
����������
�������

Citation: Chang, T.-C.; Lin, Y.; Shi, K.;

Meen, T.-H. Decision Making of

Software Release Time at Different

Confidence Intervals with Ohba’s

Inflection S-Shape Model. Symmetry

2022, 14, 593. https://doi.org/

10.3390/sym14030593

Academic Editor: Mihai Postolache

Received: 27 February 2022

Accepted: 15 March 2022

Published: 16 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Decision Making of Software Release Time at Different
Confidence Intervals with Ohba’s Inflection S-Shape Model
Ting-Cheng Chang 1, Ying Lin 1, Kunquan Shi 1 and Teen-Hang Meen 2,*

1 College of Information Engineering, Guangzhou Panyu Polytechnic, Guangzhou 511483, China;
zhangtz@gzpyp.edu.cn (T.-C.C.); liny@gzpyp.edu.cn (Y.L.); shikq@gzpyp.edu.cn (K.S.)

2 Department of Electronic Engineering, National Formosa University, Huwei 632, Taiwan
* Correspondence: thmeen@gs.nfu.edu.tw

Abstract: Software developers need information for deciding the optimal time for software release
with improved software reliability. However, it is not easy for them to decide when and how to release
newly developed software to the market. For a decision, the reliability and test costs of the software
need to be balanced carefully for avoiding unnecessary confusion and users’ complaints. To address
this need, related research has been carried out to propose an appropriate tool for such decisions.
In many studies, software reliability growth models (SRGMs) were applied using the concept of
confidence intervals to estimate the reliability of software. Confidence intervals were calculated on
the basis of the assumption of a normal distribution showing the symmetrical occurrence of data with
the mean as a center. However, the reliability data of software do not always have such symmetry for
assuming the normal distribution. Therefore, it is necessary to propose a method for overcoming the
mean value randomness that causes asymmetry in the related data. In previous studies, estimating
variance and mean of errors of software was not considered, which led to the unreliable estimation
of the confidence intervals of the mean value for decision making. Previous studies also lacked
practicability in applications due to statistics from the asymmetrical data distribution. As a result,
software developers could not effectively evaluate the possible risk related to the software release
time. To improve the estimation, we employ the inflection S-shape model to propose the SRGM
on the basis of confidence intervals assumed to come from the normal distribution. The proposed
model allows determining the optimal time for software release with the consideration of its potential
risk. For efficient determination, the architecture and user interface of the computation system are
also proposed.

Keywords: nonhomogeneous Poisson process; software release policy; statistical confidence intervals;
stochastic differential equations

1. Introduction

As a fundamental issue in improving software quality, software reliability must meet
user satisfaction and lower the cost of software testing when the software is released to the
market. Software developers need to balance between software test costs and reliability. To
decrease costs throughout software testing/debugging, software developers need to con-
sider to what extent the reliability of software has to be secured. The development process
of software is managed by considering the reliability, cost, and release time into the market.
Thus, estimating the reliability of software is essential to the software industry throughout
the testing/debugging process and is directly related to the total cost of development.
Therefore, an appropriate model for estimating the reliability and testing costs is based
on the assumptions of a symmetrical Gaussian distribution of data. However, previous
models were only appropriate for limited testing data, thus having limited applications.
The limited data cause a problem when assuming a symmetric normal distribution of data,
which is mandatory for calculating statistical parameters. Thus, a new method is required

Symmetry 2022, 14, 593. https://doi.org/10.3390/sym14030593 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14030593
https://doi.org/10.3390/sym14030593
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6509-6670
https://doi.org/10.3390/sym14030593
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14030593?type=check_update&version=2

Symmetry 2022, 14, 593 2 of 18

to solve such problems by finding a solution from the possible asymmetrical data for the
decision of testing and releasing software to the market.

Software reliability may be related to imperfections in its coding. Imperfections were
discussed for hardware production by Bucolo et al., who tried to find out the causes of the
occurrence of chaotic oscillation in electronic circuits. Such unexpected and chaotic occur-
rence of imperfection may also occur in software development [1]. Previously, software
reliability growth models (SRGMs) have been proposed to optimally reduce software fail-
ure using the nonhomogeneous Poisson process (NHPP) to model such imperfection. The
optimal approach for a reduction in imperfection is to decrease software errors such that
their occurrence follows an S- or exponential shape with decreasing confidence intervals of
the mean values of the frequency of error. Thus, a new SRGM is needed for improving the
software reliability by representing S- and exponential-shaped confidence intervals to get
rid of imprecise assumptions from the asymmetry of the data.

Software developers and testers utilize SRGMs to balance between the reliability and
the testing cost of the software. It is critical to choose the best time of software release with
optimal software reliability. Therefore, we present a model with a stochastic differential
equation (SDE). The proposed model is proposed to evaluate the software reliability by
considering S-shaped confidence intervals of mean values in software error occurrences.
The model is expected to solve the problems of the previous models and help to precisely
estimate the software reliability. Additionally, the optimal time for software release is
estimated according to the confidence level. The result provides a new way to decide a
software release time to the market with an acceptable balance between testing costs and
reliability for the software.

In this paper, Section 2 presents a brief literature review related to SRGMs. Section 3
explains Ohba’s SRGM that uses stochastic differential equations for the error detection
rate. Estimation of the specification and validation of the result of the proposed model
are also presented in this section. Section 4 describes an optimal software release model.
Section 5 illustrates the architecture and the designed user interface of the decision support
system for the proposed model. Section 6 summarizes the result of the model in this study
to demonstrate its effectiveness. Lastly, the conclusions and suggestions for further research
are presented in Section 7.

2. Literature Review

During testing and debugging, software reliability is useful for decision making. In
the software industry, increasing reliability and reducing costs are the main goals [2]. The
software developer needs to ensure the higher quality and the lower cost of the developed
software as the most important objective during software development. Therefore, SRGMs
are necessary to decide the release time of software and reduce its testing and debugging
cost. Generally, SRGMs include exponential-shaped models, S-shaped models, or a mixture
of both models [3].

NHP is commonly used to find the causes of the failure of software development. To
illustrate the error detection of software development, Goel and Okumoto (1979) and Musa
(1984) proposed exponential SRGMs in different aspects [4,5], which were generalizations
or modifications of SRGMs. Musa, Yamada et al., and Yamada and Ohba respectively
proposed exponential-shaped, S-shaped, and inflection S-shaped SRGMs for increasing the
reliability of data testing [6–8]. For assessing the reliability, Pham and Zhang proposed
an SRGM with combined estimations of testing and quality assurance [9]. Moreover, to
analyze system reliability and performance, Huang tried to combine a logical testing effort
function with change-point parameters to construct an SRGM [10].

The competitiveness of the project is determined by the timing of software release and
quality and cost. Therefore, the accurate estimation of reliability and cost is subject to the
efforts and resources of the testing project. SRGMs need to be reiterated on the basis of
failure data. However, how programming designers learn from this during software testing
and debugging is not considered in SRGMs. This learning effect affects the reliability of

Symmetry 2022, 14, 593 3 of 18

software without changing the cost of testing and debugging, as the experience of detecting
errors according to the testers’ patterns is efficient. However, since software testing has
uncertainties, the software developer needs to consider the risk and possible inaccuracy.

It is critical to understand a process of an accurate estimation of the confidence
intervals of the mean value and the reliability of software. Most of the previous SRGMs
adopted NHPP using the confidence interval of mean values. The confidence interval is
calculated as m̂(T)± ZCR/2.

√
m̂(T), where CR is the critical region, ZCR/2 is the critical

value of a given area, and CR/2 is the standard normal distribution. Yamada and Osaki
utilized different confidence intervals in their applications [11]. According to their study,
the maximum likelihood method is efficient in estimating confidence intervals and related
parameters. They considered a variance of testing time since the standard deviation is
positively correlated with testing time. The confidence interval follows the assumption of
NHPP; hence, they believed that the variance increased with the time for testing. However,
as the occurrence of software defects is finite, the variance decreases as the testing time
elapses. Therefore, the cumulative number of software errors decreases. This is different
from the result of the estimation method of NHPP for hardware.

There have been efforts to improve the estimation of the confidence interval. Lee et al.
and Tamura and Yamada thought that the variance is caused by the error detecting proce-
dure, and the mean is estimated by stochastic differential equations (SDEs) [12,13]. Despite
the effectiveness in assessing the mean value, the inference process still has problems. For
instance, Ho et al. proposed an Itô-type SDE model with a changeable error detection
rate [14]. Lee et al. (2004) extended the SRGMs [12] from Ohba [8] and Yamada [6] without
the estimated variance. They used an Itô-type SDE method to improve the estimation of
the confidence intervals so that a decision-maker can reasonably estimate the variability of
software reliability and cost of testing software. Fang and Yeh [15] extended the SRGM of
Tamura and Yamada [13] to propose flexible SDE models. However, their model did not
obtain parameters; thus, the mean value and variance were not obtained.

Accurate estimation of risk is critical for software developers in deciding software
release time. An SRGM assists decision-makers in finding the right timing for software
release by estimating cost, system reliability, and required constraints. The environment
for testing is important for software development and its release in time. Cortellessa et al.
proposed an optimization-based approach to minimize costs on the basis of reliability and
performance constraints [16]. Awad proposed to use software reliability and increased
testing time to reduce system failure under limited time, resources, and cost [17]. According
to Kooli et al. [18], there are differences in time and cost for reliability tests. Li and Pham
suggested a reliability model based on the uncertainty in the operating environment [19].
The model determines the optimal release date of software with the reliability of software
and testing cost. Zhu and Pham noted [20] that complete removal of software errors for each
release is almost impossible due to limited resources. Thus, it is necessary to set an accept-
able threshold for multiple software releases. Cao et al. proposed a model to minimize the
cost of testing software and penalty after software releases [21]. A threshold was adopted
for effectively determining the optimal time and cost of the software. Some imperfect
systems regarding electronic circuits may also cause the risk of reliability [1]. Kim et al. [22]
developed a software reliability model under the assumption that software failures occur in
a dependent manner, which is different to the general assumption of independent manner.
A policy of real-time software rejuvenation was proposed by Levitin et al. [23] by taking
the distribution of transition times into account in the cost evaluation model.

On the basis of the previous study results, an improved model is proposed for the
estimation of the mean and the confidence interval of system reliability and testing cost
based on an SDE with an error detection function. It provides software developers with the
relevant information for the risk management of software reliability and cost estimation.

Symmetry 2022, 14, 593 4 of 18

3. Ohba’s DRGM with Stochastic Differential Equation
3.1. Model Development

SRGMs are effective in predicting the increase in software reliability. To fit the data
into a model, the below SRGM based on NHPP is chosen. The methods of calculating error
detection rate and mean value function are presented in Table 1.

Table 1. Summary of previous models.

Model Calculation of Error Detection Rate
and Mean Value Function

Goel and Okumoto’s model
D(t) = β

m(t) = a
(

1− e−βt
)

Delayed, S-shaped model (Yamada)
D(t) = β2t

1+βt

m(t) = a
(

1− (1 + βt)e−βt
)

Musa’s exponential model
D(t) = γ

nκ

m(t) = a
(

1− e−(
γt
nκ)
)

Ohba’s inflection S-shaped model
D(t) = β

1+γe−βt

m(t) = a
(

1−e−βt

1+γe−βt

)

No method for calculating the confidence interval is presented in Table 1. Without
it, software developers cannot estimate the increase in software reliability and cost in the
testing and debugging process of software. Thus, we calculated confidence intervals using
Ohba’s inflection S-shaped model as the confidence interval helps software developers
evaluate potential changes in software reliability and cost to make a conservative decision
for testing software. To obtain the confidence interval, the variance of the efficiency of
debugging software is assumed to fluctuate with the detection rate of error and changes
with testing time. The following notation is used to derive the proposed model in this study:

a: the potential errors number are hidden in the system without any software debugging process;
m(t): the mean is calculated with the expected number of detected errors in the testing
time range (0, t);
Φ(t): the function of the residual error in a system at the testing time t and defined as
Φ(t) = a−m(t);
D(t): the error detection rate at testing time t;
ψ(t): the continuous-time stochastic process that indicates the magnitude of irregular
fluctuations from the error detection rate D(t);
σ: the standard deviation of ψ(t).

According to the definition of previous SRGMs, the error detection rate is regarded
as the proportion of errors detected at time t and residual errors in a system. The rate is
represented as D(t) =

(
dm(t)

dt

)
/(a−m(t)). However, the fluctuation in the number of

debugging software is not considered since the fluctuation originates from the function to
calculate mean values. Therefore, we propose a new definition of fluctuation. In practice,
the detection rate usually fluctuates during a test even with a trend due to the instability
of human work. Accordingly, in debugging, the fluctuation of an error detection rate is
presented as follows:

dm(t)
dt

a−m(t)
= D(t) + σdψ(t), (1)

Symmetry 2022, 14, 593 5 of 18

where ψ(t) denotes the irregular fluctuations of the error detection rate. To deduce and
solve the above equation smoothly, we define the function Φ(t) that is equal to a−m(t).
Therefore, substituting Φ(t) for a−m(t) transforms Equation (1) to

dΦ(t)
dt

Φ(t)
= −(D(t) + σdψ(t)). (2)

Taking a logarithm of Φ(t) and making it equal to Ω(t), the following equation is
obtained with Itô’s method:

dΦ(t)
dt

Φ(t)
= dΩ(t) =

{
−D(t)− 1

2
σ2
}

dt− σdψ(t)(∵ Ω(t) = ln[Φ(t)]). (3)

As the integral of the derivative of Ω(t) from 0 to T, Ω(t) is defined as∫ T

0
dΩ(t) = Ω(t)|T0 = −

∫ T

0
D(t)dt−

∫ T

0

1
2

σ2dt−
∫ T

0
σdψ(t), (4)

where
T∫
0

D(t)dt is as follows:

∫ T

0
D(t)dt = − ln

[
(1 + γ)e−βT

1 + γe−βT

]
. (5)

Therefore, Equation (4) is arranged as

Ω(t)|T0 = ln
[
(1 + γ)e−βT

1 + γe−βT

]
−
∫ T

0

1
2

σ2dt−
∫ T

0
σdψ(t). (6)

Since Ω (t) is equal to ln[Φ(t)], Equation (6) is rewritten as follows:

ln[Φ(T)] = ln
[
(1 + γ)e−βT

1 + γe−βT

]
−
∫ T

0

1
2

σ2dt−
∫ T

0
σdψ(t) + c. (7)

By solving Equation (7), Φ(T) is defined as

Φ(T) =
(1 + γ)e−βT

1 + γe−βT e−
1
2 σ2T−σψ(T)+c. (8)

Φ(T) is for random variables that are normally distributed. To obtain the expected
value of Φ(T), Equation (8) needs to be further processed by applying the probability
theory as follows:

E[Φ(T)] = E
[
(1 + γ)e−βT

1 + γe−βT e−
1
2 σ2T−σψ(T)+c

]
=

(1 + γ)e−βT

1 + γe−βT ec− 1
2 σ2TE

[
e−σψ(T)

]
, (9)

where E
[
e−σψ(T)

]
is deduced from

∫ ∞
−∞

1√
2πT

e−σxe−
x2
2T dx = e

1
2 σ2T . Then, Equation (8) is

simplified as

E[Φ(T)] =
(1 + γ)e−βT

1 + γe−βT ec− 1
2 σ2Te

1
2 σ2T =

(1 + γ)e−βT

1 + γe−βT ec. (10)

Due to the initial condition of Φ(0) = a, the constant c of the equations is equal to
ln[a]. Therefore, the expected mean, E[m(T)] is obtained as follows:

E[m(T)] = E[a−Φ(T)] = a
(

1− e−βT

1 + γe−βT

)
. (11)

Symmetry 2022, 14, 593 6 of 18

The variance of the mean Var[m(T)] is defined as

Var[m(T)] = Var[Φ(T)] = E
[
Φ(T)2

]
− E[Φ(T)]2. (12)

For obtaining Var[m(T)], the value of E
[
Φ(T)2

]
needs to be calculated first. As

given by Equation (7), Φ(t) is used to obtain the real form of E
[
Φ(T)2

]
. The following

mathematical deduction leads to E
[
Φ(T)2

]
:

E
[
Φ(T)2

]
= E

[
a2
(
(1+γ)e−βT

1+γe−βT

)2
e−σ2T−2σψ(T)

]
= a2

(
(1+γ)e−βT

1+γe−βT

)2
E
[
e−σ2T−2σψ(T)

] . (13)

Furthermore, as E
[
e−2σψ(T)

]
=
∫ ∞
−∞

1√
2πT

e−2σxe−
x2
2T dx = e2σ2T , Equation (13) is

rewritten as

E
[
Φ(T)2

]
= a2

(
(1 + γ)e−βT

1 + γe−βT

)2

eσ2T . (14)

Similarly, since E[Φ(T)] = a
(

e−
∫ T

0 D(t)dt
)

, E[Φ(T)]2 is defined as

E[Φ(T)]2 =

(
a
(
(1 + γ)e−βT

1 + γe−βT

))2

. (15)

On the basis of Equations (14) and (15), the variance Var[Φ(T)] of the mean value is
obtained as

Var[Φ(T)] = E
[
Φ(T)2

]
− E[Φ(T)]2

= a2
(

eσ2T − 1
)(

(1+γ)e−βT

1+γe−βT

)2
=
(

eσ2T − 1
)
(a−m(T))2

. (16)

Since Var[m(T)] is mapping Var[Φ(T)], Var[m(T)] = Var[Φ(T)] according to Equation (11).
Even with the expected and the variance of the mean, practical application is re-

quired for software developers. Section 3.3 describes how confidence intervals are applied
to the decision making of the release time of software considering the testing cost and
required reliability. Since the parameter of Ohba’s inflection S-shaped model needs to
be estimated, Section 3.2 presents the least-squares estimation (LSE) and the maximum
likelihood estimation (MLE) for the proposed model.

3.2. Estimating Parameters

LSE and MLE are proposed for estimating the parameters β, γ, and a [24]. The
MLE is used to estimate the parameters of a probability distribution by a maximized
likelihood function. Suppose that the set of paired data (Ti, mi) is collected where mi is
the detected number of errors until Ti. It is assumed that the unknown parameters of the
specified SRGMs are obtained by the observed pairwise data (m0, T0), (m1, T1), (m2, T2),
(m3, T3), . . . , (mn, Tn). Therefore, the likelihood function of SRGMs is expressed as follows:

f (β, γ, a|Ti) = Pr{∆(T1) = m1, ∆(T2) = m2, ∆(T3) = m3, . . . , ∆(Tn) = mn}
=

n
∏
i=1

(
e−(m(Ti)−m(Ti−1))

)
(m(Ti)−m(Ti−1))

(mi−mi−1)

(mi−mi−1)!
(17)

Symmetry 2022, 14, 593 7 of 18

To find the MLE, the likelihood function in Equation (17) is taken on the logarithmic
scale as follows:

ln[f (β, γ, a|Ti)] =
n
∑

i=1
(mi −mi−1) ln[m(Ti)−m(Ti−1)]

−
n
∑

i=1
ln[(mi −mi−1)!]−

n
∑

i=1
(m(Ti)−m(Ti−1))

. (18)

On the basis of the above equation, the MLE of the model’s parameters β̂, γ̂, and â is
attained through the equation ∂ ln[f (β,γ,a|Ti)]

∂β = ∂ ln[f (β,γ,a|Ti)]
∂γ = ∂ ln[f (β,γ,a|Ti)]

∂a = 0.
Furthermore, LSE is also used to estimate the model’s parameters. The evaluation

function of the LSE is presented as

Min
n

∑
i=1

(mi −m(Ti))
2. (19)

Similarly, the LSE for the parameters β̂, γ̂, and â is obtained by solving the simultane-

ous equations
∂[∑n

i=1(mi−m(Ti))
2]

∂β =
∂[∑n

i=1(mi−m(Ti))
2]

∂γ =
∂[∑n

i=1(mi−m(Ti))
2]

∂a = 0.
Moreover, the standard deviation of ψ(t) is significant for measuring the confidence

interval. Therefore, σ̂2 needs to be determined. The relationship between σ and Var[m(T)]
is recognized in Equation (16), thus defining the following equation:

σ̂2 =
1

(n− k)

n

∑
i=1

(1/Ti) ln

[
(mi −m(Ti))

2

(â−m(Ti))
2 + 1

]
, (20)

where k represents the number of the estimated parameters. On the basis of the above
equations, the confidence interval of the mean and the corresponding software reliability
are explained in the next section.

3.3. Estimating Confidence Intervals of Mean and Software Reliability

For the estimation of confidence intervals of SRGMs, many previous studies adopted
Yamada and Osaki’s estimation method [11]. The estimation was developed for hardware
reliability with the assumption of gradual increase and instability of the failure rate. The
traditional method of estimating the confidence interval is as follows:

Upper Bound mCR
UB(T) : m(T) +

√
m(T)ZCR/2, (21)

Lower Bound mCR
LB (T) : m(T)−

√
m(T)ZCR/2. (22)

CR and
√

m(T) denote the critical region and standard deviation, respectively. ZCR/2
represents the value of critical region CR/2 that follows a standard normal distribution.
As the standard deviation (SD)

√
m(T) is correlated with time T positively, the confidence

interval is enlarged during the test. However, in reality, the failure rate during the software
debugging gradually decreases and becomes stable as the failures are removed during a
testing period. Accordingly, it is inappropriate to apply Yamada and Osaki’s method.

Therefore, the confidence interval is proposed with a consideration that the variance
of efficiency of debugging depends on the error detection rate. By applying the abovemen-
tioned equations, the upper and lower boundaries of the confidence interval for the mean
are calculated as follows:

Upper Bound mCR
UB(T) :

E[m(T)] + (Var[m(T)])1/2
(

1 + 1/n +
(
T − t

)2/
n
∑

i=1

(
ti − t

)2
)1/2

tCR/2,n−k,
(23)

Symmetry 2022, 14, 593 8 of 18

Lower Bound mCR
LB (T) :

E[m(T)]− (Var[m(T)])1/2
(

1 + 1/n +
(
T − t

)2/
n
∑

i=1

(
ti − t

)2
)1/2

tCR/2,n−k,
(24)

where tCR/2,n−k represents the critical region CR/2 of Student’s t probability distribu-
tion with n− k degrees of freedom. For simplifying the equations, the upper and lower
boundaries of the mean are denoted as mCR

UB(T) and mCR
LB (T).

Traditional methods consider that the variance of the errors comes from m(T), while
the proposed method assumes that the variance comes from D(T). Thus, the confidence
interval of the traditional model becomes divergent in the later stage of the testing work.
However, the possibility of finding new software errors decreases with testing time since
the software errors are found to be much less at the end of testing than at previous stages. In
other words, the variance and the fluctuation of errors decrease with testing time when the
remaining errors become fewer at the end-stage. Therefore, the variance and the fluctuation
of errors vary with the error detection rate, converging at the end-stage. Figures 1 and 2
show the different confidence intervals between the traditional and proposed methods.

Symmetry 2022, 14, 593 8 of 18

Upper Bound ()CR

UBm T :
/2() ()ZCRm T m T+ , (21)

Lower Bound ()CR

LBm T :
/2() ()ZCRm T m T− . (22)

𝐶𝑅 and √𝑚(𝑇) denote the critical region and standard deviation, respectively.

Z𝐶𝑅/2 represents the value of critical region 𝐶𝑅/2 that follows a standard normal distri-

bution. As the standard deviation (SD) √𝑚(𝑇) is correlated with time 𝑇 positively, the

confidence interval is enlarged during the test. However, in reality, the failure rate during

the software debugging gradually decreases and becomes stable as the failures are re-

moved during a testing period. Accordingly, it is inappropriate to apply Yamada and

Osaki’s method.

Therefore, the confidence interval is proposed with a consideration that the variance

of efficiency of debugging depends on the error detection rate. By applying the above-

mentioned equations, the upper and lower boundaries of the confidence interval for the

mean are calculated as follows:

Upper Bound ()CR

UBm T :

 () () ()
1/2

1/2 2 2

/2,

1

() + [()] 1 1
n

i CR n k

i

E m T Var m T n T t t t t −

=

+ + − −

,

(23)

Lower Bound ()CR

LBm T :

 () () ()
1/2

1/2 2 2

/2,

1

() [()] 1 1
n

i CR n k

i

E m T Var m T n T t t t t −

=

− + + − −

,

(24)

where 𝑡𝐶𝑅/2,𝑛−𝑘 represents the critical region 𝐶𝑅/2 of Student’s t probability distribution

with 𝑛 − 𝑘 degrees of freedom. For simplifying the equations, the upper and lower

boundaries of the mean are denoted as 𝑚𝑈𝐵
𝐶𝑅 (𝑇) and 𝑚𝐿𝐵

𝐶𝑅(𝑇).

Traditional methods consider that the variance of the errors comes from 𝑚(𝑇), while

the proposed method assumes that the variance comes from 𝐷(𝑇). Thus, the confidence

interval of the traditional model becomes divergent in the later stage of the testing work.

However, the possibility of finding new software errors decreases with testing time since

the software errors are found to be much less at the end of testing than at previous stages.

In other words, the variance and the fluctuation of errors decrease with testing time when

the remaining errors become fewer at the end-stage. Therefore, the variance and the fluctu-

ation of errors vary with the error detection rate, converging at the end-stage. Figures 1 and

2 show the different confidence intervals between the traditional and proposed methods.

m(t)

t1

f(ε|t)

t

t2

t3

Figure 1. Confidence interval of traditional methods with a normal distribution. Figure 1. Confidence interval of traditional methods with a normal distribution.

Symmetry 2022, 14, 593 9 of 18

m(t)

t1

f(ε|t)

t

t2

t3

Figure 2. Confidence interval of the proposed method with Student’s t distribution.

The reliability of software 𝑅(𝑥/𝑇) is to measure the quality of a system software dur-

ing a testing period, and the general definition is

 () ()
(/)

m T x m T
R x T e

− + −
= . (25)

𝑅(𝑥/𝑇) is for the probability that no software error occurs during [𝑇, 𝑇 + 𝑥], where

𝑥 is the predefined time of software operation. On the basis of Equation (25), the upper

and lower boundaries of the reliability of software are inferred as follows:

Upper Bound
(/)CR

UBR x T
:

() ()CR CR
UB UBm T x m T

e
 − + −

,
(26)

Lower Bound
(/)CR

LBR x T
:

() ()CR CR
LB LBm T x m T

e
 − + −

.
(27)

3.4. Model Validation

Various model parameters were validated in this section. Six datasets from different

methods were used for evaluating the effectiveness of the estimation method in this study

(Table 2).

Table 2. Datasets for validation.

Dataset Literature Testing Dataset Reference

(1) Zhang and Pham (1998) Failure dataset from Misra system [25]

(2) Shyur (2003) Failure dataset from Misra system [26]

(3)
Hossain and Dahiya

(1993)
Failure dataset from NTDS system [27]

(4) Pham and Zhang (2003) Failure dataset from Tandem software [9]

(5) Jeske and Zhang (2005)
Failure dataset from wireless data

service system
[28]

(6) Zhang and Pham (2006)
Failure dataset from

telecommunication system
[29]

We applied the six datasets to four SRGMs to estimate their confidence intervals. Ta-

ble 3 presents the estimated parameters.

Figure 2. Confidence interval of the proposed method with Student’s t distribution.

The reliability of software R(x/T) is to measure the quality of a system software
during a testing period, and the general definition is

R(x/T) = e−[m(T+x)−m(T)]. (25)

R(x/T) is for the probability that no software error occurs during [T, T + x], where x
is the predefined time of software operation. On the basis of Equation (25), the upper and
lower boundaries of the reliability of software are inferred as follows:

Upper Bound RCR
UB(x/T): e−[m

CR
UB(T+x)−mCR

UB(T)], (26)

Symmetry 2022, 14, 593 9 of 18

Lower Bound RCR
LB (x/T): e−[m

CR
LB (T+x)−mCR

LB (T)]. (27)

3.4. Model Validation

Various model parameters were validated in this section. Six datasets from different
methods were used for evaluating the effectiveness of the estimation method in this study
(Table 2).

Table 2. Datasets for validation.

Dataset Literature Testing Dataset Reference

(1) Zhang and Pham (1998) Failure dataset from Misra system [25]

(2) Shyur (2003) Failure dataset from Misra system [26]

(3) Hossain and Dahiya (1993) Failure dataset from NTDS system [27]

(4) Pham and Zhang (2003) Failure dataset from Tandem software [9]

(5) Jeske and Zhang (2005) Failure dataset from wireless data
service system [28]

(6) Zhang and Pham (2006) Failure dataset from
telecommunication system [29]

We applied the six datasets to four SRGMs to estimate their confidence intervals.
Table 3 presents the estimated parameters.

Table 3. Estimated values of parameters for classic models and software testing datasets.

Testing Dataset Goel and Okumoto
Model

Yamada’s Delayed
S-Shaped Model

Musa’s Exponential
Model

Ohba Inflection
S-Shaped Model

(Proposed Model)

(1)

â = 135.891
β̂ = 0.138

R2 = 0.966
σ̂ = 0.079

â= 136.710
β̂ = 0.265

R2 = 0.808
σ̂ = 0.128

â = 135.96 γ̂ = 3.731
n = 144.31 κ̂= 0.184

R2 = 0.965
σ̂ = 0.080

â = 135.96 β̂ = 0.138
γ̂ = 0.001

R2 = 0.966
σ̂ = 0.079

(2)

â= 164.47
β̂ = 0.063

R2 = 0.976
σ̂ = 0.0273

â = 148.19
β̂ = 0.174546

R2 = 0.948113
σ̂ = 0.0601241

â = 165.61 γ̂ = 1.677
n = 156.49 κ̂ = 0.166

R2 = 0.975
σ̂ = 0.0267

â = 184.88 β̂ = 0.071
γ̂ = 0.556

R2 = 0.990
σ̂ = 0.016

(3)

â = 31.19
β̂ = 0.070

R2 = 0.895
σ̂ = 0.052

â = 25.68
β̂ = 0.211924

R2 = 0.964012
σ̂ = 0.061593

â = 31.27 γ̂ = 1.88
n = 25.43 κ̂ = 1.029

R2 = 0.894
σ̂ = 0.053

â= 24.54 β̂ = 0.248
γ̂ = 4.78

R2 = 0.964
σ̂ = 0.064

(4)

â = 122.64
β̂ = 0.017

R2 = 0.987
σ̂ = 0.011

â= 101.90
β̂= 0.050708

R2= 0.947729
σ̂= 0.040946

â = 122.77 γ̂ = 1.850
n = 106 κ̂ = 1

R2 = 0.988
σ̂ = 0.011

â = 121.61 β̂ = 0.020
γ̂ = 0.275

R2 = 0.990
σ̂ = 0.011

(5)

â = 22.86
β̂ = 0.542

R 2= 0.984
σ̂ = 0.108

â = 21.76
β̂ = 1.361881

R2 = 0.964143
σ̂ = 0.343911

â= 22.72 γ̂ = 3.76511
n= 23.41 κ̂ = 0.291

R2 = 0.986
σ̂ = 0.106

â = 21.88 β̂ = 0.788
γ̂ = 0.486

R2 = 0.987
σ̂= 0.210

(6)

â = 134.41
β̂ = 0.098

R2 = 0.864
σ̂ = 0.078

â = 134.82
β̂= 0.246786
R2 = 0.974
σ̂ = 0.033

â = 133.19 γ̂ = 1.062
N = 105 κ̂ = 0.1

R2 = 0.865
σ̂ = 0.081

â = 111.68 β̂ = 0.468
γ̂ = 13.498
R2 = 0.990
σ̂ = 0.038

The four SRGMs and two datasets were used to compare the confidence interval of
the models to that of the proposed model. Datasets (1) and (3) in Table 2 present the data

Symmetry 2022, 14, 593 10 of 18

distribution of a concave and an S-shape, respectively. Figures 3–6 show that the variation
of the confidence interval changes. The blue and red dashed lines of the figures respectively
represent the estimation of confidence intervals for the traditional and proposed models.
Results from the comparison show large differences in confidence intervals. The models of
Goel and Okumoto and Musa with datasets (3) and (6) show R-squared values (0.8–0.9)
that are not satisfactory. There are discrepancies in the distribution of dataset (3) in Figures
3b and 5b. Thus, the model’s accuracy needs to be determined by the scatter pattern in
the dataset. Accordingly, the performance of model fitting may depend on the pattern
of a dataset. A model may fit for some datasets but it may not fit for all the datasets. In
other words, both Goel and Okumoto’s and Musa’s models have a constant detection rate
which is opposite to the scenario of a nonconstant detection rate of the Yamada model
and the proposed model (Figures 3 and 6). As a result, the detection rates for Goel and
Okumoto’s and Musa’s models cannot be used to predict the pattern of S-shaped datasets.
However, Yamada’s delayed S-shaped model and Ohba’s inflection model (the proposed
model) are able to accurately estimate all the datasets with S-shaped or concave datasets.
In summary, the proposed confidence interval converges with the testing time to reflect the
actual situation. The number of software errors decreases with testing/debugging time.
Figures 3–6 present that the difference between actual and estimated errors is the greatest
when the testing/debugging process begins and then decreases with time. After debugging
and testing, the actual number and the estimated number of software errors are almost
identical. When compared with the traditional models, the estimation of the proposed
model shows a narrower 95% confidence interval. For example, the confidence intervals
for the traditional models are large and are not indicative of datasets (1) or (3).

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 20

the estimation of the proposed model shows a narrower 95% confidence interval. For ex-
ample, the confidence intervals for the traditional models are large and are not indicative
of datasets (1) or (3).

Intervals: Proposed Traditional Intervals: Proposed Traditional

(a) Dataset [1] (b) Dataset [3]

Figure 3. Confidence interval at 95% and the fitting result for Goel and Okumoto models.

Intervals: Proposed Traditional Intervals: Proposed Traditional
(a) Dataset [1] (b) Dataset [3]

Figure 4. Confidence interval (95%) and the fitting result for Yamada delayed S-shaped model.

Intervals: Proposed Traditional Intervals: Proposed Traditional

(a) Dataset [1] (b) Dataset [3]

Figure 5. Confidence interval (95%) and the fitting result for Musa’s model.

Figure 3. Confidence interval at 95% and the fitting result for Goel and Okumoto models.

Symmetry 2022, 14, x FOR PEER REVIEW 13 of 20

the estimation of the proposed model shows a narrower 95% confidence interval. For ex-
ample, the confidence intervals for the traditional models are large and are not indicative
of datasets (1) or (3).

Intervals: Proposed Traditional Intervals: Proposed Traditional

(a) Dataset [1] (b) Dataset [3]

Figure 3. Confidence interval at 95% and the fitting result for Goel and Okumoto models.

Intervals: Proposed Traditional Intervals: Proposed Traditional
(a) Dataset [1] (b) Dataset [3]

Figure 4. Confidence interval (95%) and the fitting result for Yamada delayed S-shaped model.

Intervals: Proposed Traditional Intervals: Proposed Traditional

(a) Dataset [1] (b) Dataset [3]

Figure 5. Confidence interval (95%) and the fitting result for Musa’s model.

Figure 4. Confidence interval (95%) and the fitting result for Yamada delayed S-shaped model.

Symmetry 2022, 14, 593 11 of 18

Symmetry 2022, 14, 593 11 of 18

proposed model shows a narrower 95% confidence interval. For example, the confidence

intervals for the traditional models are large and are not indicative of datasets (1) or (3).

Intervals: Proposed Traditional Intervals: Proposed Traditional

(a) Dataset (1) (b) Dataset (3)

Figure 3. Confidence interval at 95% and the fitting result for Goel and Okumoto models.

Intervals: Proposed Traditional Intervals: Proposed Traditional

(a) Dataset (1) (b) Dataset (3)

Figure 4. Confidence interval (95%) and the fitting result for Yamada delayed S-shaped model.

Intervals: Proposed Traditional Intervals: Proposed Traditional

(a) Dataset (1) (b) Dataset (3)

Figure 5. Confidence interval (95%) and the fitting result for Musa’s model.

Figure 5. Confidence interval (95%) and the fitting result for Musa’s model.

Symmetry 2022, 14, 593 12 of 18

Intervals: Proposed Traditional Intervals: Proposed Traditional

(a) Dataset (1) (b) Dataset (3)

Figure 6. Confidence interval (95%) and the fitting result for Ohba’s inflection model (the proposed

model).

4. Decision with Confidence Levels

Software developers aim to reduce the cost of development and secure the quality of

software by deciding when testing is completed and software is released. In general, a

longer testing period results in more reliable software. However, a software developer

cannot prolong the testing period indefinitely as this increases the costs and loses business

opportunities. Therefore, a software developer considers a trade-off between testing pe-

riod and software quality. Zhang and Pham suggested a cost–reliability model for the best

policy for software releases [25]. Thus, the model was adopted in this study to develop a

software release model based on different confidence levels. The proposed cost–reliability

model has the following six factors in deciding when to release the software:

(1) Setup cost (𝑆𝑡𝐶) for testing concerning necessary equipment and initial investment

before the testing project begins;

(2) Routine expense (𝑅𝑡𝐶(𝜃𝑅𝑡,𝑇)) for testing including salary, insurance, rent, and so on

during a planned testing period [0, 𝑇]. 𝜃𝑅 denotes the routine expense per unit time,

and the routine expense is calculated by 𝜃𝑅𝑡𝑇;

(3) Debugging expense (𝐷𝐶(𝜃𝐸,𝜉𝐸,𝑚(𝑇))) for removing software errors during a planned

testing period [0, 𝑇]. The estimation of the expense is related to the expense of omit-

ting an error per unit time 𝜃𝐸 and the average required time to delete an error 𝜉𝐸.

Therefore, the debugging expense is calculated by 𝜌𝐸𝑚(𝑇)𝜉𝐸;

(4) The cost of risk of a software failure after its release (𝑅𝑘𝐶(𝜃𝑅𝑘, 𝑅(𝑥/𝑇)) is estimated

by 𝜃𝑅𝑘(1 − 𝑅(𝑥/𝑇)). The parameter 𝜃𝑅𝑘 is calculated by estimating how much risk

cost for users or customers is caused by the 1% loss of software reliability at release

time 𝑇;

(5) Opportunity cost (𝑂𝑝𝐶(𝜃𝑂 , 𝜛1, 𝜛2, 𝑇)), as tangible and intangible losses caused by

postponing software release, is defined as 𝜃𝑂(𝜛1 + 𝑇)𝜛2 in this study. 𝜛1 and 𝜛2

are parameters for the power-law function, estimated by marketing experts. 𝜃𝑂 de-

notes the scale for base opportunity cost;

(6) Minimal requirement of software reliability 𝑅0 is a standard indicator for the re-

quirement of users or customers for which the operation of a software system must

meet.

By considering the factors, the software release model for the average case is pre-

sented as follows:

() () ()

() ()1 2

0

 ()

 (/) , , ,

 : (/)

, , ,

,

Rt E E

Rk O

Minimize TC T StC RtC DC m T

RkC R x T OpC T

Subject to R x T R

T

= + +

+ +

.

(28)

Since the model is only for a general case, decision-makers cannot effectively evalu-

ate the potential risk due to the extension of the testing schedule. Various possibilities of

Figure 6. Confidence interval (95%) and the fitting result for Ohba’s inflection model (the
proposed model).

4. Decision with Confidence Levels

Software developers aim to reduce the cost of development and secure the quality
of software by deciding when testing is completed and software is released. In general,
a longer testing period results in more reliable software. However, a software developer
cannot prolong the testing period indefinitely as this increases the costs and loses business
opportunities. Therefore, a software developer considers a trade-off between testing period
and software quality. Zhang and Pham suggested a cost–reliability model for the best
policy for software releases [25]. Thus, the model was adopted in this study to develop a
software release model based on different confidence levels. The proposed cost–reliability
model has the following six factors in deciding when to release the software:

(1) Setup cost (StC) for testing concerning necessary equipment and initial investment
before the testing project begins;

(2) Routine expense (RtC(θRt, T)) for testing including salary, insurance, rent, and so on
during a planned testing period [0, T]. θR denotes the routine expense per unit time,
and the routine expense is calculated by θRtT;

(3) Debugging expense (DC(θE, ξE, m(T))) for removing software errors during a planned
testing period [0, T]. The estimation of the expense is related to the expense of omitting
an error per unit time θE and the average required time to delete an error ξE. Therefore,
the debugging expense is calculated by ρEm(T)ξE;

Symmetry 2022, 14, 593 12 of 18

(4) The cost of risk of a software failure after its release (RkC(θRk, R(x/T)) is estimated
by θRk(1− R(x/T)). The parameter θRk is calculated by estimating how much risk
cost for users or customers is caused by the 1% loss of software reliability at release
time T;

(5) Opportunity cost (OpC(θO, v1, v2, T)), as tangible and intangible losses caused by
postponing software release, is defined as θO(v1 + T)v2 in this study. v1 and v2 are
parameters for the power-law function, estimated by marketing experts. θO denotes
the scale for base opportunity cost;

(6) Minimal requirement of software reliability R0 is a standard indicator for the require-
ment of users or customers for which the operation of a software system must meet.

By considering the factors, the software release model for the average case is presented
as follows:

Minimize TC(T) = StC +RtC(θRt, T) + DC(θE, ξE, m(T))
+RkC(θRk, R(x/T)) + OpC(θO, v1, v2, T)

Subject to : R(x/T) ≥ R0

(28)

Since the model is only for a general case, decision-makers cannot effectively evaluate
the potential risk due to the extension of the testing schedule. Various possibilities of the
delay need to be considered to handle the extra cost and prepare for postponing the software
release. The reliability of software does not reach the desired level in most testing cases.
Thus, decision-makers need conservative estimations for the cost and reliability, which leads
to the consideration of the worst case in making decisions. Thus, according to Equation (28),
the lower bound estimation mCR

LB (T) and RCR
LB (x/T) at a specific confidence level, CR was

taken into consideration to apply the decision model in this study. Equation (29) presents
the proposed decision model. Decision-makers can use this model by setting an appropriate
confidence level to determine the best release time of the software.

Minimize TCCR
LB (T) = StC + RtC(θRt, T) + DC

(
θE, ξE, mCR

LB (T)
)

+RkC
(
θRk, RCR

LB (x/T)
)
+ OpC(θO, v1, v2, T)

Subject to : RCR
LB (x/T) ≥ R0

(29)

5. Computerized Implementation Architecture
5.1. Model Development

To effectively apply the result of this study, a computerized system is necessary for
a problem-solving process. In this study, components such as an organized database, a
model base, data formalizing modules, a specific application programming interface, and a
designed computation engine are included in the system.

The database is designed to store the related costs, failure data of various systems,
and experts’ inputs. A model base is created for the software growth model and the
mathematical model to assess the impacts of different software release policies. By storing
and/or accessing the database and model base, the formalized data structure is used to
find the inconsistent data. The system has more efficiency and effectiveness in storing and
accessing the formalized data than previous ones.

The proposed model requires programming algorithms and numerical integration
methods. A powerful computation capability is needed to construct the system. The
computation engine is developed by programmers or obtained from external software
providers (e.g., from Python packages or Lingo Systems). To utilize a computation engine
efficiently and conveniently, an appropriate mechanism of a programming interface is
necessary for exchanging information among the components of the designed system.

5.2. System Design and Operation

The entire system is composed of two subsystems. Domain experts, software engi-
neers, and testing staff need to provide various models and parameters for the model
management system for enhancing applicability and manageability. The decision support

Symmetry 2022, 14, 593 13 of 18

system provides the relevant information for testing staff to make effective decisions. The
operating system requires the engineers or testing staff to collect all relevant data in ad-
vance. They need to investigate all critical parameters, cost structures, previous testing
data, and mathematical models to input into the system. The efficiency of software testing
is important in determining the software release timing and estimating the testing cost.
Therefore, domain experts need to choose and evaluate which SRGM is suitable for the
current project. Moreover, all the engineers, domain experts, and managers are allowed to
access their subsystems only because of commercial confidentiality. For upper-level man-
agement, the decision support system offers complete and integrated information to assist
them in making the best decision. Decision-makers examine all constructive information
in the database and model base to determine the optimal decision. To obtain an optimal
decision, computation is required; hence, computation programs need to be developed.
The system’s structure is shown in Figure 7, and an example of the system’s interface is
presented in Figure 8.

Symmetry 2022, 14, 593 14 of 18

Database:

Historical software testing

data

Parameters of mean value

functions

Model Base:

Mathematical model for

decision model 1

Mathematical model for

decision model k

Computation Engine:

Mathematical Programming Engine

Numerical Integration

Curve fitting technique

Model Management System

Software engineers

Testing staff

Decision Support System

Decision Makers

InterNet

Windows NT Platform

Application Programming Interface

Data formalizing

System developers

Figure 7. Computerized implementation architecture.

Figure 8. Concept design of user interface for the decision support system.

6. Discussions

A software service provider develops commercial software applications. When the

coding is completed, the service provider’s manager determines an appropriate release

date. The inflection S-shape model by Ohba is appropriate for the determination based on

historical data and expert evaluation. According to the potential error, the model has a

standard deviation of �̂� = 0.228, a potential error of �̂� up to 3350, parameter �̂� of 0.015,

and parameter �̂� of 1.35. In detecting errors, each employee works 10 h a day and 24 days

a month, which pertains to 𝑆𝑡𝐶= $2000, 𝜃𝑅𝑡= $6000, 𝜃𝐸 = $12,000, 𝜃𝑅𝑘= $252,000, 𝜃𝑂=

$3800, 𝑥= 1 h, 𝜛1= 2, 𝜛2= 1.6, and 𝜉𝐸 = 0.5 h. As a software service provider wants to

Figure 7. Computerized implementation architecture.

Symmetry 2022, 14, 593 14 of 18

Symmetry 2022, 14, 593 14 of 18

Database:

Historical software testing

data

Parameters of mean value

functions

Model Base:

Mathematical model for

decision model 1

Mathematical model for

decision model k

Computation Engine:

Mathematical Programming Engine

Numerical Integration

Curve fitting technique

Model Management System

Software engineers

Testing staff

Decision Support System

Decision Makers

InterNet

Windows NT Platform

Application Programming Interface

Data formalizing

System developers

Figure 7. Computerized implementation architecture.

Figure 8. Concept design of user interface for the decision support system.

6. Discussions

A software service provider develops commercial software applications. When the

coding is completed, the service provider’s manager determines an appropriate release

date. The inflection S-shape model by Ohba is appropriate for the determination based on

historical data and expert evaluation. According to the potential error, the model has a

standard deviation of �̂� = 0.228, a potential error of �̂� up to 3350, parameter �̂� of 0.015,

and parameter �̂� of 1.35. In detecting errors, each employee works 10 h a day and 24 days

a month, which pertains to 𝑆𝑡𝐶= $2000, 𝜃𝑅𝑡= $6000, 𝜃𝐸 = $12,000, 𝜃𝑅𝑘= $252,000, 𝜃𝑂=

$3800, 𝑥= 1 h, 𝜛1= 2, 𝜛2= 1.6, and 𝜉𝐸 = 0.5 h. As a software service provider wants to

Figure 8. Concept design of user interface for the decision support system.

6. Discussions

A software service provider develops commercial software applications. When the
coding is completed, the service provider’s manager determines an appropriate release
date. The inflection S-shape model by Ohba is appropriate for the determination based
on historical data and expert evaluation. According to the potential error, the model has a
standard deviation of σ̂ = 0.228, a potential error of â up to 3350, parameter γ̂ of 0.015, and
parameter β̂ of 1.35. In detecting errors, each employee works 10 h a day and 24 days a
month, which pertains to StC = $2000, θRt = $6000, θE = $12,000, θRk = $252,000, θO = $3800,
x = 1 h, v1 = 2, v2 = 1.6, and ξE = 0.5 h. As a software service provider wants to meet a
minimum software reliability requirement (R0 = 0.9) at the confidence level of 95%, they
need to identify the optimal software release time for general and worst cases.

By using spectrum analysis with Equations (28) and (29), when to release a software
package, the expected cost of testing, and the safety of the software package before release
are determined. Table 4 and Figure 9 show that the optimized release time for software,
T∗, is 3.65 months after the beginning of debugging and testing. The total cost and the
reliability are estimated to be approximately $270,682 and 0.936 in the general case to satisfy
the requirement of the reliability of software of 0.9. However, if the manager considers the
possible delay of the testing at the confidence level of 0.95, the software reliability reaches
0.886, which does not meet the minimal requirement unless the testing time is prolonged to
3.75 months.

Symmetry 2022, 14, 593 15 of 18

Table 4. Values of R(x/T), TC(T), RCR
LB (x/T) and TCCR

LB (T) vs. testing time.

Average Case Worst Case
(Confidence Level = 0.95)

T (months) R(x/T) E[C(T)] T (Months) RCR
LB (x/T) ECR

LB [C(T)]

3 0.830 281,040 3 0.723 306,685

3.05 0.842 279,303 3.05 0.740 303,711

3.1 0.854 277,754 3.1 0.757 300,946

3.15 0.864 276,385 3.15 0.772 298,387

3.2 0.874 275,186 3.2 0.787 296,029

3.25 0.883 274,149 3.25 0.801 293,867

3.3 0.891 273,264 3.3 0.814 291,896

3.35 0.899 272,524 3.35 0.826 290,109

3.4 0.907 271,921 3.4 0.838 288,499

3.45 0.913 271,446 3.45 0.849 287,060

3.5 0.920 271,091 3.5 0.859 285,783

3.55 0.926 270,850 3.55 0.868 284,663

3.6 0.931 270,716 3.6 0.877 283,691

3.65 0.936 270,682 * 3.65 0.886 282,860

3.7 0.941 270,741 3.7 0.894 282,164

3.75 0.946 270,888 3.75 0.901 281,595

3.8 0.950 271,117 3.8 0.908 281,147

3.85 0.953 271,422 3.85 0.914 280,813

3.9 0.957 271,800 3.9 0.920 280,587

3.95 0.960 272,244 3.95 0.926 280,462

4 0.963 272,752 4 0.931 280,434 *

4.05 0.966 273,318 4.05 0.936 280,496

4.1 0.971 273,938 4.1 0.941 280,642

Symmetry 2022, 14, 593 15 of 18

meet a minimum software reliability requirement (𝑅0= 0.9) at the confidence level of 95%,

they need to identify the optimal software release time for general and worst cases.

By using spectrum analysis with Equations (28) and (29), when to release a software

package, the expected cost of testing, and the safety of the software package before release

are determined. Table 4 and Figure 9 show that the optimized release time for software,

𝛵∗, is 3.65 months after the beginning of debugging and testing. The total cost and the

reliability are estimated to be approximately $270,682 and 0.936 in the general case to sat-

isfy the requirement of the reliability of software of 0.9. However, if the manager considers

the possible delay of the testing at the confidence level of 0.95, the software reliability

reaches 0.886, which does not meet the minimal requirement unless the testing time is

prolonged to 3.75 months.

The expected testing costs decrease when the confidence level is considered (Figures

9 and 10, and Table 4). Debugging and testing are, therefore, extended, which increases

the expected testing cost, but enhances the reliability. Therefore, even in the worst case,

the software quality meets the requirement, which results in the decision-maker extend-

ing the period for testing and debugging. Therefore, the optimal release time needs to be

4 months instead of 3.65 months in the worst case, and the total cost and reliability are

$280,434 and 0.931, respectively. Managers set other confidence levels by considering ac-

tual requirements to improve the software quality to earn customer trust and confidence.

Figure 9. The testing time expected vs. testing cost of the testing project.

Figure 10. The testing time vs. expected reliability of the testing project.

Figure 9. The testing time expected vs. testing cost of the testing project.

Symmetry 2022, 14, 593 16 of 18

The expected testing costs decrease when the confidence level is considered (Figures 9 and 10,
and Table 4). Debugging and testing are, therefore, extended, which increases the expected testing
cost, but enhances the reliability. Therefore, even in the worst case, the software quality meets the
requirement, which results in the decision-maker extending the period for testing and debugging.
Therefore, the optimal release time needs to be 4 months instead of 3.65 months in the worst
case, and the total cost and reliability are $280,434 and 0.931, respectively. Managers set other
confidence levels by considering actual requirements to improve the software quality to earn
customer trust and confidence.

Symmetry 2022, 14, 593 15 of 18

meet a minimum software reliability requirement (𝑅0= 0.9) at the confidence level of 95%,

they need to identify the optimal software release time for general and worst cases.

By using spectrum analysis with Equations (28) and (29), when to release a software

package, the expected cost of testing, and the safety of the software package before release

are determined. Table 4 and Figure 9 show that the optimized release time for software,

𝛵∗, is 3.65 months after the beginning of debugging and testing. The total cost and the

reliability are estimated to be approximately $270,682 and 0.936 in the general case to sat-

isfy the requirement of the reliability of software of 0.9. However, if the manager considers

the possible delay of the testing at the confidence level of 0.95, the software reliability

reaches 0.886, which does not meet the minimal requirement unless the testing time is

prolonged to 3.75 months.

The expected testing costs decrease when the confidence level is considered (Figures

9 and 10, and Table 4). Debugging and testing are, therefore, extended, which increases

the expected testing cost, but enhances the reliability. Therefore, even in the worst case,

the software quality meets the requirement, which results in the decision-maker extend-

ing the period for testing and debugging. Therefore, the optimal release time needs to be

4 months instead of 3.65 months in the worst case, and the total cost and reliability are

$280,434 and 0.931, respectively. Managers set other confidence levels by considering ac-

tual requirements to improve the software quality to earn customer trust and confidence.

Figure 9. The testing time expected vs. testing cost of the testing project.

Figure 10. The testing time vs. expected reliability of the testing project.

Figure 10. The testing time vs. expected reliability of the testing project.

7. Conclusions

It is important for software developers to decide when to release developed software
to the market with a certain level of reliability. Such a decision has been enabled with
previous methods. However, the previous methods assessed the software reliability only
on the basis of the confidence intervals of necessary statistics, which is not appropriate
for estimating the reliability due to the asymmetry of the statistics. To refine the decision
related to software testing, a more reasonable method is required for decision making.
Therefore, a new method of estimating the reliability of software is proposed by using
SDE that reasonably estimates confidence intervals from the fluctuation of error detection
rates. By using the proposed method, software developers can precisely determine the
optimal time for software release by considering different levels of confidence intervals.
The result of this study indicates that the mean value and the confidence interval are highly
correlated with time and variance. According to the estimation of expected quality and cost
of software testing, the proposed model enables decision-makers to estimate an optimal
time of software release at different statistical confidence levels.

There are two limitations of this study:

(1) High-performance computing capability is needed for numerical analyses to obtain
the results in a tolerable period. In general, workstation-class computers are required
to solve the problem of this study.

(2) Change-point problems of SRGM cannot be solved by the proposed model. During
debugging or testing, factors can be changed, possibly leading to an increase or
decrease in the failure rate.

Several problems still need to be resolved, especially with insufficient historical data.
Mean values influence the estimation of the software testing cost. It is crucial to estimate
the mean value accurately. In general, the decision-maker estimates the parameters from
the historical data of previous software testing. For assessing the optimal release time, the
data may be difficult to collect. The Bayesian approach may help solve such a problem

Symmetry 2022, 14, 593 17 of 18

when there is little historical information with the parameters estimated by experts or with
a few specific data points. The combination of Bayesian analysis and the proposed model
will provide more efficient and realistic decisions for future study.

Author Contributions: Writing and reviewing, T.-C.C.; data collection, Y.L.; data analysis, K.S.;
English editing and reviewing the manuscript, T.-H.M. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by the Guangdong College Research Platform and Research
Project (grant No.: 2021ZDZX1137 and 2019GKTSCX069), the Panyu Polytechnic Innovation Team
under grant No. 2020CXTD003 (2011/210113263), the Panyu Polytechnic Research Project under
grant No. 2021KJ04 (2011/210113263), and the Department of Education of Guangdong Province,
China, under Grant No. 2020KQNCX192.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bucolo, M.; Buscarino, A.; Famoso, C.; Fortuna, L.; Gagliano, S. Imperfections in integrated devices allow the emergence of

unexpected strange attractors in electronic circuits. IEEE Access 2021, 9, 29537–29583. [CrossRef]
2. Pham, H. Software reliability and cost models: Perspectives, comparison, and practice. Eur. J. Oper. Res. 2003, 149, 475–489.

[CrossRef]
3. Kapur, P.K.; Anand, S.; Yamada, S.; Yadavalli, V.S. Stochastic differential equation-based flexible software reliability growth model.

Math. Probl. Eng. 2009, 2009, 581383. [CrossRef]
4. Goel, A.L.; Okumoto, K. Time-dependent error detection rate model for software and other performance measures. IEEE Trans.

Reliab. 1979, 28, 206–211. [CrossRef]
5. Musa, J.D. Software engineering: The future of a profession. IEEE Softw. 1985, 2, 55–62. [CrossRef]
6. Yamada, S.; Ohba, M.; Osaki, S. S-shaped reliability growth modeling for software error detection. IEEE Trans. Reliab. 1983, 32,

475–484. [CrossRef]
7. Yamada, S. Software quality/reliability measurement and assessment: Software reliability growth models and data analysis. J.

Inf. Processing 1991, 14, 254–266. [CrossRef]
8. Ohba, M. Software reliability analysis models. IBM J. Res. Dev. 1984, 28, 428–443. [CrossRef]
9. Pham, H.; Zhang, X. NHPP software reliability and cost models with testing coverage. Eur. J. Oper. Res. 2003, 145, 443–454.

[CrossRef]
10. Huang, C.Y. Performance analysis of software reliability growth models with testing-effort and change-point. J. Syst. Softw. 2005,

76, 181–194. [CrossRef]
11. Yamada, S.; Osaki, S. Software reliability growth modeling: Models and applications. IEEE Trans. Softw. Eng. 1985, 11, 1431–1437.

[CrossRef]
12. Lee, C.H.; Kim, Y.T.; Park, D.H. S-shaped software reliability growth models derived from stochastic differential equations. IIE

Trans. 2004, 36, 1193–1199. [CrossRef]
13. Tamura, Y.; Yamada, S. A flexible stochastic differential equation model in a distributed development environment. Eur. J. Oper.

Res. 2006, 168, 143–152. [CrossRef]
14. Ho, J.W.; Fang, C.C.; Huang, Y.S. The determination of optimal software release times at different confidence levels with

consideration of learning effects. Softw. Test. Verif. Reliab. 2008, 18, 221–249. [CrossRef]
15. Fang, C.C.; Yeh, C.W. Effective confidence interval estimation of fault-detection process of software reliability growth models. Int.

J. Syst. Sci. 2016, 47, 2878–2892. [CrossRef]
16. Cortellessa, V.; Mirandola, R.; Potena, P. Managing the evolution of software architecture at minimal cost underperformance and

reliability constraints. Sci. Comput. Program. 2015, 98, 439–463. [CrossRef]
17. Awad, M. Economic allocation of reliability growth testing using Weibull distributions. Reliab. Eng. Syst. Saf. 2016, 152, 273–280.

[CrossRef]
18. Kooli, M.; Kaddachi, F.; Natale, G.D.; Bosio, A.; Benoit, P.; Torres, L. Computing reliability: On the differences between software

testing and software error injection techniques. Microprocess. Microsyst. 2017, 50, 102–112. [CrossRef]
19. Li, Q.; Pham, H. NHPP software reliability model considering the uncertainty of operating environments with imperfect

debugging and testing coverage. Appl. Math. Model. 2017, 51, 68–85. [CrossRef]
20. Zhu, M.; Pham, H. A multi-release software reliability modeling for open source software incorporating dependent fault detection

process. Ann. Oper. Res. 2018, 269, 773–790. [CrossRef]

http://doi.org/10.1109/ACCESS.2021.3058506
http://doi.org/10.1016/S0377-2217(02)00498-8
http://doi.org/10.1155/2009/581383
http://doi.org/10.1109/TR.1979.5220566
http://doi.org/10.1109/MS.1985.230049
http://doi.org/10.1109/TR.1983.5221735
http://doi.org/10.5555/147979.147983
http://doi.org/10.1147/rd.284.0428
http://doi.org/10.1016/S0377-2217(02)00181-9
http://doi.org/10.1016/j.jss.2004.04.024
http://doi.org/10.1109/TSE.1985.232179
http://doi.org/10.1080/07408170490507792
http://doi.org/10.1016/j.ejor.2004.04.034
http://doi.org/10.1002/stvr.391
http://doi.org/10.1080/00207721.2015.1036474
http://doi.org/10.1016/j.scico.2014.06.001
http://doi.org/10.1016/j.ress.2016.03.012
http://doi.org/10.1016/j.micpro.2017.02.007
http://doi.org/10.1016/j.apm.2017.06.034
http://doi.org/10.1007/s10479-017-2556-6

Symmetry 2022, 14, 593 18 of 18

21. Cao, P.; Yang, K.; Liu, K. Optimal selection and release problem in software testing process: A continuous-time stochastic control
approach. Eur. J. Oper. Res. 2020, 285, 211–222. [CrossRef]

22. Kim, Y.S.; Song, K.Y.; Pham, H.; Chang, I.H. A software reliability model with dependent failure and optimal release time.
Symmetry 2022, 14, 343. [CrossRef]

23. Levitin, G.; Xing, L.; Xiang, Y. Cost minimization of real-time mission for software systems with rejuvenation. Reliab. Eng. Syst.
Saf. 2020, 193, 106593. [CrossRef]

24. Chiu, K.C.; Huang, Y.S.; Lee, T.Z. A study of software reliability growth from the perspective of learning effects. Reliab. Eng. Syst.
Saf. 2008, 93, 1410–1421. [CrossRef]

25. Zhang, X.; Pham, H. A software cost model with warranty cost, error removal times and risk costs. IIE Trans. 1998, 30, 1135–1142.
[CrossRef]

26. Shyur, H.J. A stochastic software reliability model with imperfect-debugging and change-point. J. Syst. Softw. 2003, 66, 135–141.
[CrossRef]

27. Hussain, S.A.; Dahiya, R.C. Estimating the parameters of a non-homogeneous Poisson-process model for software reliability.
IEEE Trans. Reliab. 1993, 42, 604–612. [CrossRef]

28. Jeske, D.R.; Zhang, X. Some successful approaches to software reliability modeling in industry. J. Syst. Softw. 2005, 74, 85–99.
[CrossRef]

29. Zhang, X.; Pham, H. Software field failure rate prediction before software deployment. J. Syst. Softw. 2006, 79, 291–300. [CrossRef]

http://doi.org/10.1016/j.ejor.2019.01.075
http://doi.org/10.3390/sym14020343
http://doi.org/10.1016/j.ress.2019.106593
http://doi.org/10.1016/j.ress.2007.11.004
http://doi.org/10.1080/07408179808966570
http://doi.org/10.1016/S0164-1212(02)00071-7
http://doi.org/10.1109/24.273589
http://doi.org/10.1016/j.jss.2003.10.024
http://doi.org/10.1016/j.jss.2005.05.015

	Introduction
	Literature Review
	Ohba’s DRGM with Stochastic Differential Equation
	Model Development
	Estimating Parameters
	Estimating Confidence Intervals of Mean and Software Reliability
	Model Validation

	Decision with Confidence Levels
	Computerized Implementation Architecture
	Model Development
	System Design and Operation

	Discussions
	Conclusions
	References

