2 93% 
2 −2 96.62% 

We save the model under a single signal-to-noise ratio, and then test the recognition 
accuracy of the model under different signal-to-noise ratios to test the robustness of the 

Figure 8. The confusion matrix of 12 kinds of signals under −6 dB SNR.

6.4. Robustness Experiment

In order to verify the robustness of the algorithm, the radar signals are trained and
tested under a mixed signal-to-noise ratio, and the robustness of the model is verified by
testing the accuracy. The experimental results are shown in Table 3.

Table 3. The simulation parameter list.

Saved Model/dB Test Data/dB Recognition Accuracy

−6 0 95%
−4 2 92.6%
−2 2 93%
2 −2 96.62%

We save the model under a single signal-to-noise ratio, and then test the recognition
accuracy of the model under different signal-to-noise ratios to test the robustness of the
model. It can be seen from the experiments that the model still has a high recognition rate,
and the accuracy rate is above 90%. Therefore, the model shows good robustness.
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7. Conclusions

In this work, we propose a new method for LPI radar signal recognition based on dual-
channel CNN and feature fusion to improve the recognition accuracy of LPI radar signals
under the condition of low SNR. The proposed approach includes three modules: signal pre-
processing, feature extraction, and feature fusion and recognition. The signal preprocessing
module mainly converts 1D signals into 2D time-frequency images by CWD transformation
for use in deep learning models. Next, we design a dual-channel CNN model to extract
the HOG features and image features simultaneously from the time-frequency images.
Compared with the baseline methods, the dual-channel model can simultaneously extract
low-level features and high-level features of time-frequency images that mutually benefit
from both components and can better characterize signal characteristics. The features from
the two channels are fused via the MLP network to further improve the robustness and
recognition accuracy of the model. Finally, the Softmax classifier is used to achieve the
classification of the radar signals. The experimental results show that the method has a
high recognition accuracy for typical radar signals under low SNR. It provides a feasible
solution for radar signal recognition in complex electromagnetic environments.

In future work, we aim to conduct more in-depth research, particularly on dataset
construction and feature fusion. At present, most of the training data and test data from
related work are obtained based by simulation, the interference is relatively simple, and the
recognition accuracy is better at low signal-to-noise ratio. However, in the real battlefield
environment, in addition to white noise, there are interferences, such as traffic signals, and
the recognition accuracy will be greatly reduced. Therefore, our next study will try to gen-
erate training data and test data using a hardware-in-the-loop simulation system, in which
real-world scenarios are approximated by transmitters and receivers, and the received
signal is trained and recognized. This type of research will make our work more valu-
able. In feature fusion, we will study the methods of measuring and combining different
features [25], as well as dealing with the redundancy and differences between features.
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