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Abstract: Quantum cryptography is a well-stated field within quantum applications where quantum
information is used to set secure communications, authentication, and secret keys. Now used
in quantum devices with those purposes, particularly Quantum Key Distribution (QKD), which
proposes a secret key between two parties free of effective eavesdropping, at least at a higher level
than classical cryptography. The best-known quantum protocol to securely share a secret key is
the BB84 one. Other protocols have been proposed as adaptations of it. Most of them are based
on the quantum indeterminacy for non-orthogonal quantum states. Their security is commonly
based on the large length of the key. In the current work, a BB84-like procedure for QKD based on
double quantum teleportation allows the sharing of the key statement using several parties. Thus,
the quantum bits of information are assembled among three parties via entanglement, instead of
travelling through a unique quantum channel as in the traditional protocol. Asymmetry in the double
teleportation plus post-measurement retains the secrecy in the process. Despite requiring more
complex control and resources, the procedure dramatically reduces the probability of success for
an eavesdropper under individual attacks, because of the ignorance of the processing times in the
procedure. Quantum Bit Error Rate remains in the acceptable threshold and it becomes configurable.
The article depicts the double quantum teleportation procedure, the associated control to introduce
the QKD scheme, the analysis of individual attacks performed by an eavesdropper, and a brief
comparison with other protocols.

Keywords: quantum information; quantum cryptography; Quantum Key Distribution; BB84 protocol;
teleportation

1. Introduction

With the development of quantum applications, particularly quantum cryptogra-
phy [1], new cryptosystems intended to be unconditionally secure are being developed.
Such cryptosystems are commonly composed of a sender and a receiver assuming to share
an Encryption and a Decryption key [2]. Then, a message can be encrypted and transmitted
from the sender’s end to the receiver’s end. Along the way, an eavesdropper can try to steal
the key intended to be transmitted between them. For instance, experimental implementa-
tions are led using imperfect photon detectors, thus allowing the loss of some photons [3]
and allowing an intruder to tamper these imperfect devices to obtain advantages against
the security of the protocol [4,5]. Due to this feasibility, it is necessary to strengthen the
security in all cryptosystems.

With this purpose, new research aiming to obtain better unbreakable ways of key
distribution between two parties has been conducted. Such development has boosted
technology implementing Quantum Key Distribution (QKD). There, two entities (sender
and receiver) can communicate securely to set codification keys. The peculiarity of quan-
tum cryptography is the use of fundamental aspects of quantum mechanics such as the
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uncertainty principle [6], entanglement [7], and the quantum measurement theory [8] to
provide a set of constraints on the communication channel to make it safer [9]. The gen-
eration of this quantum key can be distributed through many protocols developed for
this purpose [10]. Some existing QKD protocols include BB84 [11], B92 [12], SARG04 [13],
and E91 [14].

In this sense, quantum cryptography has become a leading development for the secure
transmission of data [15]. After the last-mentioned QKD protocols, quantum cryptography
has been refining its methods and complexity to keep off quantum hacking as a coun-
terpart [16]. Thus, post-quantum cryptography pursues cryptography algorithms being
secure against cryptanalytic attacks performed by quantum computers [17]. Otherwise,
QKD can be made unconditionally secure over arbitrarily long distances against attacks by
an eavesdropper [18]. Thus, quantum cryptography is requiring more complex procedures
including quantum processing to enhance security.

In another trend, for the development of communications, quantum teleportation has
played a central role in communication enhancements. Various approaches seeking exper-
imental implementations of such algorithms soon emerged [19,20]. Since then, the great
importance of the development of quantum teleportation has boosted applications in
quantum communication to a large extent. Some of them include the creation of quantum
networks [21], cryptography applications regarding quantum computing systems [22],
settlement of photonic quantum computing [23], and particularly teleportation-based quan-
tum cryptography protocols [24] as complementary scaffolding procedures improving its
efficiency and security.

Improvements in the quality of teleportation involve new approaches. Some of them
for long-distance quantum teleportation with the use of a fiber-delayed Bell state measure-
ment (BSM) [25] and others using optical fiber to avoid using large-aperture optics and
other complex techniques [26,27]. Teleportation is being combined with quantum strategies
as a causal order [28] to remove some underlying noisy effects. Recently, an analysis
for a double teleportation process for the same input state has been presented in [29,30].
In such a scenario, one main party (Alice) has prepared the input state and then shared
two entangled resources with another two parties (here called Bob0 and Bob1) keeping one
qubit of each pair. A central resource, in principle accessible for the three parties, works as
a control to decide who of the Bob’s will receive the teleported state. With such a scheme,
cryptography protocols can be performed to set secure authentication methods [30].

This work presents a BB84-like shared protocol exploiting double teleportation to
generate controlled correlated information to set a quantum key between two final parties.
Despite BB84 being one of the first quantum cryptography protocols, it has remained as a
heraldic one. Nowadays, variations of such protocol are still proposed to improve some of
its features, thus remaining valid in the contemporary literature. While the traditional BB84
protocol employs a single quantum channel to transmit the key in the form of two-level
states first settled on an unknown basis for the receiver, in the current proposal, non-local
features of double teleportation combined with asymmetric post-processing allow us to
assemble this key during it. It reduces the action time for an eavesdropper by reducing his
rate of success while the key has still not been assembled. Some outstanding outcomes in
this procedure are:

• A notable rate of success for the coincident basis scenario between the sender and the
receiver closer to the ideal case in the original BB84 protocol;

• A dramatic reduction of success for an eavesdropper under individual attacks for the
undetected scenario during a reconciliation step;

• A practical reduced time of action for an eavesdropper due to the non-local properties
of the key assembling and the absence of a physical quantum channel;

• A configurable setup to adjust some quantitative working features in the procedure as
the eavesdropper success ratio or the Quantum Bit Error Rate (QBER).

The structure of the article is as follows. The second section introduces the protocol
in the contemporary scenario of quantum cryptography. The third section develops the
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main lines to perform the double teleportation and the necessary post-processing for the
task, together with some remarks about its non-locality features. Then, the control of
such asymmetric post-processing to distribute quantum keys between those two parties is
presented in the fourth section, setting the scenario for QKD. The fifth section first discusses
the contemporary validity of the BB84 protocol in the literature; then, it properly analyses
the QKD protocol departing from the previous development, as well as the inclusion of
an eavesdropper in the process presented to quantify the vulnerability under individual
attacks in terms of its success and detection. The sixth section includes brief discussions
about benchmarking for the procedure, possible effects related to decoherence, and fidelity.
Conclusions are settled in the last section.

2. Introductory Remarks for Contemporary Post-Quantum Cryptography

Quantum cryptography is the science that pretends to exploit any quantum mechanical
feature to perform cryptography tasks, which means methods of encryption naturally
using the properties of quantum mechanics to secure and transmit data without hacking.
The economy in quantum cryptography has been pursued through the main original
developments despite the contemporary technology at the time those works were published.
Possibly, QKD is the most important contribution to quantum cryptography by promoting
the fusion of classical and quantum approaches, setting a natural incubator in which to
develop the field.

The first quantum protocol for QKD was the BB84 one [11] based on quantum con-
jugate variables. Such protocol states a procedure to state a key in the form of a chain of
zeroes and ones without a direct transmission from the sender to the receiver. Instead,
the key is codified through a series of quantum resources randomly prepared by the sender
on one from two orthogonal agreed bases. Then, they are stochastically found by the
receiver through random measurements on such bases. In the end, the bases used are
shared by both parts to conserve the identical outcomes when the bases meet. Such a
procedure allows us to detect eavesdropping when it intermediately alters the coincident
bases and outcomes through a different basis measurement.

Thus, QKD protocols, as that mentioned before, first used quantum correlations to
set a quantum key between two parties (another one similar is the B92 [12]). Soon, other
protocols appeared exploiting the statistical nature of quantum systems involved, as in the
SARG04 [13]. While alternative protocols such as the E91 [14] used entanglement pairs
more than just the quantum nature of states in terms of orthogonal basis in a symmetrical
treatment of information to construct the key together. Moreover, Quantum Key Agreement
(QKA) protocols [31] introduced a shared decision generation for the key.

When quantum computers are introduced to break quantum codes of such develop-
ments, the scenario was moved to secure protocols including quantum computer-based
attacks. It has raised the post-quantum cryptography terrain to set secure protocols against
quantum computer attacks. Despite this, the roadmap is unclear because some of the most
current classical symmetric cryptographic protocols are still considered to be relatively
secure against quantum computer attacks [32], thus it is believed that classical approaches
in theoretical cryptography could be combined with quantum cryptography trends [33].

The current development introduces some elements exploiting quantum processing
together with extreme features of quantum information as double teleportation, non-
local operations performed via entanglement, and controlled measurements by quantum
machines. Some features of the protocol also combine QKA approaches. Thus, they
allocate the current proposal in the terrain of post-quantum cryptography (or quantum-safe
cryptography) to set a QKD procedure reducing the eavesdropper success.

Other technology concerns should be considered because of the growing complexity
of the post-quantum protocols including more complex processing and finer theoretical
cryptography considerations. Such aspects are similar to those premises considered in
quantum processing: quality and reliability on state generation processes, development
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of coherent quantum gates to preserve their supposed quantum nature, and faithfully
quantum measurement. Those aspects are remarked through the development.

3. Double Teleportation as Superposition and Parallel Post-Processing

Multiple teleportation exploits the quantum linearity to extend the traditional tele-
portation procedure to perform virtual transference of states and processing. In the end,
global states could be recovered for concrete tasks. Quantum states obtained by multiple
teleportation exhibit interesting non-local properties [29] and they could be used with
cryptography purposes [30]. In this section, we will describe the process only for double
teleportation (DT) with additional post-processing (PP). Then, in Section 4, we deal with
the control problem (TC) to share and transfer concrete quantum states to be used for QKD
purposes (QKD) in Section 5. To ease the reading, we first account in Table 1 for the key
symbols (states, operators, and related key quantities) through the entire development.

Table 1. States, Gates, and Parameters involved in the analysis through each step (DT, PP, TC, QKD)
of the whole QKD protocol.

Symbol Process Description

|ψ0〉 DT Original qubit state to be teleported
|ψC〉 DT Control state to manage the final receiver in double teleportation

pi DT Superposition probabilities for each receiver in double teleportation
|βij〉 DT Entangled resources for teleportation in the for of Bell states

CU , H0 DT Controlled Ca NOTb and Hadamard gates to manage the double teleportation
|ψ〉, |ψ′〉 DT Initial state and pre-measurement state during the double teleportation process

|ψpm〉, |ψteleported〉 DT Post-measurement and corrected states at the end of double teleportation process
Uik

PP Local processing operators on the qubit k in possession of party i
ωi PP Parametric continuous characterization of each local processing
CU PP Controlled operation to apply local processing Uik

on each receiver
|ψi

0〉 PP Output state from the each local processing on |ψ′〉
|ψproc〉, |ψ f inal〉 PP Local processing operators on the qubit k in possession of party i

βi, φm TC Parameters for the basis measurement of the control state
Pi TC Success probability for each outcome of the control measurement

K, m, j QKD Key parameters in the QKD process
P QKD Absolute rate of the success eavesdropper without reconciliation
PE QKD Relative rate of the success eavesdropper with reconciliation

PQBERabs , PQBERrel QKD Absolute and relative QBER

3.1. Double Teleportation Process as Superposition

Figure 1a synthetically depicts the process followed for double teleportation immersed
in the context of QKD. In the current section, we develop the double teleportation process
as it was originally presented [29]. As it was stated, one party (Alice) generates secretly an
arbitrary state |ψ0〉 (known or unknown) to then potentially transmit it in superposition by
teleportation to other two parties (Bob0 and Bob1). The presence of an eavesdropper (Eve)
acting on Bob1 is possible, so it is shown in Figure 1a,b, but her action will be considered
and depicted at the end. In this case, instead of the traditional algorithm, the process
intends to virtually teleport such state to those two simultaneous receivers, Bob0 and
Bob1 [29].

The process begins with the main qubit |ψ0〉 to be teleported in possession of Alice,
where |ψ0〉 = α0|0〉+ α1|1〉. In this work, the Bell states will be written: |βij〉 = 1√

2
(|0 j〉+

(−1)i|1 j⊕ 1〉). Then, a pair of Bell entangled resources |β00〉12, |β00〉34 are prepared to be
shared with each one of both receivers to implement the teleportation process (subscripts
state the numbering of the resources). In the process, a control state is required to rule the
quantum transmission on a concrete receiver |ψC〉 = ∑1

i=0
√

pi|i〉C, with: ∑1
i=0 pi = 1. Thus,
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if control is settled in the state |0〉C then |ψ0〉 is teleported to Bob0, otherwise to Bob1 if the
control is |1〉C. Then, the global initial state being considered becomes:

|ψ〉 = |ψ0〉 ⊗ |ψC〉 ⊗ |β00〉12 ⊗ |β00〉34 (1)

(a) (b)

Figure 1. (a) Three main parties performing double controlled teleportation with a central control
accessible for all of them; a possible eavesdropper is present; (b) Quantum circuit representing the
main elements of the double teleportation process.

Then, the following controlled gate is applied: CU = |0〉C〈0| ⊗ C0NOT1 + |1〉C〈1| ⊗
C0NOT3, which is clearly unitary [29]. In fact, this gate is basically a pair of Toffoli gates
each one followed by another:

CU = ToffC,0,3 · XC · ToffC,0,1 · XC

= (|0〉C〈0| ⊗ 13 + |1〉C〈1| ⊗ C0NOT3) · (|0〉C〈0| ⊗ C0NOT1 + |1〉C〈1| ⊗ 11) (2)

Then, remarking that CaNOTb = |0〉a〈0| ⊗ 1b + |1〉a〈1| ⊗ Xb (there, X is the NOT
gate), and considering that Xa|β00〉ab = |β01〉ab, the double teleportation process follows by
applying a Hadamard gate on the qubit to be teleported, |ψ′〉 = H0 · CU |ψ〉:

|ψ′〉 =
√

p0|0〉C[α0|+〉0|β00〉12 + α1|−〉0|β01〉12]|β00〉34 (3)

+
√

p1|1〉C|β00〉12[α0|+〉0|β00〉34 + α1|−〉0|β01〉34]

=
|0〉0

2

(√
p0|0〉C(|0〉112 + |1〉1X2)|ψ0〉2|β00〉34 (4)

+
√

p1|1〉C(|0〉314 + |1〉3X4)|ψ0〉4|β00〉12

)
+
|1〉0

2

(√
p0|0〉C(|0〉1Z2 + |1〉1X2Z2)|ψ0〉2|β00〉34

+
√

p1|1〉C(|0〉3Z4 + |1〉3X4Z4)|ψ0〉4|β00〉12

)
dropping the tensor products for the sake of simplicity, remarking that H|0〉 = |+〉 and
H|1〉 = |−〉, and expanding some Bell states to express it in terms of |ψ0〉 [29]. Clearly,
those steps state an extension of the traditional teleportation algorithm [34] for qubits.
Finally, performing measurements on the original qubit to teleportate, as well as the qubits
1 and 3 (being part of the entangled resources) with respective outcomes s0, s1 and s3, we
get the un-normalized post-measurement state:

|ψpm〉 =
|s0〉0|s1〉1|s3〉3

2
√

2
⊗
(√

p0|0〉C|s3〉4Xs1
2 Zs0

2 |ψ0〉2 +
√

p1|1〉C|s1〉2Xs3
4 Zs0

4 |ψ0〉4
)

(5)

where if the exponent on an operator is zero, it implies that such operator is omitted. It
is easy to notice that each one of the eight possible measurement outcomes occur with
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probability of 1
8 . Thus, normalizing and finally, as a function of the outcomes, applying the

generic correction Zs0
2 Xs1

2 Zs0
4 Xs3

4 (X, Y, Z are the Pauli operators), we obtain [29]:

|ψteleported〉 =
√

p0|0〉C|ψ0〉2|0〉4 +
√

p1|1〉C|0〉2|ψ0〉4 (6)

where we dropped the states for the qubits 1 and 3, as well as the original qubit for the
sake of simplicity. This state represents the virtual teleportation to both Bob’s. Figure 1b
shows the quantum circuit of the process depicted, based on the traditional teleportation
algorithm [34]. Black dots in the controlled operations are traditional controls CaGb, while
white dots corresponds to negative controls: Xa · CaGb · Xa. The action of Eve is just
indicative, we deal with the eavesdropping intervention below. In the next subsection, we
will perform certain post-processing to introduce the necessary tasks to set QKD.

3.2. Post-Processing Following to Double Teleportation

In the last expression, each outcome still can be managed by the control state to
perform different processing on each virtual teleported qubit. Applying the operator (see
Figure 1b on the right in the form of a pair of controlled gates):

CU = (|0〉C〈0| ⊗ U02 + |1〉C〈1| ⊗ 12) · (|0〉C〈0| ⊗ 14 + |1〉C〈1| ⊗ U14)

= |0〉C〈0| ⊗ U02 ⊗ 14 + |1〉C〈1| ⊗ 12 ⊗U14 (7)

Such asymmetric post-processing following to the double teleportation will set the
successful secrecy for the QKD procedure. Thus, by defining |ψi−1

0 〉2i = αi
0|0〉2i + αi

1|1〉2i
(with i = 1, 2) as the output of each processing U(i−1)2i

, then we will get:

|ψproc〉 = CU |ψteleported〉 =
√

p0|0〉C ⊗U02 |ψ0〉2 ⊗ |0〉4 +
√

p1|1〉C ⊗ |0〉2 ⊗U14 |ψ0〉4 (8)

=
√

p0|0〉C ⊗ |ψ0
0〉2 ⊗ |0〉4 +

√
p1|1〉C ⊗ |0〉2 ⊗ |ψ1

0〉4 (9)

As a useful possibility for further applications, we consider the final transference of
the state from Bob0 to Bob1 by applying a controlled SWAP to send the processed output
state on the qubit 4: CSWAP2,4 = |0〉C〈0| ⊗ SWAP2,4 + |1〉C〈1| ⊗ 12 ⊗ 14 (see Figure 1b on
the right).

Note operations CU and CSWAP2,4 are few practical because qubits C, 2 are far away
from qubit 4. We show them in such last synthetic forms, but they can be equivalently
achieved using additional entangled resources between Alice/Bob0 and Bob1. The details
about the equivalence of such processes are given in the Appendices A and B. There, related
techniques required are delayed measurements [35] and quantum controlled measure-
ments [36,37]. In any case, it gives the following state settled on the qubit 4 in possession
of Bob1:

|0〉2 ⊗ |ψ f inal〉 ≡ CSWAP2,4|ψproc〉 = |0〉2 ⊗ (
√

p0|0〉C ⊗ |ψ0
0〉4 +

√
p1|1〉C ⊗ |ψ1

0〉4) (10)

disregarding the separable qubit 2. In addition, Alice will decide to measure the control state
on an eligible orthogonal basis {|b0〉C, |b1〉C} given by |0〉C = β0|b0〉C + eiφm β1|b1〉C, |1〉C =
e−iφm β1|b0〉C − β0|b1〉C, with φm, β0, β1 ∈ R, β2

0 + β2
1 = 1. It means, |ψ f inal〉 can be writ-

ten as:

|ψ f inal〉 =
√

p0(β0|b0〉C + eiφm β1|b1〉C)⊗ |ψ0
0〉4 +

√
p1(e−iφm β1|b0〉C − β0|b1〉C)⊗ |ψ1

0〉4 (11)

to ease the identification of the measurement outcomes in such basis. In the following, we
will commonly drop the labels C for the control and 4 for the qubit 4, which now become
clear from the development.
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3.3. Entanglement and Non-Locality Activation

The double teleportation plus post-processing process depicted at this point has been
previously analysed in terms of generation of non-local properties [29]. In fact, after of the
measurement of the control state on the basis {|b0〉, |b1〉}, a wide type of entangled states
could be generated if each Bob introduces additional local resources. Using the concurrence
as entanglement measurement, it was shown that they can range from separable states
to maximally entangled ones. In addition, the Clauser-Horne-Shimony-Holt (CHSH)
inequality has been used to demonstrate the non-locality activation through the involved
quantity S(|ψ〉, θ) ≡ |E(SA, SB) + E(SA, SB′) + E(SA′ , SB)− E(SA′ , SB′)| (there, E(S1, S2) is
the correlation between the measurements S1, S2). This quantity reaches the Tsirelson’s
bound in the process, indicating the non-locality activation. Such analysis dealt with
the measurement basis settled by the operators {SA = X, SA′ = Z} and {SB = cos θX +

sin θZ, SB′ = − sin θX + cos θZ} to get the correlations on a setup testing of the CHSH
inequality. It means that the state transference depicted strongly undergoes through a
non-local process generating non-locality correlations. Such non-local transference has been
also demonstrated between a couple of semiconductor microcavities connected by optical
fiber for solid-state physics [38,39] using geometric quantum discord and concurrence
as main non-locality quantifiers. Despite the process presented in that article proposing
entanglement to generate quantum states at distance, those works set a certain kind of
alternative technology to share or generate quantum states in a second party using non-
classical light.

3.4. Concrete Post-Processing and Information Transference via Post-Measurement

We will consider the asymmetric post-processing performed by Bob0 and Bob1 as:

Ui2i+2 = cos ωi1 + i sin ωiY, i = 0, 1 (12)

characterized by the parameter ωi. Thus, asymmetry is introduced by the differentiated pa-
rameter ωi in each post-processing, together with the different value for the strength of the
teleportation, pi and the control measurement. By expressing |ψ0〉 = cos θ

2 |0〉+ eiφ sin θ
2 |1〉

in its Bloch representation, in such scenario, the probabilities to get the measurement
outcome of |b0〉 or |b1〉 becomes [30]:

P0 = β2
0 p0 + β2

1 p1 + 2β0β1
√

p0 p1 cos φm(cos ∆−ω− tan φm sin ∆−ω sin θ sin φ) (13)

P1 = β2
1 p0 + β2

0 p1 − 2β0β1
√

p0 p1 cos φm(cos ∆−ω− tan φm sin ∆−ω sin θ sin φ) (14)

where ∆±ω ≡ ω0 ± ω1. Because P0 + P1 = 1, for such reason if ω0 = ω1, then the
probability to get |ψ0

0〉 = |ψ1
0〉 is one in any case. As we will see, we can use the previous

process to generate and distribute quantum keys, if Alice works together with Bob0 as a
central computer performing part of the processing, while Bob1 is an associated user.

4. Transference of Programmed Quantum States Using Double Teleportation

In the current section, we deal with the control problem for the transference to Bob1
of a programmed state prepared by Alice/Bob0. The post-processing in (12) is stated
to introduce a public and classical authentication fingerprint ω1. Then, we will assume
this fingerprint could be known as an extreme case by an eavesdropper to emphasize
the quantum features of the procedure. Without such authentication, the remaining state
exchange will not work [30]. In addition, as we will note in the procedure to be presented,
an advantage is that the state being transferred does not exist until it becomes assembled
by the collaboration of the involved parts.
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4.1. Generation of Quantum States as a Collaboration among Three Parties

Following the discussion in the last section, by inserting explicitly the action of (12)
on |ψ0〉:

|ψj
0〉 = cos ωj(cos

θ

2
|0〉+ eiφ sin

θ

2
|1〉) + sin ωj(eiφ sin

θ

2
|0〉 − cos

θ

2
|1〉) (15)

with j = 0, 1. We note that if eiφ ∈ R, it means such parameter takes one of the two possible
values φp = 0, π or eiφp = (−1)p, p = 0, 1. In such case, the last expression naturally states
an orthogonal basis defined by the couple of vectors:

|0〉θ,p = cos
θ

2
|0〉+ (−1)p sin

θ

2
|1〉 (16)

|1〉θ,p = (−1)p sin
θ

2
|0〉 − cos

θ

2
|1〉 (17)

they could be selected through the initial election of |ψ0〉 on the Bloch sphere meridian
containing the states |0〉, |1〉 and |+〉, |−〉. It still leaves sufficient room to choose a quasi
arbitrary state. Integrating those expressions in (11), we get:

|ψ f inal〉 = e−iφm |b0〉
[
(
√

p0β0 cos ω0eiφm −√p1β1 cos ω1)|0〉θ,p

+(
√

p0β0 sin ω0eiφm −√p1β1 sin ω1)|1〉θ,p
]

+|b1〉
[
(
√

p0β1 cos ω0eiφm +
√

p1β0 cos ω1)|0〉θ,p

+(
√

p0β1 sin ω0eiφm +
√

p1β0 sin ω1)|1〉θ,p
]

(18)

For further applications, we will require certain coefficients of each pair |0〉θ,p, |1〉θ,p

in the previous expression become zero. It is only possible if eiφm ∈ R, meaning that
φm = 0, π. Then, eiφm = (−1)m, m = 0, 1. In such case, the probabilities (13) and (14) for the
measurements on the control state are:

P0 = β2
0 p0 + β2

1 p1 + 2β0β1
√

p0 p1(−1)m cos ∆−ω (19)

P1 = β2
1 p0 + β2

0 p1 − 2β0β1
√

p0 p1(−1)m cos ∆−ω (20)

4.2. General Notation for the Control of Post-Selection Problem

In the current subsection, we are interested in the post-selection by Alice/Bob1 of
certain states as well as in the control and Bob1 systems. With that purpose, we develop a
general notation to solve the problem. First, by defining:

fk(ω) =

{
cos ω, k = 0
sin ω, k = 1

(21)

then, clearly |ψj
0〉 = ∑1

k=0 fk(ωj)|k〉θ,p. In those terms, |ψ f inal〉 reads:

|ψ f inal〉 = ∑
j=0,1

(−1)mj|bj〉 ∑
k=0,1

|k〉θ,p(
√

p0β0⊕j fk(ω0)− (−1)j+m√p1β1⊕j fk(ω1)) (22)

If then Alice/Bob0 pretends to control the post-selection of |bj〉 and |k ⊕ 1〉θ,p, two
conditions should be imposed. The first one is:

√
p0β0⊕j fk(ω0) = (−1)j+m√p1β1⊕j fk(ω1) (23)
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which post-selects one of |k⊕ 1〉θ,p, k = 0, 1 for certain j. It could be solved by demanding:

0 < K ≡
√

p1β1⊕j√
p0β0⊕j

, K ∈ R+ (24)

Such a condition states a possible asymmetric treatment (K 6= 1) to introduce the
secrecy of the QKD procedure [29]. Such condition states an asymmetric treatment to
introduce the secrecy of the QKD procedure because the transmitted state to Bob1 remains
uncertain. It immediately implies the fulfilling of:

fk(ω0) = (−1)j+mK fk(ω1) (25)

Equation (25) states the way to select ω0 when ω1 is first settled choosing certain
value for K stating certain secret asymmetry in the election (together with j, m, all those
parameters under the control of Alice/Bob0). Figure 2a,b show such process for k = 0 and
k = 1 respectively (remembering that the selected state for Bob1 is k⊕ 1). If the restriction
ω1 ∈ [0, π

2 ] is settled (such condition it is not completely necessary but it eases some further
expressions), upon the selection of K > 0, j + m = 0, then ω0 could be selected as it is
indicated by the green circles in both figures (K > 1 or K < 1); otherwise, if K > 0, j+m = 1,
ω0 could be selected as in the red circles (K > 1 or K < 1). There, we restrict ω0 ∈ [0, π]
for k = 0 and ω0 ∈ [−π

2 , π
2 ] for k = 1. Note in any case that fk⊕1(ω0) > 0 will fulfill.

Consequently, the election of K stated by (24) relates p0 with β0. Those relations are shown
in Figure 2c,d for k = 0 and k = 1 respectively. Each red curve corresponds to certain K
value being selected. While K > 0, the darkest red curves show the lowest values for K ≈ 0,
and the lightest ones the largest values for K → ∞.

Figure 2. (a,b) Plots exhibiting the process of selection of ω0 departing from the selection of ω1

through the condition (25) for each case k = 0 (left) or k = 1 (right). (c,d) Possible values for the
combination of p0, β0 upon the prior selection of K (each red curve) for each case k = 0 (left) or k = 1
(right); blue dots show the values of p0 = 1

1+K maximizing Pj.
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The second condition is obtained by substituting the first condition in the probability
of success (13) or (14) for |bj〉:

Pj = p0β2
0⊕j + p1β2

1⊕j − 2
√

p0 p1β0β1(−1)j+m cos ∆−ω

= p0β2
0⊕j(1 + K2 − 2K(−1)j+m cos ∆−ω ) (26)

by choosing a high value for Pj (ideally Pj = 1). By defining c−ω = (−1)j+m cos ∆−ω , we note
that Pj depends from p0, β0, and c−ω in general, as Figure 3 shows. Figure 3a,b show the
contours on which Pj become constant in agreement with the color scale on the right (for
j = 0, 1 on the left and right respectively). Below, Figure 3c,d show the three dimensional
version of Figure 2c,d with their K values shown in black in their top. In addition, each
contour was additionally coloured in agreement with their Pj value in each point of the
space (from the reddest for Pj ≈ 0 to the bluest for Pj ≈ 1, also in agreement with the color
bar besides and with the previous plots). In fact, the solutions are first found by selecting
K and then intersecting each lower plot with its corresponding upper plot (for the same j
value). Despite, c−ω is not an independent parameter as the last intersection shows.

Figure 3. (a,b) Contour plots of Pj for j = 0, 1 respectively as function of p0, β0, and c−ω . (c,d) Three-
dimensional version of plots in Figure 2c,d, now including c−ω and coloured from red (Pj = 0) to blue
(Pj = 1) in agreement with Pj values through them for j = 0, 1 respectively.
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4.3. Control Prescriptions for the Quantum State Transference

In fact, we can analyse c−ω in terms of k, ω1 and K (using the fact fk⊕1(ω0) > 0 with
ω1 ∈ [0, π

2 ]):

c−ω
(−1)j+m = cos ∆−ω = cos(ω0 −ω1) = f 2

k (ω1)(−1)j+mK + fk⊕1(ω1)
√

1− K2 f 2
k (ω1) (27)

Thus, when each upper contour intersects to their lower partner, it generates the
affordable solutions. Such solutions are shown in the Figure 4 but in the variables to
be selected, ω1, K, j, k, m (remembering that the selected state for Bob1 is k ⊕ 1): (a) k =
0, j + m = 0, (b) k = 0, j + m = 1, (c) k = 1, j + m = 0, and (d) k = 1, j + m = 1 (in fact,
j⊕m = 0, 1, but we will maintain just those simpler expressions in the following). Curves
in each plot show some affordable solutions (black region) for each c−ω value in color from
red (c−ω = −1) to blue (c−ω = 1). We have plotted the region only in the more convenient
interval for ω1 ∈ [0, π

2 ] being congruent with the previous remark. K > 0 values are not
restricted in their strength, but clearly K > 1 reduces the possible solutions.

Figure 4. Solutions for c−ω as function of ω1 and K in color (reddest for c−ω ≈ −1 and bluest for c−ω ≈ 1)
for (a) k = 0, j + m = 0, (b) k = 0, j + m = 1, (c) k = 1, j + m = 0, and (d) k = 1, j + m = 1.
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Solving (24) for β2
0⊕j and introducing the overall restrictions in (26), we get the follow-

ing expression for Pj:

Pj =
p0(1− p0)

1− p0(1− K2)

[
1 + K2 − 2K( f 2

k (ω1)K− (−1)j+m fk⊕1(ω1)
√

1− K2 f 2
k (ω1)

]
(28)

The coefficient there, C0(p0, K) ≡ p0(1−p0)
1−p0(1−K2)

, depends only on p0 and K. An easy

analysis shows that such coefficient reaches its maximum for p0max = 1
1+K becoming

C0max = 1
(1+K)2 . Such optimal values are also shown for each K-curve in Figure 2c,d with

blue dots. Because it is zero in their edges p0 = 0, 1, then the values of such coefficient are
folded in the intervals p0 ∈ [0, p0max ] and p0 ∈ [p0max , 1].

Figure 5 depicts Pj for (a) k = 0, j + m = 0, (b) k = 0, j + m = 1, (d) k = 1, j + m = 0,
and (e) k = 1, j + m = 1 (remembering that the selected state transmitted to Bob1 is
k ⊕ 1). They are three-dimensional regions (transparent clear gray regions) under the
main maximal surface plotted in dark gray, which corresponds to the two folded points
generated vertically by p0 ∈ [0, 1] (shown by the arrows in the Figure 5a,b,d,e). Figure 5c,f
show the comparison between the corresponding maximum values in each case, (c) k = 0
and (f) k = 1 respectively, remarking the advantage for j + m = 1 (green) against j + m = 0
(red), thus it is better to choose m with a different parity of the selected j. In such cases, ω1
could be selected almost openly, to then select those K values reaching Pj at least near from
1, thus controlling better the stochastic selection of |bj〉. Note in the figures, that the regions
have been maintained in ω1 ∈ [0, π

2 ] as it was initially recommended in the procedure.
In addition, we have not extended the interval for K further than K = 1, because plot
regions there become restricted to narrower non-rectangular regions as it was shown in the
Figure 4, becoming unpractical because of the restricted combinations of ω1 and K values
able to be selected. Still, in the practice, K > 1 also provides valuable solutions.

Figure 5. Plots for Pj in (28) as function of ω1 and K for the cases (a) k = 0, j + m = 0, (b) k = 0, j +
m = 1, (c) k = 1, j + m = 0, and (d) k = 1, j + m = 1. Comparisons for the cases (e) k = 0,
and (f) k = 1 exhibiting the advantage for j + m = 1 to reach higher values for Pj.
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Another important remark should be stated—Despite the election of p0max is quite
recommendable to maximize Pj. It implies that Alice should decide to prepare the control
state determining K from the beginning. Instead, the election of K independently of p0
opens the opportunity to not fix the form of the states until the application of U02 when
ω0 should be settled (at least around a certain neighborhood of p0max to reach the higher
values of Pj, still keeping the efficiency of the process).

5. A QKD Protocol Based on a Shared Collaboration among Three Parties

Despite many cryptography developments for QKD having emerged since 1984 after
the BB84 protocol, most of them to a large extent are based on it. By proposing modifications
or alternative approaches, they have improved the security or efficiency, together to prevent
more sophisticated kinds of attack, particularly those possibly coming from a quantum
computer. Thus, some of them have received names by their authors, as it occurs in the area.
Thus, BB84 based protocols are completely valid nowadays. Among the BB84-like protocols
for QKD, we can find the six-state protocol [40] which, rather than using two or four states
as in the BB84, uses six states on three bases X, Y and Z, thus causing the eavesdropper to
produce a higher rate of error. For the case of the SARG04 protocol [13], it shares the first
step of photon transmission with BB84, but then, for the second step, Alice does not directly
announce her bases, but a pair of non-orthogonal states instead, one of which is being
used to encode her bit. Another protocol, the BBM92 [41] coincides with BB84 in the fact
that if Alice possesses the source, then her measurement (which is led on a random basis)
would prepare the state to be sent to Bob in one of the four possible states of those used
in the BB84, and there is no way of knowing whether Alice first measured part of a Bell
state or she prepared a qubit state using a random number generator. In [42], a simplified
three-state BB84 protocol was presented. In this case, Alice sends three possible states
to Bob, but he performs a simplified measurement with a basis-independent detection
efficiency condition, thus limiting an eavesdropper to control the efficiency of detection,
depending on Bob’s basis choice. Another approach, based on the BB84, is the protocol
presented in [43], where both, sender and receiver, select a random basis for modulation,
encode on basis of random bits. Thus, both send the qubits over a quantum channel to
each other. Then, both decode on basis of their random bits. Finally, both exchange their
random basis and correct the positions of common bits. This process allows both, sender
and receiver, to get two keys and a final key can be generated by combining them. Another
protocol is presented in [44], which is identical to the BB84 protocol for the entire quantum
mechanism, but the difference is that such protocol uses private reconciliation from a
random seed and asymmetric cryptography for the classic procedures. In another trend,
Quantum Key Agreement (QKA) protocols (those whereby two or more parties agree
upon a key over insecure communication channels based on their exchanged messages)
which are based on the BB84 protocol [45], but the outcome of the protocol is going to be
influenced by both parties. Therefore, no one can determine the shared key alone and the
protocol has 50% qubit efficiency after the random sampling discussion and it provides
unconditional security.

In our current proposal, several parties meet to generate the quantum key but via
teleportation, entanglement, and collaboration, thus reducing the rate of success for an
individual eavesdropper. At this point in our development, we have shown the prescrip-
tions to solve the control problem of post-selecting the states in the Alice/Bob0 and Bob1
subsystems. In such sense, Alice/Bob0 pretends, after Bob1 applies the transformation
characterized by an agreed ω1, to control the system configuration in possession of Bob1
(the control and the Bob1 subsystem inclusively) to secretly reach one of the states |bj〉 in
the control and to set one of the orthogonal states |0〉θ,p, |1〉θ,p (note that this knowledge
keeps unknown for him). In the following subsection, we will exploit this procedure to
state the QKD scheme.



Symmetry 2022, 14, 713 14 of 31

5.1. QKD Protocol Description Based on a Shared Generation

In this section, we will describe how to afford a QKD scheme with the previous proce-
dure based on double teleportation. The process is partially based on the BB84 protocol [11],
but there, any sensitive information is transmitted through a quantum channel directly.
Instead, it is generated by post-measurement. BB84 protocol is based on the transmission of
a series of unknown states by the receiver, to then compare the outcomes between two bases
independently selected. Still, they should be communicated directly through a quantum
channel, nevertheless, it is relatively secure. Other protocols, as the E91 [14], exploit the
entangled properties of certain states to transmit no-communicated correlations to set
the key. Similarly, as the BB84, the B92 protocol [12] uses the comparison between two
non-orthogonal bases to shade part of the information to a possible eavesdropper, while
previously agreed correlations allow us to set the key. Nevertheless, BB92 protocol still lets
an eavesdropper gain more information [46] as compared with other protocols.

Thus, in this subsection, we use the previous procedure to set an improved BB84-like
QKD protocol. First, Alice supported by Bob0 (which could be assumed to be part of
the same system) sets the double teleportation algorithm to virtually transmit a state just
known by her. It is previously configured to be generated as one element of two different
bases selected at a time by Alice, BA. It is reached by selecting θ = 0, π

2 and φ = 0 (it
implies p = 0), setting after the basis H = {|0〉, |1〉} or D = {|−〉, |+〉}. K, p0 should be
selected at this point to define the control state (if the strategy is to increase the probability
of success Pj in the stochastic step to choose the correct control state |bj〉, otherwise it could
be delayed after the processing of Bob1).

Thus, through a public key statement dictating which ω1 is applied by Bob1 in a
concrete time (see Figure 6a exhibiting a step pseudo-random function to generate ω1
for instance), Alice can improve the election of the basis and the outcome for the QKD
protocol. At the same time, she has settled, in advance, the future state in possession of
Bob1 upon the selection of the parameter ω0 depending on K (then also β0, related with
the further measurement on the control, by using the maximal prescription p0max ). In fact,
in the process, K could be selected randomly but always secretly by a classical procedure.

Figure 6. (a) Timely generation of ω1 agreed between Alice and Bob1 through a classical public
channel, (b) SWAP gates used by Eve to stole and reinsert the state of Bob1, (c,d) alternating CNOT
gates to infer the Bob1 state by Eve.
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Then, through the controlled processing U02 and U14 by Bob0 and Bob1 respectively,
we get the state (18), which is ready to begin the QKD protocol, still without transmitting
any sensible information. Finally, all is decided by the control measurement performed
by Alice. It is reached by settling an apparatus of measurement in agreement with the
β0 value (which indeed was already decided upon the selection of ω1 and K), and the
selection of j, m in agreement with j + m = 1 to get the maximum Pj (if that is the strategy
being followed). Note that 0.5Pj represents the efficiency in the generation of a useful key,
compared with 0.5 for the traditional BB84 protocol. Despite possibly lower, additional
advantages against eavesdropping are present as it will be discussed below. Thus, when
the control measurement stochastically fits with the selection of j, Alice has successfully
transferred a qubit in one specific state from the respective set expanding the Hilbert
space on the basis selected by Alice. Then, Bob1 should measure his state by selecting
one of the two agreed basis, BB ∈ {H, D}. Thus, if Bob1 selects the same basis H or D
to measure his state (characterized by α instead θ in (16) or (17)), the outcome is already
known previously by Alice, thus sharing secretly a common element of the key. It only
happens if the control measurement fits with j and if both bases coincide (θ = α), precisely
as the BB84 protocol works.

At this point, still they can infer the key until Alice publishes her basis (θ or BA) also
as Bob1 (α or BB). Still, Alice also should skip the failed control measurements (they are
expected to be a minimum as she is closer to Pj = 1) but still communicate it to Bob1
as a failed outcome. Table 2 shows an illustrative sequence of such procedure until the
information sharing, thus getting the useful key using QKD based on double teleportation.
It skips the technical details dealt with in the previous subsection.

Table 2. Example of a series of shared information bits to set the quantum secret key.

Setup Selection Measurement Sharing Decision

Alice Alice Alice Bob1 Alice Bob1 Alice/Bob1
θ BA j m |k⊕ 1〉θ,p |bj〉 α BB |k⊕ 1〉α,p BA BB A/R key

0 H 0 1 |0〉0,0 |b0〉 0 H |0〉0,0 H H 3 0
π
2 D 1 0 |0〉 π

2 ,0 |b0〉 π
2 D |0〉 π

2 ,0 × D 7 -
0 H 1 0 |0〉0,0 |b1〉 π

2 D |0〉 π
2 ,0 H D 7 -

π
2 D 1 0 |1〉 π

2 ,0 |b1〉 π
2 D |1〉 π

2 ,0 D D 3 1
π
2 D 1 0 |1〉 π

2 ,0 |b0〉 0 H |0〉0,0 × H 7 -
0 H 0 1 |1〉0,0 |b0〉 0 H |1〉0,0 H H 3 1
π
2 D 0 1 |0〉 π

2 ,0 |b0〉 π
2 D |0〉0,0 D D 3 0

...
...

...
...

...
...

...
...

...
...

...
...

...

The first two columns state the θ value selected by Alice, thus implying the basis BA
selected, H or D, used to state the final transferred state. Third to fifth columns state the
elections of Alice: j, m, and the |k⊗ 1〉θ,p selected to be delivered to Bob1. The following
four columns state the related information regarding the measurement outcomes: |bj〉
performed by Alice on the control; α or BB the measurement basis selection of Bob1,
as well as the corresponding outcome |k⊕ 1〉α,p. The tenth and eleventh columns exhibit
information sharing through a public channel. Note that Alice should report the failed
events marked there with×. Two last columns show the understood decisions of usefulness,
acceptation, or rejection (A/R), of each event with 3 (success) or 7 (fail), as well as the
useful bit keys: 0110.... Note that the key just arises with their non-communicated outcomes
when the registers of bases coincide and the Alice measurement on the control succeeds
her predictions.

As in the BB84 protocol, the key still should pass an error correction reconciliation
by sharing and comparing part of the key to detect transmission errors, otherwise the
presence of an eavesdropper through the quantification of the QBER. Another relevant
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characteristic of this procedure is that Alice can switch the BB84 four-state protocol into a
six-state protocol [40,47] adapting the post-processing (12) and selecting θ, φ conveniently.

5.2. Action and Impact of a Possible Eavesdropper under an Individual Attack

QKD schemes are subject to security attacks. In the analysis of quantum security,
several types of attacks are normally considered. There, in the most simple level, indi-
vidual attacks include quantum interactions with a single quantum channel carrying the
information to be read as a single register under measurement (in this case the qubit of
Bob1). Other types of attacks consider collective attacks [48,49], where measurements are
not individual, instead, they are allowed to be performed coherently together. Otherwise,
coherent attacks [48,50] allow us to apply unitary transformations to the whole set of
measurements in addition. While collective and coherent attacks are out of the scope of
this work, in this subsection, we analyse a type of individual attack showing a certain
advantage on the traditional BB84 protocol.

For the sifting of the Bob1 state, Eve achieves it using an alternative pair of SWAP
gates exchanging the states between Bob1 and Eve to thus steal and return it. In such
a case, an intermediate measurement of the stolen state by Eve is then returned to Bob1
before his measurement (see Figure 6b). The initial state in possession of Eve could be
non-meaningful.

Otherwise, an alternative CaNOTb gate arrangement could be performed upon the
election of the measurement basis (see Figure 6c,d). In this case, Eve first bets by the basis
on which Alice has prepared the state. If she supposes the basis is H, then she should
arrange the procedure presented in Figure 6c, just stating a CaNOTb gate between her qubit
in the state |0〉E and controlled by the Bob1 state; instead, if she bets for the basis D, she
should implement the circuit in Figure 6d using complementary H gates to translate the
Bob1 states to the previous situation, but still returning him his original one. It is immediate
to demonstrate that any of those circuits effectively copy the Bob1 state if Eve hits the
correct basis in which Alice has prepared the final state for Bob1:

|i〉Bob1 ∈ {|0〉, |1〉} −→ CBob1 NOTEve · |i〉Bob1 ⊗ |0〉Eve = |i〉Bob1 ⊗ |i〉Eve (29)

|i〉Bob1 ∈ {|+〉, |−〉} −→ HEveHBob1 CBob1 NOTEveHBob1 · |i〉Bob1 ⊗ |0〉Eve = |i〉Bob1 ⊗ |i〉Eve

Otherwise, if Eve fails in the basis selection, then her outcomes are non-meaningful
so they do not change the overall probabilistic distribution in the BB84 protocol with Eve
using the SWAP gate as before, thus giving the same outcomes previously discussed.

As it is well-known for the BB84 protocol, for the individual attacks on the qubits
coming from Alice, Eve will have success in the 50% ( 1

4 / 1
2 = 1

2 in Table 3) of the useful key
where she passes unnoticed. Table 3 classifies the possible cases. There, probability P is
absolute concerning the entire cases, so it should be divided by 1/2 to get the conditional
probability for the useful cases. Class 1 in the first row corresponds to the previous situation
where the three bases selected meet. In this case, Eve becomes unnoticed and in possession
of a valuable key bit. Class 4 corresponds to the cases conducting to the non-useful key
because Alice and Bob1 do not meet in their basis if Eve does or not. Thus, only Classes 1
to 3 correspond with a possible useful key.

Table 3. Classification of basis selection and outcomes considering the presence of an eavesdropper
for the traditional BB84 protocol.

Basis Selection and Outcomes Classes Alice Eve Bob1 PBasis Out Basis Out Basis Out

1: Basis selections completely meets BA oα BA oα BA oα
1
4

2: Eve basis fails but Bob1 output not BA oα BE 6=A oε BA oα
1
8

3: Bob1 basis meets but output fails BA oα BE 6=A oε BA oβ 6=α
1
8

4: Bob1 basis and output fail BA oα BE oε BB 6=A oβ
1
2
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If Alice and Bob1 spend some part of the key, they could detect the Eve presence [11]
by comparing their outcomes in a reconciliation procedure. Considering just the useful
key (or part of it), 25% ( 1

8 / 1
2 = 1

4 in Table 3) of it corresponds to the QBER in the protocol
(Class 3). QBER is due to the presence of an eavesdropper, or otherwise to the presence of
noisy communication in the quantum channel. Finally, Class 2 corresponds to the cases
where the presence of Eve is undetectable for Alice and Bob1. Despite this, Eve has no
certainty if their key is correct because her basis does not meet with that of them (assuming
she has access to that information published in a public channel). In the following, we will
assume that such a class is not successful for Eve.

For the scheme presented here, the situation runs identical if such attack is performed
just before Bob1 measures his state, but after to be assembled by Alice/Bob0. In any case,
this intervention assumes the possibility to steal the system and then be reintegrated ready
for the Bob1 measurement (otherwise gaining complete access to it, still being classically
unnoticed, but no quantumly). In any case, it requires non-trivial interventions on the Bob1
state as it was shown in the circuits in Figure 6b,c. Despite their technical complexity, note
those procedures should be performed during the state transmission in the BB84 protocol,
but in the current procedure, they should be performed after Alice measures their control
state. Despite, if Eve pretends to perform the sifting of the Bob1 state under the current
protocol, then the probability of Class 1 (PE in the following) and the only successful for
Eve, changes dramatically. Then, we perform our analysis around this quantity and upon
such assumptions.

Figure 7a exhibits the eavesdropper temporal action through the events in the protocol.
Instead of remaining the quantum channel opened all time as in the BB84 original eaves-
dropping, in our case, Eve needs to sift the Bob1 state during the entire process consisting
of the stages shown in black. There, the action performed by Alice to define K (orange)
determines the beginning of the assembling of the transmitted state to Bob1. Such selection
could be made since the beginning when she prepares the control state (particularly if she
wants to maximize C0(p0, K) by selecting (p0 = p0max ), or otherwise just before Bob0 should
perform his processing U02 if milder Pj values are allowed. Thus, Eve can perform several
types of individual attacks during such a period. Type A, after Alice’s control measurement,
has been already discussed as equivalent to the traditional individual attack in the BB84
protocol. Despite this, such a possibility is not meaningful here because the information
is not properly travelling through a quantum channel. Anyway, Bob1 should avoid this
possibility by using this resource rapidly after the assembling. In addition, if Eve has not
to control the time assembling of the transmitted state, she can perform her attack just
before Alice’s control measurement (type C) or still before the U02 codification by Bob0
(type B). Both attacks conduct to the same Eve’s success probability outcome as it is seen
in the Appendix C. Note this procedure is not equivalent to the BB84 one, so the success
probability changes, despite it still requires the exchange methods depicted in Figure 6.
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Figure 7. (a) Eavesdropping temporal action through the protocol; (b) contour lines of C0(p0, K)
as function of p0 and K with their maximal values as blue dots; and contour lines for the condi-
tional probability for the Eve success, PE, as function of ω1 and K in color for (c) k = 0, θ = 0;
(d) k = 0, θ = π

2 ; (e) k = 1, θ = 0; and (f) k = 1, θ = π
2 . Pj ≥ 0.9 corresponds to the gray region.
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In addition, the difference does not depend on the open selection of C0(p0, K) (becom-
ing better choosing C0max to maximize Pj) as will be seen. For both cases (Type B and C), PE
is given by (see Appendix C):

PE =
P
Pj

=
C0(p0, K)

Pj
( fk⊕1(

θ

2
)
√

1− K2 f 2
k (ω1)− K fk⊕1(ω1))

2 (30)

then, an attempt to maximize Pj (the rate for the successful key) directly should raise the
value of P, but not PE. Figure 7b shows such dependence through contour lines. As function
of p0, K could be selected almost openly, despite only one value maximizes the value of
C0(p0, K) with p0 fixed (blue dots in Figure 7b). The color of each point on the curves
reflects the C0(p0, K) value (darkest for the lowest values and brightest for the highest
ones). Blue dots mark the value where the maximum of C0(p0, K) is reached for a given p0
or K. Nevertheless, many other values of K could still keep Pj in a higher value to maintain
the performance of the key generation, but still to conveniently reduce PE. In Figure 7c–f,
the involved regions marked in gray with Pj ≥ 0.9 (just for the j + m = 1 cases), remark
certain criteria for the random election of K. In any case, the meaningful quantity to
evaluate the performance of Eve is the conditional probability PE which is independent of
C0(p0, K). It just accounts for the useful key cases when Alice reaches correctly her selection
|bj〉, as similarly the conditional probabilities for the Table 3 were calculated concerning the
useful key outcomes. It is plotted as a function of ω1 and K, and coloured in agreement with
the color bar inside. Cases correspond to (c) k = 0, θ = 0; (d) k = 0, θ = π

2 ; (e) k = 1, θ = 0;
and (f) k = 1, θ = π

2 (remembering that the selected state for Bob1 is k⊕ 1). In any case,
clearly, the strategy lets a notable lowering for the probabilities for the success of Eve to
great extent. The reason is now evident, P has a wide distribution in the region where Pj
is high, then it still lets the selection of low values for P. The last behavior is due to the
election of basis by Eve before Alice did, thus modifying the global state and lowering the
success notably in most cases. In fact, performing a numerical analysis based on a Monte
Carlo simulation about the average value of PE inside the gray region for the random
selection of ω1 and K defined by the threshold of Pj ≥ 0.9, we get: PEH = 0.076 for θ = 0
and PED = 0.173 for θ = π

2 . It clearly shows a notable advantage against individual attacks
of Types B and C. Such outcomes could increase only if Eve has strict control over the
knowledge about the period when Alice already has performed her control measurement
and only if Bob1 maintains such resource without use.

5.3. Considerations for Complexity and Number of Resources in the Procedure

Secure communications remain safe against attacks, particularly by those performed
by quantum computers. They require effective and strong protocols of QKD. In any case,
even when the use of a minimum of resources has been mainly pursued in the original
contributions to those protocols, extreme security only requires a sizable, but a finite
number of resources and signals.

The BB84 protocol is the earliest QKD protocol [11]. It has inspired a variety of other
similar slender protocols as the B92 protocol [12] but reducing the communication efficiency
and the practicability. Still, the six-state protocol is a more secure extension of the BB84
protocol, despite raising the upper limit of the QBER. Otherwise, limited to the current
single-photon source technology, it is not possible to obtain ideal single photons, instead of
using multi-photon sources [13] as in the decoy-state [51], the most widely implemented
QKD scheme. Such protocols anyway introduce higher complexity compared to the more
theoretical QKD protocols being proposed. As well, single-photon QKD systems commonly
include polarization and phase encoding, thus introducing a higher number of resources to
the theoretical ideal approaches.

Thus, the BB84 protocol uses the fewest resources to produce each bit of the key,
a single ideal qubit properly prepared on a certain basis and two signals, one travelling
through a single quantum channel and a classical one to share the basis used by both main
parties, after the receiver measures the incoming qubit. Compared with the procedure
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being presented, the current protocol uses five qubits partially entangled by pairs. This
number, as it was seen, increases to nine qubits for feasible implementations: two for
performing the CCU14 and two more for performing the CSWAP24 among the faraway
qubits 2, 4. In addition, two more classical signals should be added in each case (see
Appendices A and B). A more elaborated infrastructure is expected in terms of quantum
gates and entanglement control. Despite this, the asymmetric processing combined with
the shared assembling via teleportation allow for a strategy to lower the eavesdropping rate
of success to a great extent. In any case, the number of resources grows linearly concerning
the key block length.

More complex proposals have been considered in real scenarios to avoid environ-
mental factors lowering the efficiency of quantum cryptography [52]. Other complex
deployments currently consider more specialized quantum and optical resources in QKD
protocols [53]. Thus, entangled resources and shared multipartite schemes as in the current
proposal should be considered to set more secure procedures, particularly in the small
block length regime [54]. Complexity is not equivalent to impossibility, until now, first
approaches to QKD have arisen in parallel with our technological scope. Nevertheless,
while more control is reached on quantum systems, more new audacious proposals are
being tried combining full quantum resources to reach more outstanding outcomes.

Considering the outcomes for the success of Eve, PEH = 0.073 for θ = 0 (basis H) and
PED = 0.164 for θ = π

2 (basis D), we note she has a higher probability to guess outcomes
in the last basis. The last outcomes are not the complete picture because still Alice should
decide which θ will use (basis) and also the pair j, k to impose the adequate prescriptions.
Thus, the global average success probability for Eve in a key of length N = nH + nD (when
Alice decides to use nH times the basis H and nD times the basis D) is:

PETotal = (
nH
N

PEH +
nD
N

PED )
N = (PEH + fD(PED − PEH ))

N (31)

where fD ≡ nD
N . Such formula goes into the continuous dominion for large N, but for small

N is discrete. Figure 8 shows in color PETotal in agreement with the color bar inside on
the left.

Figure 8. PETotal values for keys of small block length as function of fD (Alice’s proportion for choosing
D) and their length N. Values are coloured as c in PETotal = 10−c. Red dashed line corresponds to the
typical case fD = 0.5 when Alice selects randomly the basis.

Note such bar refers to the exponent c for PETotal = 10−c. Then, blue corresponds to
lowest PETotal values and red for the highest ones. A horizontal dashed black line shows
the typical case where both cases are equally selected. As it could be expected, the case
f → 0 gives the lower advantage for Eve. Despite this, such an election is not the best
because Eve could change her strategy by learning from the public sharing of basis. Thus,
if as an extreme fact Eve knows Alice always selects the basis H, then the new conditional
probability will become one because we add the sure knowledge of the basis by Eve, thus
getting a sure outcome. If fD = 0.5, it does not add new knowledge, thus the values of
PETotal become as those on the dashed red line in Figure 8. In any case, the probability PETotal
never exceeds 0.013 for N ≥ 2. As a reference, we are included the coloured bar at the
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bottom (using the same color pattern) which refers to the success probability for Eve using
the BB84 protocol: 0.5N . It shows an outstanding advantage for the current procedure.

6. Some Final Considerations about Benchmarking, Decoherence Effects, and Fidelity

Through the history of QKD developments since the BB84 protocol, many other
approaches and different aspects in the key distribution have been tried. Of course, one
of the main aspects is the security against eavesdropping, but others aspects sometimes
go in different directions, for instance, the economy in the quantum resources or the
robustness against quantum computer attacks. In the last case, the reduction of quantum
resources in terms of not only efficiency but a feasible operation is important. Clearly,
in the procedure being developed here, the economy has not been the focus, instead of the
security, particularly based on the distributed tasks to set the key.

6.1. QBER and a Brief Comparison with Other Similar QKD Protocols

Thus, comparison between protocols is usually complicated because there are lots of
elements to be performed. Moreover, some developments put more attention on certain
variables to highlight the goodness of their approaches. In this subsection, we account for
a review of similar BB84-like protocols in terms of some relative indicators for security.
Despite the current development, the PE is the outstanding feature because it measures the
effective use of the sifting for Eve (when she gets the correct outcome without detection),
the most common comparative reference is the QBER. Thus, we show in the Appendix D,
that the conditional QBER (relative to the useful outcomes when the basis of Alice and
Bob1) becomes:

PQBERrel =
C0(p0, K)

Pj
K2

1

∑
k′=0

[
fk(ω1) fk′(

θ′

2
)− (−1)k′(k+k′) fk(ω1 +

∆θ

2
) fk⊕k′(

∆θ

2
)

]2

(32)

Again, note the coefficient C0(p0, K) is non-meaningful due Pj, but instead, PQBERrel is
proportional to K2. In addition, note that θ′ 6= θ, then θ′ = π

2 − θ, ∆θ = π
2 − 2θ. Figure 9

shows the contour plots for PQBERrel as function of ω and K corresponding to (a) k = 0, θ = 0;
(b) k = 0, θ = π

2 ; (c) k = 1, θ = 0; and (d) k = 1, θ = π
2 remarking the region with Pj > 0.9.

Each contour value of PQBERrel was coloured in agreement with the color bar besides.
Inside the region shown with Pj ≥ 0.9 and 0 ≤ K ≤ 1, the QBER drops in average

around (a) 0.03, (b) 0.04, (c) 0.03, and (d) 0.02 relative to each figure. Despite, alternative
elections with larger K and Pj values (as instance 0.8 ≤ K ≤ 20 and Pj > 0.95) raises
those values to (a) 0.09, (b) 0.12, (c) 0.11, and (d) 0.07 respectively, near of the threshold
for the QBER in the BB84 protocol [55], and under the security bound of 0.25 [56]. This
fact is interesting because the method is configurable by selecting the region where PE and
PQBERrel are both satisfactory. Thus, if QBER is the main goal (the detection of eavesdropper
more than its failure), then, regions with larger K values could be more practical. Still,
some considerations should be analysed due to decoherence effects that could increase the
QBER [57], thus reaching the security bound. It will be discussed in the next subsection.

As it was stated in Section 5, the trend of BB84-like protocols has continued by propos-
ing new approaches mainly based on this protocol. Thus, the BBM92 protocol [12] reports
for individual attacks a theoretical QBER of 1

4 and a success probability of eavesdropping of
1
4 as the BB84 one. The SSP98 protocol [40] has reported theoretical QBER values of 2

3 and
success probability of 1

3 . Nevertheless, practical implementations report QBER’s of 0.110
and 0.126% [58] for BB84 and SSP98 respectively. The SARG04 protocol [13] has reported
QBER from 0.968% and 0.271% for single-photon and double photon pulses respectively.
In newer protocols based on BB84 as MKP16 protocol [43] the QBER range from 0.56 until
0.25 depending on the initial number of qubits generated. Thus, the development of QKD
protocols is not uniformly developed going first on the proposal, the QBER or success
probability analysis, the attack type to be considered in the analysis. Each one could have
different complexity, requiring further developments for its analysis through those several
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approaches highlighting their goodness. For the current procedure, the QBER is on the
range of the BB84 protocols, despite, it exhibits outstanding properties in terms of the
reduced Eve success probability, his possible configuration, and the existence of quantum
correlations during the quantum key generation.

Figure 9. Contour lines for the conditional QBER, PQBERrel , as function of ω1 and K in color for
(a) k = 0, θ = 0; (b) k = 0, θ = π

2 ; (c) k = 1, θ = 0; and (d) k = 1, θ = π
2 . Pj ≥ 0.9 corresponds to the

gray region.

6.2. Fidelity and Possible Decoherence Effects Due to the Environment

Technical implementations for security protocols involving quantum processing, as the
current one, will depend strongly on the physical system where it pretends to be imple-
mented. Quantum decoherence due to the interaction with the environment differently
affects setups settled on photonic systems than matter systems. While photonic implemen-
tations are recommended whenever quantum information should not be stored. Despite
quantum processing is commonly settled on gates models, all of them finally involve or
reduce to physical interactions ruled by a Hamiltonian. For matter, the preferred approach
to analyse such decoherence are the quantum open systems equations as Linblad or Red-
field ones [59]. A simpler but none-less useful approach is the modelling of decoherence
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through non-Hermitian Hamiltonians [60]. Still, both approaches can become complex if a
large number of gates are involved.

Thus, quantum decoherence is the main challenge to reach scalability and reliability.
In addition, it is known that decoherence effects (dephasing, amplitude, and depolarizing)
increase harmfully the QBER to undesired effects near from the security bound [57]. A pre-
cise quantification about the fidelity of such systems is complex because it depends on the
type and size of the gate and its architecture; also, on the number and kind of the quantum
states involved, particularly those involving entanglement. For these reasons, together with
the development of quantum information and its processing, this problem has been tackled
through practical considerations for different implementations on matter and for the most
typical gates [61]. While for photonic implementations decoherence becomes mild, it is not
true for matter systems. Thus, gates as NOT, Hadamard, CaNOTb, Toffoli, and so forth,
all of them involved in the current procedure, have been recently analysed for Nuclear
Magnetic Resonance (NMR) using the Lindblad equation to give certain guidelines to
quantum circuit designers about the decoherence for the most typical gates, thus reporting
their fidelity behavior [62]. Such analysis shows as expected, that the decoherence process
and the further loss of fidelity depend on the input state and the type of decoherence.
By analyzing amplitude and phase damping as the most representative examples of noise,
several aspects arise in the analysis: (a) deeper circuits (circuits with more gates) of course
exhibit lower fidelity, (b) multiqubit gates do not necessarily show lower fidelity than single
qubit ones, and (c) shorter time-scales to reach each gate still maintain fidelities near to
one. For Noisy Intermediate Scale Quantum (NISQ) technologies, global coherence times
are in the range of 50–100 µs. Dealing with fidelities routinely implemented above 0.99 for
single qubits gates, but also many two qubits gates. While, individual operation times are
in the order of nanoseconds, so large circuits can be addressed during the entire coherence
times [63]. Thus, circuits containing tens of gates are currently able to be implemented.
Table 4 accounts for the gates and their barely type arranged by process (DT for double
teleportation and PP for post-processing) and the number of qubits involved. More than
half are single qubits gates, showing that the implementation on matter-based technologies
is in order.

Table 4. Depth and number of each type of gate involved through the different steps of the whole
QKD protocol (DT and PP).

Process 1 2 3 Total
& Qubits X Z Hadamard Ca NOTb SWAPab CaUij Toffoli

DT 4 2 1 0 0 0 2 9
PP 4 1 1 1 1 10 1 19

6.3. Quantum Processing in QKD Developments and Post-Quantum Cryptography

The protocol proposed has implemented quantum processing to a great extent com-
pared with the most traditional procedures. Because quantum cryptography promises
unconditional security in data communication because it is currently pretended to be de-
ployed for military and commercial applications, it should be secure. Despite QKD is being
widely adopted, it still faces several important challenges regarding the rates for secret key
settlement, communication distance and decoherence, deployment sizes, the effective cost
in terms of quantum resources, maintenance, and security [64]. As it was stated through the
development, quantum coherence is preferable mandatory to reach all the basic features
provided by Quantum mechanics.

Quantum computers are believed to solve (at least via problem translation) any expo-
nential problem in principle solvable by a classical computer but not in a finite time. Then,
due to classical cryptography protocols are commonly breakable in an exponential time,
they are susceptible to failure under such scenarios. Then, with the advent of quantum
computers, the necessity to develop secure QKD protocols under their possible attacks is
mandatory. Post-quantum cryptography (sometimes also referred as quantum-safe cryp-
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tography) deals with cryptographic algorithms thought to be secure against cryptanalytic
attacks performed by an ideal quantum computer in terms of coherence, prompt quantum
resources, and speed-up [32].

While in conventional symmetric cryptography algorithms, the security in communi-
cation is solely related to the secrecy of the encryption key, other QKD protocols currently
studied, exploit an asymmetry in their implementation, thus stating the state-of-the-art
in their practical implementations [64]. In the post-quantum cryptography terrain, de-
spite currently experimental quantum computers still lacking processing power to break
any contemporary cryptographic algorithm, people working in the frontier of theoretical
cryptography are preparing impressive protocols to prepare for a time when quantum com-
puters become a real threat. It requires implementing mathematics, physics, and technology
to a great extent.

Cryptography systems are commonly grouped in several cryptographic classes [17].
Despite linear, our procedure could be adapted to be asymmetrically non-linear in (24);
together, authentication introduced by ωi parameters could be specialized to introduce
a Courtois, Finiasz and Sendrier Signature scheme [65], thus being able to fall in the
Multivariate-quadratic-equations and the Code-based schemes. It suggests a fusion be-
tween the classical cryptography schemes with trends based on Quantum mechanics fea-
tures.

7. Conclusions

The BB84 protocol is the most representative protocol in quantum cryptography. The
protocol uses a single quantum channel to transfer quantum encoding states. Despite an
outstanding security performance, it still allows the possibility to steal the key by interfering
with the mentioned quantum channel under individual attacks by an eavesdropper. Since
its development, many other BB84-like protocols have been developed, many of them
called by specific names despite their clear similitude to the BB84 one. There is not a unique
line of development, instead, they commonly attend to some improvements in the protocol
such as economy, security, and so forth.

In the present work, a protocol for the settlement of QKD using double teleporta-
tion and quantum processing together has been proposed. The procedure generates an
entangled multipartite system among three parties plus a control system. The involved
entanglement, together with local control, still allows us to manipulate the global quantum
state on different parts to those exerting it. The process involved in the double teleportation
plus post-processing has been shown to have non-locality activation, thus stating quantum
correlations. Thus, an asymmetric post-processing scheme is proposed to generate and
assemble a quantum state on a selected basis (defined by the state to teleport) on one of
those parts. Then, it is shaped under the proper control, finally setting the QKD protocol.

7.1. Summarizing and Featuring the Protocol

The QKD procedure presented is intended to generate sensitive secret information to
transmit it to a second party but is still assembled by post-measurement during the process,
instead of like previous QKD protocols, such as the BB84, where any sensible information
is transmitted by a quantum channel directly, being affordable for eavesdroppers at all
times. Thus, the protocol presented also considers the action of a possible eavesdropper
performing an individual attack under time uncertainty. In fact, with the correct prescrip-
tions, Alice can guarantee with the desired success threshold on her post-measurement,
a faithful reproduction of the BB84 protocol. Nevertheless, the control complexity is in-
creased, together with implementations of double teleportation and quantum processing,
the success for the eavesdropper becomes notably reduced if the attack is performed before
the assembling. QBER remains in the typical range and it could be configurable on the
election region of the parameters. Thus, while the eavesdropper has in the BB84 protocol a
theoretical 50% chance of success on the useful key, in the present protocol, the probability
of success drops down to as low as between 7% and 17%, thus improving the security.
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Due to the processing complexity involved, aspects regarding the decoherence demand
attention. There is not a unique procedure to quantify the loss of fidelity for a trend
of gates, mainly because it depends on their architecture, specific physical realization
and, inclusively, on the input states being considered. Despite this, for technologies other
than light (which reaches large decoherence times), such as NISQ ones, currently there
is a good fidelity performance of around 0.9 for the range of tens of gates. Then, despite
the reports stating an increase of QBER due to decoherence, it still could be controlled by
reducing the operation times of the gates as in the NISQ technologies.

7.2. Future and Additional Research

Additional research of course should be extended to probe the effectiveness extent
against collective and coherent eavesdropping attacks for this protocol using asymptotic
formulas or numerical analytic approaches [66]. We have limited our analysis to individual
attacks, assuming Eve only has access to public communication and the end of quantum
edge of Bob1 before the assembling of the key. However, for collective attacks, where
Eve brings each quantum signal and hears all public communication between Alice and
Bob [18], more decisive probes are needed.

Together, extensions for the current approach in the six-states protocol direction [40,47]
should be tried with more general and complex processing to that established in (12),
instead with the full form for two-quibit rotations: Uk = eiωk~nk ·~σ, with~σ = (X, Y, Z), thus
introducing additional parameters for the basis selection. In that trend, deeper elements
regarding the classical authentication ωk and the mathematical relation stated by the
parameter K could be oriented to well-stated methods in classical cryptography.

An optimality analysis should be performed to reach adequate prescriptions fixing
affordable values for the QBER and the eavesdropper rate of success in terms of the
configurable selection of the parameters on the region settled by the Figures 7 and 9.
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Appendix A. Control on Faraway Non-Local Resources

Controlled operations on faraway non-local parties as that in the second factor of (7),
CCU14 = |0〉C〈0| ⊗ 14 + |1〉C〈1| ⊗ U14 , are not possible to be performed directly (assuming
that the control and qubit 4 cannot be moved from their locations). Nevertheless, they can
be achieved via LOCC with the support of an entangled pair |β00〉ab where qubit a is in
possession of Alice and b is sent to Bob1:

|ψ〉 = (
√

p0|0〉C|φ0〉2|ψ0〉4 +
√

p1|1〉C|φ1〉2|ψ1〉4)⊗ |β00〉ab (A1)
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A direct calculation shows that a such state can be written in the basis of the Bell states
for the qubits C and a as:

|ψ〉 =
1
2 ∑

x,y∈{0,1}
|βxy〉Ca(

√
p0|0⊕ y〉b|φ0〉2|ψ0〉4 + (−1)x√p1|1⊕ y〉b|φ1〉2|ψ1〉4) (A2)

=
1
2 ∑

x,y∈{0,1}
|βxy〉CaZx

b Xy
b(
√

p0|0〉b|φ0〉2|ψ0〉4 +
√

p1|1〉b|φ1〉2|ψ1〉4) (A3)

then, Alice applies the operation HC · CC NOTa on her qubits, getting:

|ψ(1)〉 =
1
2 ∑

x,y∈{0,1}
|xy〉CaZx

b Xy
b(
√

p0|0〉b|φ0〉2|ψ0〉4 +
√

p1|1〉b|φ1〉2|ψ1〉4) (A4)

The following development could be achieved using delayed measurements [35]
or still just controlled operations. Despite, they commonly require interactions between
faraway resources, which implies some of them will be moved from their locations using
extra classical communication operations. Instead, we will use projective measurements
and corrections. Thus, Alice measures their qubits C, a obtaining the outcomes |x〉C and
|y〉a respectively. Using classical communication, Alice shares those outcomes with Bob1
who applies the controlled operation CCXy

b · C
aZx

b . The outcome is:

|ψ(2)〉 = |xy〉Ca(
√

p0|0〉b|φ0〉2|ψ0〉4 +
√

p1|1〉b|φ1〉2|ψ1〉4) (A5)

thus, Bob1 applies the controlled operation CbU14 :

|ψ(3)〉 = |xy〉Ca(
√

p0|0〉b|φ0〉2|ψ0〉4 +
√

p1|1〉b|φ1〉2U14 |ψ1〉4) (A6)

Finally, qubit b is sent to Alice to perform the SWAPCb operation:

|ψ(4)〉 = |yx〉ab(
√

p0|0〉C|φ0〉2|ψ0〉4 +
√

p1|1〉C|φ1〉2U14 |ψ1〉4) (A7)

which, disregarding the qubits a and b, is the same state obtained by CCU14 .

Appendix B. SWAP Operations between Faraway Non-Local Parties

As in the Appendix A, we will show how to perform the CSWAP2,4 operation between
the faraway parties 2, 4 (assuming they cannot be moved close together). Again, we will use
the entangled resource |β00〉ab where qubit a is in possession of Bob0 and b is sent to Bob1:

|ψ〉 = (
√

p0|0〉C|ψ0
0〉2|0〉4 +

√
p1|1〉C|0〉2|ψ1

0〉4)⊗ |β00〉ab (A8)

As before, by rearranging the qubits 2 and a in the first term of (A8), and expressing it
in terms of Bell stats basis:

|ψ〉 =

√
p0

2
|0〉C|0〉4 ∑

x,y∈{0,1}
|βxy〉2aZx

b Xy
b |ψ

0
0〉b +

√
p1|1〉C|0〉2|ψ1

0〉4|β00〉ab (A9)

then, Alice and Bob0 apply the controlled operation C̃C(H2C2NOTa) on their qubits (where,
C̃aGb ≡ Xa(CaGb)Xa). Then, it becomes:

|ψ(1)〉 =

√
p0

2
|0〉C|0〉4 ∑

x,y∈{0,1}
|xy〉2aZx

b Xy
b |ψ

0
0〉b +

√
p1|1〉C|0〉2|ψ1

0〉4|β00〉ab (A10)

then, Bob0 measures qubits 2 and a if the control register is |0〉C, getting |x〉2 and |y〉a using
controlled quantum measurements [36,37]. Thus:

|ψ(2)〉 =
√

p0|0〉C|0〉4|xy〉2aZx
b Xy

b |ψ
0
0〉b +

√
p1|1〉C|0〉2|ψ1

0〉4|β00〉ab (A11)
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Using controlled classical communication, the measurement outcomes are shared with
Bob1 just if the control register is |0〉C to perform the operation Xy

bZx
b and then SWAP4b, all

of them on his qubits. Similarly, Bob0 applies C̃CXx
2 and C̃CXy

a . It gives:

|ψ(3)〉 = |0〉2(
√

p0|0〉C|ψ0
0〉4|00〉ab +

√
p1|1〉C|ψ1

0〉4|β00〉ab) (A12)

Finally, Bob0 uses controlled quantum measurements again when the control register is
|1〉C to measure the qubit a getting |z〉a as outcome. He performs CCXz

a and uses controlled
classical communication to share the outcome to Bob1 who performs Xz

b. It gives the state:

|ψ(4)〉 = |000〉2ab(
√

p0|0〉C|ψ0
0〉4 +

√
p1|1〉C|ψ1

0〉4) (A13)

which, disregarding |000〉2ab, fits with |ψ f inal〉 in (10) upon the application of CSWAP2,4 .

Appendix C. Conditional Probability for Eve Success in the Protocol

Departing from the double teleported state after of the Bob1 processing but before to
the Bob0 processing and Alice’s measurement of the control system:

|ψ1〉 ≡
√

p0|0〉C ⊗ |ψ0〉2 ⊗ |0〉4 +
√

p1|1〉C ⊗ |0〉2 ⊗ |ψ1
0〉4 (A14)

then, we consider the state |k〉θ,p stated on the basis generated by the θ, p parameters:

|k〉θ,p = (−1)pk( fk(
θ

2
)|0〉+ (−1)p+k f1⊕k(

θ

2
)|1〉) (A15)

so, we get the expressions for the following projections:

θ,p〈k|0〉 = (−1)pk fk(
θ

2
) (A16)

θ,p〈k|ψ1
0〉 = (−1)pkW1 (A17)

where we have defined the quantity:

Wi ≡ fk(
θ

2
) cos

(
ωi − (−1)p θ

2

)
+ (−1)p+k+1 f1⊕k(

θ

2
) sin

(
ωi − (−1)p θ

2

)
(A18)

Then, Eve performs the sifting on the Bob1 state measuring it and then returning it to
Bob1. In addition, Bob0 processing is followed, which gives (omitting the tensor product
for simplicity, but indicating the systems with a proper subscript):

|ψ2〉 ≡ CCU02 · |k〉θ,p4
〈k| · |ψ1〉 = (−1)pk|k〉θ,p4

[
√

p0 fk(
θ

2
)|0〉C|ψ0

0〉2 +
√

p1W1|1〉C|0〉2
]

(A19)

where the previous expressions have been applied on the corresponding projections on
the Bob1 state. At this point, note that the Eve sifting could be performed equivalently
before or after to the Bob0 processing because measurement and the last processing works
on different systems. It implies that Type B and C become equivalent for the current
calculation as it was stated in Section 5.2. Thus, in any case Eve obtains |k〉θ,p as outcome
(after selecting the basis defined by θ, p).

In the following step, the CSWAP2,4 ≡ XC · CC
SWAP2,4

· XC is applied between the Bob’s,
giving:

|ψ3〉 ≡ CSWAP2,4 · |ψ2〉 = (−1)pk
[
√

p0 fk(
θ

2
)|0〉C|k〉θ,p2

|ψ0
0〉4 +

√
p1W1|1〉C|0〉2|k〉θ,p4

]
(A20)

Then, Alice performs the measurement of the control state on the basis stated by the
election of K. Here, she hits her selection |bj〉 so the next measurement performed by Bob1
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could be performed equivalently after or before to the Alice’s measurement for calculation
purposes. Employing such property, we get first:

|ψ4〉 ≡ θ,p4
〈k|ψ3〉 = (−1)pk

[
√

p0 fk(
θ

2
)|0〉C|k〉θ,p2 θ,p4

〈k|ψ0
0〉4 +

√
p1W1|1〉C|0〉2

]
(A21)

where it has been assumed that he hits on the same basis selection and outcome that Eve to
then get the success probability of her. Then, finally performing the Alice’s measurement
with outcome |bj〉:

|ψ5〉 ≡ C〈bj| · θ,p4
〈k|ψ4〉

=
√

p0β0⊕jW0 fk(
θ

2
)eiφm j|k〉θ,p2

+ (−1)j+pk√p1β1⊕jW1e−iφm(1+j)|0〉2 (A22)

We will need to switch k → k⊕ 1 as the outcome obtained by Eve and Bob1 in the
main text. In this way, by imposing the prescriptions to assemble the transmitted state from
Alice to Bob1 discussed in the text: p = 0, j + m = 1, eiφm = (−1)m, as well as Formulas (24)
and (25), we calculate the norm of the last state. It corresponds to the success probability
for Eve, P, given when Eve and Bob1 meet their outcomes and basis, while Alice succeeds
in her planned |bj〉measurement:

P = p0β2
0⊕j

[
fk⊕1(ω0) fk⊕1(

θ

2
)− K fk⊕1(ω1)

]2

= C0(p0, K)( fk⊕1(
θ

2
)
√

1− K2 f 2
k (ω1)− K fk⊕1(ω1))

2 (A23)

where we have reduced Wi = fk(ωi) applying the prescriptions. Note this probability is
referred to the entire process. To get the conditional or relative probability to the useful
key cases, PE, we will need to divide P by the corresponding Pj to restrict the universe to
the successful control measurement outcome, because in fact, it implies that Alice, Eve,
and Bob1 meet their measurement basis and outcomes.

Appendix D. Conditional QBER in the Protocol

Similarly to the Eve success probability, taking the teleported state after of the Bob1
processing but before to the Bob0 processing and the Alice’s measurement of the control
system (A14), then we consider the sifting and measurement from Eve, reaching the
outcome |k′〉θ′ ,p, with θ′ 6= θ, the basis planned by Alice. k′ is also not necessarily equal
to k⊕ 1 (the outcome finally obtained by Bob1). Following the expressions (A15)–(A17):

θ′ ,p〈k′|0〉 = (−1)pk′ fk′(
θ
2 ) and θ′ ,p〈k′|ψ1

0〉 = (−1)pk′W ′1, where, in this case, we introduced
the quantity:

W ′i ≡ fk′ (
θ′

2
) cos

(
ωi − (−1)p θ

2

)
+ (−1)p+k′+1 f1⊕k′ (

θ′

2
) sin

(
ωi − (−1)p θ

2

)
(A24)

As before, Eve performs the sifting, measuring, and returning on the Bob1 state. Then,
Bob0 processing is followed similarly as in (A19), giving:

|ψ′2〉 ≡ CCU02 · |k
′〉θ′ ,p4

〈k′| · |ψ1〉 = (−1)pk′ |k′〉θ′ ,p4

[
√

p0 fk′ (
θ′

2
)|0〉C|ψ0

0〉2 +
√

p1W ′1|1〉C|0〉2
]

(A25)

Observe that, in any case, Eve obtains |k′〉θ′ ,p as the outcome (by selecting the basis
defined by θ′, p). Now, the CSWAP2,4 ≡ XC · CC

SWAP2,4
· XC is applied between the Bob’s,

obtaining:

|ψ′3〉 ≡ CSWAP2,4 · |ψ
′
2〉 = (−1)pk′

[
√

p0 fk′ (
θ′

2
)|0〉C|k′〉θ′ ,p2

|ψ0
0〉4 +

√
p1W ′1|1〉C|0〉2|k′〉θ′ ,p4

]
(A26)
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Now, Alice performs the measurement of the control state on the basis stated by K,
hitting |bj〉 and generating the state |k′′〉θ,p on qubit 4, thus:

|ψ′4〉 ≡ θ,p4
〈k′′|ψ′3〉

= (−1)pk′
[
√

p0 fk′ (
θ′

2
)|0〉C |k′〉θ′ ,p2 θ,p4

〈k′′|ψ0
0〉4 +

√
p1W ′1|1〉C |0〉2 θ,p4

〈k′′|k′〉θ′ ,p4

]
(A27)

where it has been assumed that he hits on a different basis selection than Eve, and a
different outcome, but still in the same basis than Alice planned. It will let, under the
reconciliation, notice the presence of Eve. Then, finally performing Alice’s measurement
with outcome |bj〉:

|ψ′5〉 ≡ C〈bj| · θ,p4
〈k′′|ψ′4〉 = (−1)p(k′+k′′)

[
√

p0β0⊕jW0 fk′ (
θ′

2
)eiφm j|k′〉θ′ ,p2

+(−1)j+pk′+k′(k′+k′′)√p1β1⊕jW ′1 fk′⊕k′′ (
∆θ

2
)e−iφm(1+j)|0〉2

]
(A28)

where W0 is the same expression as in (A18) but changing k by k′′ and ∆θ = θ−θ′
2 . As in

the Appendix C, we set the prescriptions there. With this, W0 = fk′′(ω0) and W ′1 =

fk′′(ω1 +
∆θ
2 ). Additionally, we note that if k⊕ 1 is the outcome planned by Alice to reach

Bob1 in absence of the Eve’s intervention, then we will need set k⊕ 1 6= k′′ → k′′ = k. It
implies that fk(ω0) = (−1)j+mK fk(ω1) = −K fk(ω1). Finally, by obtaining the norm of
(A28), then summing over k′ = 0, 1, we get the absolute QBER (without disregarding the
failures in the control measurement by Alice):

PQBERabs = C0(p0, K)K2
1

∑
k′=0

[
fk(ω1) fk′(

θ′

2
)− (−1)k′(k+k′) fk(ω1 +

∆θ

2
) fk⊕k′(

∆θ

2
)

]2

(A29)

To get the conditional or relative QBER to the useful key cases, PQBERrel , we will need,
as before, to divide PQBERabs by the corresponding Pj to restrict the universe to the successful
control measurement outcome.
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