
����������
�������

Citation: Sarjamei, S.; Massoudi,

M.S.; Esfandi Sarafraz, M.

Frequency-Constrained Optimization

of a Real-Scale Symmetric Structural

Using Gold Rush Algorithm.

Symmetry 2022, 14, 725. https://

doi.org/10.3390/sym14040725

Academic Editors: Jan Awrejcewicz

and Sergei D. Odintsov

Received: 21 February 2022

Accepted: 31 March 2022

Published: 2 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Frequency-Constrained Optimization of a Real-Scale Symmetric
Structural Using Gold Rush Algorithm
Sepehr Sarjamei, Mohammad Sajjad Massoudi * and Mehdi Esfandi Sarafraz

Department of Civil Engineering, West Tehran Branch, Islamic Azad University, Tehran 1468763785, Iran;
sarjamei.sepehr@wtiau.ac.ir (S.S.); sarafraz.m@wtiau.ac.ir (M.E.S.)
* Correspondence: massoudi.ms@wtiau.ac.ir

Abstract: The optimal design of real-scale structures under frequency constraints is a crucial problem
for engineers. In this paper, linear analysis, as well as optimization by considering natural frequency
constraints, have been used for real-scale symmetric structures. These structures require a lot of
time to minimize weight and displacement. The cyclically symmetric properties have been used
for decreasing time. The structure has been decomposed into smaller repeated portions termed
substructures. Only the substructure elements are needed when analyzing and designing with the
concept of cyclic symmetries. The frequency constrained design of real-scale structures is a complex
optimization problem that has many local optimal answers. In this research, the Gold Rush Optimiza-
tion (GRO) algorithm has been used to optimize weight and displacement performances due to its
effectiveness and robustness against uncertainties. The efficacy of the concept of cyclic symmetry to
minimize the time calculated is assessed by three examples, including Disk, Silo, and Cooling Tower.
Numerical results indicate that the proposed method can effectively reduce time consumption, and
that the GRO algorithm results in a 14–20% weight reduction of the problems.

Keywords: structural optimization; frequency constraints; cyclic symmetry; Gold Rush Optimization
algorithm

1. Introduction

In vibrational analysis, the optimal design of real-scale symmetric structures under
frequency constraints is a crucial problem. Since the modal properties of a structure
determine its dynamic behavior, the frequency constraints and the capacity to adjust the
values of natural frequencies are sensitive items in the analysis and design. Concerning
the frequency constraints, including non-convex search spaces, sophisticated methods are
needed [1]. Since the frequency constrained design of large-scale structures is a complex
optimization problem with many local optima, an appropriate optimization technique is
usually required. Among the research conducted to optimize the design of structures under
frequency constraints, the following studies can be briefly reviewed.

Using laws of momentum and energy between collisions bodies, Kaveh and Mah-
davi [2] introduced a new Colliding Bodies Optimization algorithm (CBO). Kaveh and
Mahdavi [3] looked into the effectiveness of CBO for the problem and conducted parametric
research on its internal characteristics. Enhanced Colliding Bodies Optimization (ECBO)
introduced by Kaveh and Ilchi Ghazaan [4] improved the function of the CBO algorithm.
ECBO uses memory to save some optimal solutions. Enhanced Colliding Bodies Optimiza-
tion (ECBO) was used by Kaveh and Ilchi Ghazaan [5] to demonstrate the algorithm’s
efficiency in frequency-constrained structural optimization. Song and Zhang [6] assessed
the wind deflection of a railway catenary in a crosswind under frequency constraints, based
on wind tunnel tests and a nonlinear finite element model. Ho-Huu et al. [7] proposed
a new version of the Differential Evolution (DE) method called Roulette Wheel Selection-
Elitist-Differential Evolution (ReDE), which employs elitism in the selection phase using the
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Roulette Wheel Selection technique. Lieu et al. [8] proposed the Adaptive hybrid Evolution-
ary Firefly Method by combining the differential evolution (DE) algorithm and the Firefly
Algorithm (FA) (AHEFA). Tejani and Mirjalili [9] used Symbiotic Organisms Search (SOS)
to optimize the size of space trusses. SOS is based on the biological interactions between
organisms in an ecosystem. Kaveh and Dadras [10] have introduced a chaotic version of
a newly-established metaheuristic algorithm called the Water Strider Algorithm (WSA)
to tackle this problem. Kaveh and Ilchi Ghazaan [1] used the ECBO method to optimize
large-scale dome trusses with frequency limitations, incorporating multi-stage cascading
techniques. The possibilities of the Vibrating Particles System (VPS), an algorithm inspired
by the damped oscillation of a single degree of freedom system, to cope with large-scale
dome trusses were examined by Kaveh and Ilchi Ghazaan [11]. To handle a large number
of variables, Kaveh and Ilchi Ghazaan [12] combined the VPS technique with multi-design
variable configuration (Multi-DVC) cascade optimization, as well as employing an upper
bound strategy (UBS) to reduce computing time. Weight optimization of truss structures
with different frequency constraints was investigated by Carvalho et al. [13]. Rao [14] cre-
ated the Teaching-Learning-Based Optimization (TLBO) algorithm based on a traditional
school learning. Kar et al. [15] proposed a Craziness-based Particle Swarm Optimization
(CRPSO), which they used. They employed cardinality constraints and frequency con-
straints to limit the maximum number of distinct cross-sectional areas, lowering the cost
of selecting a different cross-section of elements and weights of structures. The Charged
System Search (CSS) algorithm was introduced using principles from physics and me-
chanics [16]. Furthermore, they utilized a combination of governing Coulomb law from
electrostatics and the Newtonian laws of mechanics. The (CSS) algorithm and its enhanced
version (ECSS) are being used to optimize various truss structures [17]. To improve the
CSS algorithm’s convergence time, Jalili and Talatahari [18] devised a hybrid Charged
System Search (CSS) method with a Migration-based Local Search (MBLS) mechanism. The
effectiveness of the proposed hybrid approach was proved in their research by proving the
optimum design of many benchmark truss instances with frequency constraints. For the
best design of large-scale cyclically symmetric dome trusses with frequency constraints,
Kaveh and Zolghadr [19] employed the Cyclical Parthenogenesis Algorithm (CPA). They
used the block diagonalization technique to divide the domes’ repeated patterns into
smaller parts, lowering the computer time necessary for the analysis. Liu et al. [20] added
the vision search radius for each fruit fly as well as an enhanced Deb (IDeb) rule to handle
the limitations to the Fruit Fly Optimization Algorithm (FOA) utilizing a memory-based
search strategy. They used this technique to optimize truss structures with frequency
constraints, demonstrating that the new algorithm finds better answers. To modify the at-
tractiveness and light absorption coefficients of FA, Kaveh, and Javadi [21] used two chaotic
maps, namely Logistic and Gaussian maps. These chaotic algorithms were used to optimize
large-scale domes that have various frequency constraints.

Real-scale structures need a lot of effort to find the modal parameters, whereas sym-
metric structures can be solved rapidly. Wang [22] optimized the real-scale bridge cables
under frequency constraints. For tackling rotationally periodic structures, Williams [23]
presented an accurate eigen solution technique. The component mode technique was used
by Tran [24] for vibration analysis of cyclic symmetry systems. He used a scaled finite
element approach for cyclically symmetric domain heat transport and structural mechanics
difficulties [25,26]. For optimal structural analysis, graph theory [27,28] has been suggested
as a helpful solution. Kaveh and Koohestani [29] created graph models for ordinary finite
element meshes. In the free vibration analysis of cyclically repeated structures, Kaveh and
Rahami [30] used block circulant matrices. Kaveh and Rahami [31] proposed a method
for efficiently computing graph product-generated repeating structures. Using the force
method, Koohestani [32] proposed an orthogonal self-stress matrix for quickly evaluating
cyclically symmetric space truss designs. Koohestani [33] applied the properties of symme-
try in graph theory to finite and boundary elements. For the free vibration analysis of cyclic
symmetry, Koohestani [34] implemented the decomposition of extended Eigen problems.
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This research aimed to optimize the design of real-scale symmetric structures under
frequency constraints using the GRO metaheuristic algorithm. It has been practically
impossible to optimize real-scale symmetric structures in the previous research using
meta-heuristic algorithms due to the large volume and time of calculations. This study
hypothesized that the abilities of the cyclic symmetric concept could reduce the time and
volume of calculations. Using the metaheuristic algorithm and the concept of cyclic sym-
metry, real-scale structures such as a Disk, Silo, and Cooling Tower have been investigated.
Furthermore, the results are discussed and compared with CSS and TLBO algorithms.

2. Materials and Methods

In this section, the methodology of the frequency constraint, cyclically symmetric
formulation, and optimization algorithm are introduced.

2.1. Methodology of the Frequency Constraint Optimization Problem

This problem aims to find the optimal design for structures with real-scale cyclic sym-
metry and multiple frequency constraints, where the cross-sectional area of the structural
members is constantly changing in the search space. In such problems, size optimiza-
tion minimizes weight while satisfying the constraints. The mathematical formula of the
problem can be expressed as Equation (1).

Find X = [x1, x2, . . . , xnDV ] , xi ∈ Ri
to minimize P(X) = fpenalty (X) × W(X);

subject to :

{
ωj ≤ ω∗j f or some natural f requencies j
ωK ≤ ω∗k f or some natural f requencies k

xL
i ≤ xi ≤ xU

i

Ri =
{

xi
∣∣xi ∈

[
xL

i , xU
i
]}

(1)

where the vector X contains the design variables (sections), the ith design variable is xi.
(nDV) is the number of design variables according to the grouping of elements. W(X)
shows the weight of the structure. The penalty approach is used to consider the constraints,
in which the cost function is defined as that which must be minimized. fpenalty(X) is
a penalty function. When certain constraints are violated in a particular solution, the
penalty function fpenalty(X) artificially increases the weight of the structure by taking
values more significant than one. Also, ωj is the jth natural frequency of the structure, ω∗j
is the upper limit, ωk is the kth natural frequency of the structure, and ω∗k is the lower limit.
xL

i and xU
i are the lower and upper bounds of the design variable xi. Ri is the allowable

range of the ith design variable. The design variable xi can be constantly changed in Ri.
The weight of the structure is calculated from Equation (2).

W(X) =
nDV

∑
i=1

xi

nm (i)

∑
j=1

ρj Lj (2)

In which nm(i) is the number of members allocated to the ith element. ρj and Lj are
the material density and the length of the jth member, respectively. The penalty function is
defined in Equation (3).

fpenalty(X) = (1 + ε1.ν)ε2 (3)

For a particular solution, ν shows the sum of violations, defined in Equation (4).

ν =
s

∑
i=1

νi (4)
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In which S is the number of frequency constraints. Values of νi can be considered as
shown in Equation (5).

νi =


0 if the ith constraint

is satisfied∣∣∣1− ωi
ω∗i

∣∣∣ else
(5)

In this study, ε1 and ε2 are calculated from Equation (6) to create a suitable balance
between the algorithm’s exploration and exploitation.

ε1 = 1.5 + 0.5× NSA
MaxNSA

ε2 = 1.5 + 1.5× NSA
MaxNSA

(6)

where NSA is the current analysis number and MaxNSA is the total number of structural
analyses for the optimization process and is defined as the criterion for the optimization
termination. As the value of NSA increases, the values of ε1 and ε2 grow. It can be inferred
that the algorithm explores the search space in the early stages but in the final stages
tends to choose solutions without violations. Equation (6) helps the algorithm search near
a low-cost solution as a final design and converge to reduce errors.

2.2. Cyclically Symmetric Formulation

One of the general tasks in engineering is to determine the natural frequency of
structures on a real scale. The system displays a specific pattern in structures with cyclic
symmetry. The rotations of several repeating identical units (called substructures) along the
central axis make up a cyclically symmetric structure [29]. Structural analysis is performed
on only one of the substructures using the cyclic symmetry concept. Except at support
nodes, points and elements are numbered in each substructure from top to bottom. The
pattern of stiffness and mass matrices is obtained by using the right way of numbering
nodes, which is the same as the Canonical Form F matrix as shown:

K =


K11 K12 K21
K21 K11 K12

. . .
K21 K11 K12

K12 K21 K11


n×n

M =


m11 m12 m21
m21 m11 m12

. . .
m21 m11 m12

m12 m21 m11


n×n

In which n is the number of repetitive substructures, K12 = Kt
21, and m12 = mt

21. Given
this, determining the natural frequency of the cyclically symmetric structure is a matter of
total eigenvalue, as shown in Equation (7):

Kφ= MφD (7)

In Equation (7), the matrix D is diagonal. The values of matrix D are λi general
eigenvalues. The Ti periods of the substructure are obtained from Equation (8).

Ti = 2π/
√

λi i = 1, . . . , n (8)

ϕi the eigenvector corresponds to the ith eigenvalues, and Equation (7) is rewritten as
follows for each substructure Equation (9):

Kϕi = λi M ϕi i = 1, . . . , n (9)
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The mass and stiffness matrix for each substructure is as follows in Equation (10) to
reduce computing time using the canonical concept:

K = I⊗ k11+H⊗ k12+Ht ⊗ k21
M = I⊗m11+H⊗m12+Ht ⊗m21

(10)

In Equation (10), I and H are an n × n identity matrix and a special and important
matrix, respectively, with the desired pattern presented as follows:

I =



1
1

.
.

1
1


n×n

H =



0 1
0 1

. .
. 1

0 1
1 0


n×n

A full description of this section can be found in Kaveh [29].

2.3. Optimization Algorithm

In this study, the GRO, CSS, and TLBO algorithms are used for Equation (1). These
algorithms have been adopted due to their ability to optimize truss structures in previous
studies. The algorithms are stated below:

2.3.1. Gold Rush Optimization (GRO) Algorithm

Massoudi and Sarjamei created a GRO algorithm [35] based on the power of human
thinking and decision making, and which will be called a Gold Rush Optimization. The
GRO algorithm is a population-based evolutionary algorithm with a higher convergence
speed than other optimization algorithms. The aim is to find the place of gold. Firstly,
a group of people called operators stand in a random spot of search space. Every operator
uses a device (metal detector) to find gold. In every stage, the operators move altogether
and listen to the sound until they hear an increase in the sound and then stop at that point.
Every operator would also listen to the sounds produced by other devices and constantly
monitor if any other devices create a louder sound. At each stage, the group moves to
the place of the loudest sound. In the end, the exact location of the gold is determined.
Three parameters α, β, and γ indicate the probability of moving towards the loudest sound
or moving away from it. The parameters α, β, and γ in the interval [0–1] are selected.

Level 1: Initialization
Each operator stands randomly in one spot inside the search space as represented in

Equation (11). lbi and ubi are the lower and upper bounds of a domain (search space). rand
in the interval [0–1] is a random number, and N is the number of operators.

location(0)
i = lbi + (ubi − lbi) ∗ rand, i = 1, 2, . . . , N (11)

Level 2: Monitoring-Choosing the best locations
SOP is an operator who is successful in finding the optimal location. In this step, SOP

should be generated. At the end of every iteration, the top ten percent of operators should
be chosen and kept in the SOP.

Level 3: Fitness-distance
The analysis of the loudness of every sound (rate), operator with the most probability

to extract gold, is calculated from Equation (12):

rate(i) =
Di
ρ
∗ sound(highest volume)− sound(i)
(sound(highest volume)− sound(lowest volume) + ε)

(12)
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The epsilon (ε) is a small positive number to avoid singularities. To prevent errors
from environmental, the coefficients, ρ, and Di represented in Equation (13) are used. The
indices i and j indicate the current position of the two operators.

ρ = 2− iter
maxiter

, Di =
√(

xi − xj
)2

+
(
yi − yj

)2
+ . . . (13)

Level 4: Think-Decisions-move
In this step, every operator will create completely different selections based on a mix

of sounds represented in Equation (14).

new location(i) = location(i) + md× [(rate(j)− rate(i)) ∗ ( location(j)− location(i)) ∗ rand] (14)

The coefficients md means move direction determined from Equation (15):

md =

{
+1⇒ towards a loudest sound? α > rand
−1⇒ away f rom a loudest sound? α < rand

(15)

Level 5: Correct location
If the location obtained in Equation (14) does not meet the problem’s constraints,

Equation (16) is utilized to generate new locations. β and γ coefficients are selected as
0 < β < γ < 1.

new location(i) =


choose a neighboring location rand < β
select a new location randomly β < rand < γ
do not move γ < rand

(16)

Level 6: Termination
Steps 4 to 6 are eventually repeated in a loop until one of the following terminating

conditions is met:

1. The maximum number of tries.
2. There has been no noticeable change in the optimal location.
3. The gap between the SOP function’s values and the obtained most optimal answer

is smaller than a pre-determined expected threshold. The parameters in the interval
[0–1] are selected.

4. If the difference between the best and worst location’s objective values is smaller than
a given accuracy.

In this study, the GRO algorithm is used for Equation (1). The optimum amount of
weight of an element is obtained. The algorithm is performed using MATLAB.

The flowchart of the GRO algorithm is illustrated in Figure 1.

2.3.2. Charged System Search (CSS) Algorithm

The Charged System Search (CSS) algorithm was created by Kaveh and Talatahari [16,36]
as an efficient population-based metaheuristic using some physics and mechanics concepts,
and it has been effectively applied to a variety of structural optimization problems [37–40].
CSS is based on the electrical Coulomb laws and the Newtonian rules of mechanics. Each
agent in this algorithm is a charged particle (CP) with a fixed radius. The charge of
a particle’s magnitude qi is calculated based on its quality from Equation (17):

qi =
f it(i)− f itworst

f itbest− f itworst
i = 1, 2, . . . , N (17)

The best and the worst fitness of all the particles are f itbest and f itworst, respectively;
f it(i) represents the fitness of the agent i, and N is the total number of CPs.
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Between two charged particles, the separation distance rij is defined from Equation (18):

rij =
‖Xi − Xj‖

‖
(
Xi − Xj

)
/2− Xbest‖+ ε

(18)

Here Xi and Xj are the positions of ith and the jth of charged particles. The posi-
tion of the best charge particles is Xbest. The epsilon (ε) is a small positive number to
avoid singularities.

Each good particle generates an electric field that attracts other electrically charged
things from Equation (19):

pij =

{
1 f it(i)− f itbest

f it(j)− f it(i) > rand ∨ f it(j) > f it(i)
0 else

(19)
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As a result, charged particles can interact with another one depending on their fitness
values and separation distance from Equation (20):

Fj = qj ∑
i,i 6=j

(
qi
a3 rij.i1 +

qi

r2
ij

.i2

)
pij
(
Xi − Xj

) 〈 j = 1, 2, . . . , N
i1 = 1, i2 = 0⇔ rij < a
i1 = 0, i2 = 1⇔ rij ≥ a

(20)

The resultant force acting on the jth charged particle is Fj. (a) the radius of the charged
sphere is set to unity.

The new position and velocity of each CP are computed by Equation (21):

Xj,new = randj1.ka.
Fj
mj

.∆t2 + randj2.kν.Vj,old.∆t + Xj,old

Vj,new =
Xj,new−Xj,old

∆t

(21)

Ka and Kv are the acceleration coefficient and the velocity coefficient, respectively;
randj1 and randj2 in the interval [0–1] are random numbers. mj is the mass of the charged
particles, and ∆t is the time step set to one. Electrostatics laws are used to calculate the
magnitude of the resultant force, whereas Newtonian mechanics laws are used to define
the quality of the movement.

2.3.3. Teaching-Learning-Based Optimization (TLBO) Algorithm

Rao [14] created the Teaching-Learning-Based Optimization (TLBO) algorithm based
on traditional school learning. The influence of a teacher on students and the effect of
students on each other are the two stages of this algorithm. The population of random solu-
tions in TLBO was dubbed students or learners at the start and initialized the population
size (Pn). In TLBO, the regular distribution of marks received by pupils is considered as
the performance of the class in learning or the teacher’s performance in instructing. In
each iteration, the best learner or most intelligent student with the best goal function is
designated as the instructor. Students are updated iteratively to find the best solution in
two phases: the first is based on the knowledge that transferred from a teacher (teacher
phase), and the second is based on interaction with other students (interaction phase)
(learner phase).

In the first phase (teacher phase), the mean of each design variable is calculated. The
best solution that will act as a teacher is given by Equation (22).

Xteacher = X f (x)=min (22)

f (X) is the objective function, and X is a design variable.
The critical difference between the two normal distributions is the mean value (M),

which means that a better instructor will teach pupils with higher average scores. In
the teacher phase, TLBO enhances other pupils by utilizing the difference between the
instructor’s knowledge and the intermediate knowledge of all students. Modified solution
based on the best solution is given by Equation (23):

Xnew,i = Xold,i + ri(Mnew − TF Mi) (23)

ri in the interval [0–1] is a random number. Determining the change in mean value is
a teaching factor (TF) and is explained in Equation (24).

TF = round[1 + rand(0, 1){2− 1}] (24)

rand in the interval [0–1] is a random number.
In the second phase (learner phase), each student’s knowledge is derived from their

position in the search space. Students can also improve themselves by conversing with



Symmetry 2022, 14, 725 9 of 21

another student after the teacher has finished teaching. The mathematical expression is
explained as follows (25).{

Xnew,i = Xold,i + ri
(
Xi − Xj

)
f (Xi) < f

(
Xj
)

Xnew,i = Xold,i + ri
(
Xj − Xi

)
else

(25)

TLBO increases each student’s knowledge after contact with another randomly se-
lected student throughout the learner phase

In this study, three numerical examples, including a Disk, Silo, and Cooling Tower,
have been studied to evaluate the efficiency of the proposed method. In numerical examples,
the results of optimal design by the GRO algorithm are evaluated and compared with
two other famous algorithms.

3. Numerical Examples

In this section, the effectiveness of the concept of cyclic symmetry for minimizing the
time required is assessed by three examples with continuous environments, including Disk,
Silo, and Cooling tower. It is assumed that the number of frequencies in Equation (1) is equal
to the number of degrees of freedom of the substructure. Structural properties which should
be considered in all problems are listed in the following: the number of elements of the
substructure is 30, the number of nodes of the substructure is 31, the number of repetitions
of the substructure is 60, the number of elements of the structure is 1800, and the number
of nodes of the structure is 1860. Material properties of these structures are: modulus of
elasticity (E) = 2.4 × 107 (kN/m2), mass per unit volume (ρ) = 2.4 (kNs2m-4), Poisson’s
ratio (ν) = 0.2. Examples have used a flat thin-shell element. This element is obtained by
combining two elements, Q4 and DKQ. The isoperimetric four-node quadrilateral Q4 [41]
element and the Discrete Kirchhoff Quadrilateral DKQ [42] element. The quadrilateral flat
shell element has 24 degrees of freedom (6 for each node). The structure’s weight is obtained
from Equation (1). Furthermore, CSS and TLBO, two well-known algorithms in structural
engineering problems, are used for optimization. The whole structure is then modeled in
MATLAB using the approach mentioned above. In all examples, due to the random nature
of meta-heuristic algorithms, each algorithm was run 20 times independently. The best
result from 20 independent performances was reported as the best answer. Calculations
were performed on the first-generation Intel Corei3 CPU. Frequency and displacement
constraints were considered. Frequency constraints are considered to control the structure’s
dynamic behavior.

3.1. Disk

The first numerical example is a Disk, as shown in Figure 2. It is simply supported
where R = 0.1 and R = 10.
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The coordinate of the nodes of the Disk’s substructure is presented in Table 1. This
substructure is rotated 60 times around the center to create a Disk. The whole structure uses



Symmetry 2022, 14, 725 10 of 21

a four-node quadrilateral flat shell element. In each element, the active mass is considered
at the nodes.

Table 1. Coordinates of the nodes of the Disk.

Node
Number

Coordinates (x,
y, z)

Node
Number

Coordinates
(x, y, z)

Node
Number

Coordinates
(x, y, z)

1 (0.1, 0, 0) 12 (1.5052, 0, 0) 23 (5.4865, 0, 0)
2 (0.1213, 0, 0) 13 (1.7607, 0, 0) 24 (5.9762, 0, 0)
3 (0.1639, 0, 0) 14 (2.0374, 0, 0) 25 (6.4871, 0, 0)
4 (0.2277, 0, 0) 15 (2.3355, 0, 0) 26 (7.0194, 0, 0)
5 (0.3129, 0, 0) 16 (2.6548, 0, 0) 27 (7.5729, 0, 0)
6 (0.4194, 0, 0) 17 (2.9955, 0, 0) 28 (8.1478, 0, 0)
7 (0.5471, 0, 0) 18 (3.3574, 0, 0) 29 (8.7439, 0, 0)
8 (0.6961, 0, 0) 19 (3.7407, 0, 0) 30 (9.3613, 0, 0)
9 (0.8665, 0, 0) 20 (4.1452, 0, 0) 31 (10.0, 0, 0)
10 (1.0581, 0, 0) 21 (4.5710, 0, 0)
11 (1.2710, 0, 0) 22 (5.0181, 0, 0)

In this example, the optimization is performed once by considering the frequency
constraint and next by considering both frequency and displacement constraints to evaluate
the efficiency of the proposed method:

First constraint: first and third frequencies assumed to be less than 0.155 and 0.149,
respectively (ω1 < 0.155, ω3 < 0.149).

Second constraint: first and third frequencies assumed to be less than <0.155 and
<0.149, respectively (ω1 < 0.155, ω3 < 0.149), and the displacement of node number two
under a load of 10,000 kN in the Y direction is less than <0.0103.

The thickness member of the substructure elements in this example is the main vari-
able obtained according to the constraints considered by meta-heuristic algorithms. The
specified range for the thickness of structural elements is (0.25–0.35 m) in both cases of ten
and thirty variables.

In this example, to analyze a cyclically symmetric structure, only the matrix with
dimensions 186, equal to the substructures, is calculated. Only once the calculation for
the frequency of the structure without using the concept of cyclic symmetry was stopped
after about 4 h without any result. The calculation time using the proposed method is
significantly reduced.

For Disk evaluation, the coefficient of the GRO algorithm was α = 0.7, β = 0.5, γ = 0.8.
For 100 operators working in the Disk, a maximum of 500 repetitions was determined as
a termination condition in the example. For this purpose, the structure was optimized with
ten elements or variables (three elements in one group) and once with thirty variables, as
shown in Figure 3.
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The structure’s weight with an initial thickness of 0.35 m is 263.3873 kN. The results
are presented in Tables 2 and 3. The results in Table 2 show that, under the first and
second constraint, the structure’s weight is 210.6800 kN (20.0113% weight reduction)
and 225.1152 kN (14.5307% weight reduction) by using the GRO algorithm, respectively,
indicating the GRO algorithm’s very intimate performance and better efficacy compared
with the other two algorithms.

Table 2. Optimal design results for Disk with ten variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.3223 0.25432 0.32055 0.32432 0.31181 0.30816
2 0.31358 0.26921 0.28618 0.29656 0.32971 0.32527
3 0.35 0.30995 0.28575 0.31167 0.32477 0.33627
4 0.27218 0.28793 0.27218 0.30292 0.3174 0.30797
5 0.29664 0.27156 0.31867 0.27249 0.26037 0.30335
6 0.28693 0.30716 0.27789 0.25351 0.27004 0.27181
7 0.27102 0.3094 0.27254 0.32775 0.25913 0.27129
8 0.30973 0.30414 0.34035 0.30485 0.29696 0.32472
9 0.27882 0.29335 0.2535 0.32963 0.29731 0.33487
10 0.26383 0.25606 0.28665 0.27671 0.33245 0.28385

Weight (kN) 210.68 214.0883 215.5785 225.1152 227.3797 227.8022

Weight reduction
(percentage) 20.0113 18.7173 18.1515 14.5307 13.671 13.5106

Table 3. Optimal design results for Disk with thirty variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.32895 0.34863 0.3236 0.27153 0.28859 0.31611
2 0.3392 0.27333 0.27333 0.29466 0.26096 0.28818
3 0.2831 0.2831 0.31302 0.27043 0.31731 0.27222
4 0.30319 0.2946 0.34495 0.29997 0.33555 0.29043
5 0.25 0.28761 0.28761 0.29314 0.30404 0.25802
6 0.34779 0.32129 0.34832 0.32587 0.33136 0.34974
7 0.30548 0.30548 0.29013 0.33109 0.3306 0.28823
8 0.26898 0.26898 0.33433 0.3434 0.2793 0.27152
9 0.29968 0.33482 0.28475 0.32096 0.29732 0.25
10 0.2951 0.30222 0.29329 0.3207 0.27777 0.34179
11 0.34994 0.29251 0.28194 0.33587 0.32934 0.32385
12 0.28303 0.30634 0.25284 0.32524 0.34933 0.28928
13 0.34992 0.31479 0.25787 0.33255 0.3445 0.30287
14 0.33866 0.28642 0.26022 0.33715 0.34862 0.31572
15 0.31011 0.27181 0.25 0.25431 0.30349 0.28225
16 0.2935 0.2935 0.29923 0.25576 0.27672 0.33805
17 0.30241 0.34981 0.31378 0.25793 0.29611 0.30806
18 0.32113 0.33979 0.28981 0.29638 0.32797 0.30032
19 0.28916 0.32681 0.35 0.31963 0.25141 0.3022
20 0.258 0.258 0.25008 0.31484 0.2888 0.26151
21 0.33324 0.30111 0.35 0.26566 0.3161 0.35
22 0.28162 0.30381 0.31155 0.30963 0.29594 0.26372
23 0.30371 0.30371 0.33676 0.35 0.29573 0.25857
24 0.29568 0.29568 0.29316 0.26058 0.31643 0.34493
25 0.26007 0.26007 0.26432 0.3004 0.34709 0.28111
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Table 3. Cont.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

26 0.27469 0.29141 0.27469 0.33481 0.27642 0.3143
27 0.25478 0.27388 0.29988 0.28506 0.3321 0.33521
28 0.34821 0.34837 0.32301 0.34921 0.32673 0.28613
29 0.26503 0.26503 0.26624 0.30049 0.30046 0.32646
30 0.30911 0.32668 0.33041 0.25829 0.25107 0.31654

Weight (kN) 220.815 225.397 225.4451 226.4353 227.5151 231.0375

Weight reduction
(percentage) 16.1634 14.4237 14.4055 14.0295 13.6196 12.2822

The results in Table 3 show that, under the first constraint, the structure’s weight
is 220.8150 kN (16.1634% weight reduction) by using the GRO algorithm, indicating its
very intimate performance and better efficacy compared with the other two algorithms.
However, under the second constraint, the structure’s weight is 226.4353 kN (14.0295%
weight reduction) by using the GRO and 227.5151 kN (13.6196% weight reduction) by
using the CSS, indicating the GRO and CSS algorithms’ very intimate performances, and
a better efficacy compared with the TLBO algorithms. Tables 2 and 3 show the calculated
thicknesses obtained by all algorithms. As can be seen, the thicknesses are in a suitable
range, indicating the correct operation of the algorithms in finding the optimal answers in
the search space.

3.2. Silo

The second numerical example is a Silo, as shown in Figure 4. It is simply supported
at Z = 0.
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dimensions.

The coordinate of the nodes of Silo’s substructure is presented in Table 4. This sub-
structure is rotated 60 times around the center to create a Silo. The whole structure uses
a four-node quadrilateral flat shell element. In each element, the active mass is considered
at the nodes.

In this example, the optimization is performed once by considering the frequency
constraint and next by considering both frequency and displacement constraints to evaluate
the efficiency of the proposed method:
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First constraint: first and third frequencies assumed to be less than 0.49 and 0.3,
respectively (ω1 < 0.49, ω3 < 0.3).

Second constraint: first and third frequencies assumed to be less than <0.49 and <0.3,
respectively (ω1 < 0.49, ω3 < 0.3), and the displacement of node number one under a load
of 10,000 kN in the Y direction is less than <0.327.

Table 4. Coordinates of the nodes of the Silo.

Node
Number

Coordinates
(x, y, z)

Node
Number

Coordinates
(x, y, z)

Node
Number

Coordinates
(x, y, z)

1 (4, 0, 28) 12 (5, 0, 18) 23 (4.61111, 0, 7.111)
2 (4.25, 0, 27.25) 13 (5, 0, 17) 24 (4.22222, 0, 6.22222)
3 (4.5, 0, 26.5) 14 (5, 0, 16) 25 (3.83333, 0, 5.33333)
4 (4.75, 0, 25.75) 15 (5, 0, 15) 26 (3.4444, 0, 4.44444)
5 (5, 0, 25) 16 (5, 0, 14) 27 (3.05556, 0, 3.55556)
6 (5, 0, 24) 17 (5, 0, 13) 28 (2.66667, 0, 2.66667)
7 (5, 0, 23) 18 (5, 0, 12) 29 (2.27778, 0, 1.77778)
8 (5, 0, 22) 19 (5, 0, 11) 30 (1.88889, 0, 0.88889)
9 (5, 0, 21) 20 (5, 0, 10) 31 (1.5, 0, 0)
10 (5, 0, 20) 21 (5, 0, 9)
11 (5, 0, 19) 22 (5, 0, 8)

The thickness member of the substructure elements in this example is the main vari-
able obtained according to the constraints considered by meta-heuristic algorithms. The
specified range for the thickness of structural elements is (0.25–0.35 m) in both cases of ten
and thirty variables.

In this example, to analyze a cyclically symmetric structure, only the matrix with
dimensions 186, equal to the dimensions of the substructure, is calculated. Only once
was the calculation for the frequency of the structure without using the concept of cyclic
symmetry was stopped after about 4 h without any result. The calculation time using the
proposed method is significantly reduced.

For Silo evaluation, the coefficient of the GRO algorithm was α = 0.7, β = 0.5, γ = 0.8.
For 120 operators working in the Silo, a maximum of 600 repetitions was determined as
a termination condition in the example. For this purpose, the structure was optimized with
ten elements or variables (three elements in one group) and once with thirty variables, as
shown in Figure 5.
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The structure’s weight with an initial thickness of 0.35 m is 673.2002 kN. The results
are presented in Tables 5 and 6. Table 5 shows that the optimal weights obtained by
GRO and CSS algorithms were almost similar. Under the first constraint, the structure’s
weight is 555.6478 kN (17.7588% weight reduction) by using the GRO algorithm and
553.9053 kN (17.7206% weight reduction) by using the CSS algorithm, indicating their very
similar performance and a better efficacy compared with the TLBO algorithms. Under the
second constraint, the GRO algorithm obtained a weight of 584.8135 kN (13.1293% weight
reduction), indicating its very intimate performance and also a better efficacy compared
with the CSS and TLBO algorithms. Moreover, the calculated thicknesses obtained by all
algorithms are in a suitable range indicating the correct operation of the algorithms in
finding the optimal answers in the search space.

Table 5. Optimal design results for Silo with ten variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.32025 0.32399 0.33612 0.29212 0.34293 0.27209
2 0.27501 0.27337 0.28823 0.33717 0.32757 0.33174
3 0.26468 0.27171 0.28095 0.3301 0.29867 0.33572
4 0.27503 0.27634 0.27058 0.2539 0.29358 0.27366
5 0.29596 0.29512 0.30204 0.33178 0.29467 0.35
6 0.30478 0.30104 0.30587 0.29637 0.28063 0.29641
7 0.26461 0.26172 0.2746 0.2635 0.30085 0.26175
8 0.32331 0.32247 0.32201 0.34564 0.30107 0.32959
9 0.25977 0.25875 0.27422 0.27857 0.33176 0.31459
10 0.31475 0.3161 0.32023 0.31055 0.32948 0.30645

Weight (kN) 553.6478 553.9053 567.7535 584.8135 589.7962 591.6707

Weight reduction
(percentage) 17.7588 17.7206 15.6635 13.1293 12.3892 12.1107

Table 6. Optimal design results for Silo with thirty variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.25297 0.34543 0.32236 0.32116 0.30579 0.28185
2 0.33252 0.32762 0.3451 0.26957 0.32116 0.3034
3 0.30635 0.33772 0.29503 0.31626 0.35 0.25899
4 0.34707 0.25129 0.30513 0.32934 0.35 0.26117
5 0.28937 0.32143 0.29793 0.27499 0.34743 0.26362
6 0.28224 0.30234 0.34672 0.27977 0.27941 0.31786
7 0.26436 0.29812 0.25715 0.34766 0.31038 0.29951
8 0.25862 0.28594 0.32884 0.33849 0.25 0.26897
9 0.25809 0.3413 0.34648 0.33029 0.30293 0.2995
10 0.34392 0.2599 0.34856 0.28625 0.25 0.26476
11 0.32459 0.33119 0.29741 0.26383 0.32394 0.25549
12 0.32583 0.30706 0.32901 0.31237 0.33197 0.33507
13 0.29277 0.33953 0.27285 0.33736 0.25 0.30605
14 0.29757 0.26708 0.26982 0.26647 0.25 0.34296
15 0.2946 0.33958 0.30887 0.3001 0.35 0.31966
16 0.29474 0.25971 0.27594 0.31944 0.34774 0.30827
17 0.33942 0.32193 0.26614 0.30722 0.32049 0.33153
18 0.28089 0.31204 0.30539 0.26862 0.25 0.3379
19 0.3167 0.30271 0.25261 0.27952 0.28465 0.34889
20 0.31116 0.25531 0.26994 0.26276 0.25 0.25005
21 0.3238 0.29538 0.29521 0.34741 0.31815 0.33654
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Table 6. Cont.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

22 0.25836 0.31413 0.33671 0.28007 0.32062 0.31125
23 0.27941 0.26399 0.30183 0.31973 0.35 0.34899
24 0.26723 0.27624 0.28075 0.32454 0.26019 0.30276
25 0.34343 0.28986 0.32634 0.33977 0.33982 0.29795
26 0.35 0.26216 0.25405 0.25345 0.25 0.33013
27 0.33301 0.25092 0.33797 0.27689 0.31054 0.27278
28 0.25373 0.33171 0.27102 0.28472 0.35 0.2998
29 0.26444 0.30078 0.27342 0.29952 0.35 0.34008
30 0.31457 0.32356 0.34425 0.31369 0.30959 0.30746

Weight (kN) 576.8934 577.6467 579.7768 580.8192 583.9202 584.0356

Weight reduction
(percentage) 14.3058 14.1939 13.8775 13.7227 13.262 13.2449

Table 6 shows that under the first and second constraint, the structure’s weight is
576.8934 kN (14.3058% weight reduction) and 580.8192 kN (13.7227% weight reduction),
respectively, by using the GRO algorithms, indicating the GRO algorithms’ very intimate
performance and better efficacy compared with the other two algorithms. The CSS and
TLBO algorithms had a lower ability to optimize the structure’s weight. Moreover, the
calculated thicknesses obtained by all algorithms are in a suitable range indicating the
correct operation of the algorithms in finding the optimal answers in the search space.

3.3. Cooling Tower

The third numerical example is a Cooling Tower, as shown in Figure 6. It is simply
supported at Z = 0.
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Figure 6. (a) A Cooling Tower discretized by quadrilateral shell finite elements, (b) substructure of
Cooling Tower, (c) Cooling Tower dimensions.

The coordinates of the nodes of the Cooling Tower’s substructure are presented in
Table 7. This substructure is rotated 60 times around the center to create the Cooling Tower.
The whole structure uses a four-node quadrilateral flat shell element. In each element, the
active mass is considered at the nodes.

In this example, the optimization is performed once by considering the frequency
constraint and next by considering both frequency and displacement constraints to evaluate
the efficiency of the proposed method:

First constraint: first and third frequencies assumed to be less than 0.3 and 0.28,
respectively (ω1 < 0.3, ω3 < 0.28).
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Second constraint: first and third frequencies assumed to be less than <0.3 and <0.28,
respectively (ω1 < 0.3, ω3 < 0.28), and the displacement of node number one under a load
of 10,000 kN in the Y direction is less than <0.024.

Table 7. Coordinates of the nodes of the Cooling Tower.

Node
Number

Coordinates
(x, y, z)

Node
Number

Coordinates
(x, y, z)

Node
Number

Coordinates
(x, y, z)

1 (30, 0, 0) 12 (19.4492, 0, 22) 23 (13.9331, 0, 44)
2 (28.9589, 0, 2) 13 (18.6435, 0, 24) 24 (13.9331, 0, 46)
3 (27.929, 0, 4) 14 (17.8796, 0, 26) 25 (14.0328, 0, 48)
4 (26.9115, 0, 6) 15 (17.163, 0, 28) 26 (14.2302, 0, 50)
5 (25.9079, 0, 8) 16 (16.5, 0, 30) 27 (14.5214, 0, 52)
6 (24.9199, 0, 10) 17 (15.8972, 0, 32) 28 (14.9007, 0, 54)
7 (23.9493, 0, 12) 18 (15.3616, 0, 34) 29 (15.3616, 0, 56)
8 (22.9985, 0, 14) 19 (14.9007, 0, 36) 30 (15.8972, 0, 58)
9 (22.0699, 0, 16) 20 (14.5214, 0, 38) 31 (16.5, 0, 60)
10 (21.1665, 0, 18) 21 (14.2302, 0, 40)
11 (20.2916, 0, 20) 22 (14.0328, 0, 42)

The thickness member of the substructure elements in this example is the main vari-
able obtained according to the constraints considered by meta-heuristic algorithms. The
specified range for the thickness of structural elements is (0.25–0.35 m) in both cases of ten
and thirty variables.

In this example, to analyze a cyclic symmetric structure, only the matrix with dimen-
sions 186, equal to the dimensions of the substructure, is calculated. Only once was the
calculation of the frequency of the structure without using the concept of cyclic symmetry
stopped after about 4 h without any result. The calculation time using the proposed method
is significantly reduced.

For Cooling Tower evaluation, the coefficient of the GRO algorithm was α = 0.7, β = 0.5,
γ = 0.8. For 150 operators working in the Cooling Tower, a maximum of 750 repetitions was
determined as a termination condition in the example.

For this purpose, the structure was optimized with ten elements or variables (three el-
ements in one group) and once with thirty variables, as shown in Figure 7.
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The structure’s weight with an initial thickness of 0.35 m is 6.3602 × 103 kN. The
results are presented in Tables 8 and 9. Table 8 shows that the optimal weights obtained
by GRO and CSS algorithms were almost similar. Under the first constraint, the struc-
ture’s weight is 5.1639 × 103 kN (18.8092% weight reduction) using the GRO algorithm
and 5.1791 × 103 kN (18.5702% weight reduction) by using the CSS algorithm, indicating
their very close performances and better efficacy compared with the TLBO algorithms.
Under the second constraint, the structure’s weight is 5.2833 × 103 kN (16.9319% weight
reduction) by using the GRO algorithm, indicating the GRO algorithm’s very intimate
performance and a better efficacy compared with the other two algorithms. Moreover, the
calculated thicknesses obtained by all algorithms are in a suitable range indicating the
correct operation of the algorithms in finding the optimal answers in the search space.

Table 8. Optimal design results for Cooling Tower with ten variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.33742 0.33688 0.33612 0.34202 0.32676 0.33282
2 0.2702 0.26562 0.28823 0.32097 0.31465 0.34823
3 0.29306 0.28943 0.28095 0.31782 0.27892 0.28108
4 0.27632 0.27001 0.27058 0.30344 0.26085 0.27296
5 0.32973 0.33358 0.30204 0.3077 0.2742 0.29914
6 0.32264 0.32705 0.30587 0.31144 0.34497 0.32055
7 0.25114 0.25375 0.2746 0.26305 0.26624 0.29247
8 0.30594 0.31358 0.32201 0.25248 0.31324 0.26423
9 0.25114 0.25 0.27422 0.26438 0.3196 0.30321
10 0.25238 0.25322 0.32023 0.28449 0.2583 0.34176

Weight (kN) 5.16 × 103 5.18 × 103 5.43 × 103 5.28 × 103 5.36 × 103 5.57 × 103

Weight reduction
(percentage) 18.8092 18.5702 14.6017 16.9319 15.674 12.4084

Table 9. Optimal design results for Cooling Tower with thirty variables.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

1 0.3459 0.34619 0.34586 0.30839 0.31638 0.32904
2 0.33143 0.33243 0.3321 0.29527 0.33477 0.34493
3 0.33312 0.33098 0.33066 0.2964 0.27562 0.28275
4 0.34452 0.34429 0.34489 0.32947 0.2517 0.31712
5 0.27742 0.27807 0.2784 0.348 0.27984 0.29386
6 0.28809 0.2895 0.29123 0.29577 0.3173 0.33335
7 0.25415 0.25776 0.25804 0.33183 0.25603 0.32688
8 0.26287 0.26121 0.26145 0.34692 0.29207 0.26672
9 0.28618 0.28212 0.28212 0.34079 0.30397 0.33619
10 0.27722 0.27711 0.27741 0.33078 0.32918 0.34898
11 0.27621 0.27786 0.27854 0.25715 0.34789 0.30144
12 0.34381 0.34673 0.34718 0.25984 0.25573 0.33842
13 0.32408 0.32499 0.32521 0.28145 0.25559 0.3088
14 0.30331 0.30355 0.304 0.3264 0.3405 0.26547
15 0.29603 0.29459 0.2941 0.26143 0.27699 0.26998
16 0.3446 0.34786 0.3489 0.33107 0.28078 0.29069
17 0.343 0.34412 0.344 0.2536 0.27745 0.32487
18 0.32094 0.32502 0.32554 0.33921 0.30914 0.33255
19 0.27975 0.27827 0.27781 0.32665 0.25043 0.32899
20 0.26122 0.25572 0.25603 0.25729 0.25043 0.28185
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Table 9. Cont.

Group of Element
Constraint One Constraint Two

GRO CSS TLBO GRO CSS TLBO

21 0.26689 0.26755 0.26834 0.26037 0.33234 0.3034
22 0.2644 0.26331 0.26222 0.25246 0.25907 0.25899
23 0.2775 0.27809 0.27915 0.34578 0.34298 0.26117
24 0.25 0.25061 0.25003 0.25425 0.26278 0.26362
25 0.25827 0.25381 0.25396 0.26124 0.343 0.31786
26 0.25265 0.25273 0.25312 0.26699 0.28866 0.29951
27 0.25904 0.2615 0.26037 0.25202 0.33224 0.26897
28 0.27787 0.28072 0.28161 0.27124 0.34494 0.2995
29 0.25462 0.2533 0.25552 0.25193 0.29461 0.26476
30 0.27682 0.28003 0.28003 0.27306 0.33866 0.25549

Weight (kN) 5.20 × 103 5.206 × 103 5.210 × 103 5.23 × 103 5.47 × 103 5.38 × 103

Weight reduction
(percentage) 18.2321 18.1472 18.0718 17.729 14.0341 15.4067

Table 9 shows that the optimal weights obtained by GRO and CSS algorithms were al-
most similar. Under the first constraint, the structure’s weight is 5.2006 × 103 kN (18.2321%
weight reduction) using the GRO algorithm and 5.2060 × 103 kN (18.1472% weight reduc-
tion) by using the CSS algorithm, indicating their very close performances and a better
efficacy compared to the TLBO algorithms. Under the second constraint, the structure’s
weight is 5.2326 × 103 kN (17.7290% weight reduction) by using the GRO algorithm, indi-
cating the GRO algorithm’s very intimate performance, and a better efficacy compared with
the other two algorithms. Moreover, the calculated thicknesses obtained by all algorithms
are in a suitable range indicating the correct operation of the algorithms in finding the
optimal answers in the search space.

4. Checking the Frequencies and Mode Shapes

To ensure that the frequency constraints are satisfied, limited frequencies with optimal
results were considered and are presented in Table 10. In all examples, the constraints were
adequately satisfied, and the frequencies were approximately close to the limit values with
an average difference of 0.02%.

Table 10. Constrained natural frequencies of structures (Hz).

Structure Frequency Limited
Frequencies

Ten
Variable

Thirty
Variable

GRO GRO

Disk
ω1 0.29 0.2900 0.2900
ω2 0.27 0.2700 0.2700

Silo
ω1 0.49 0.4900 0.4900
ω3 0.3 0.3000 0.3000

Cooling
Tower

ω1 0.3 0.3000 0.3000
ω3 0.28 0.2800 0.2800003

Mode shapes of the frequencies and the optimal schemes obtained by the GRO algo-
rithm in the first and third modes are shown in Figures 8–10. In structures, the first mode
showed a sway-type shape, and the third mode had a vertical displacement.



Symmetry 2022, 14, 725 19 of 21

Symmetry 2022, 14, x FOR PEER REVIEW 19 of 22 
 

 

Weight (kN) 5.20 × 103 5.206 × 103 5.210 × 103 5.23 × 103 5.47 × 103 5.38 × 103 
Weight reduction 
(percentage) 18.2321 18.1472 18.0718 17.729 14.0341 15.4067 

4. Checking the Frequencies and Mode Shapes 
To ensure that the frequency constraints are satisfied, limited frequencies with 

optimal results were considered and are presented in Table 10. In all examples, the 
constraints were adequately satisfied, and the frequencies were approximately close to 
the limit values with an average difference of 0.02%. 

Table 10. Constrained natural frequencies of structures (Hz). 

Structure Frequency Limited 
Frequencies 

Ten 
Variable 

Thirty 
Variable 

GRO GRO 

Disk 
𝜔ଵ 0.29 0.2900 0.2900 𝜔ଶ 0.27 0.2700 0.2700 

Silo 
𝜔ଵ 0.49 0.4900 0.4900 𝜔ଷ 0.3 0.3000 0.3000 

Cooling 
Tower 

𝜔ଵ 0.3 0.3000 0.3000 𝜔ଷ 0.28 0.2800 0.2800003 

Mode shapes of the frequencies and the optimal schemes obtained by the GRO 
algorithm in the first and third modes are shown in Figures 8–10. In structures, the first 
mode showed a sway-type shape, and the third mode had a vertical displacement. 

 
Figure 8. The mode shapes of the Disk. (a) First mode shape. (b) Third mode shape. 

 

Figure 8. The mode shapes of the Disk. (a) First mode shape. (b) Third mode shape.

Symmetry 2022, 14, x FOR PEER REVIEW 19 of 22 
 

 

Weight (kN) 5.20 × 103 5.206 × 103 5.210 × 103 5.23 × 103 5.47 × 103 5.38 × 103 
Weight reduction 
(percentage) 18.2321 18.1472 18.0718 17.729 14.0341 15.4067 

4. Checking the Frequencies and Mode Shapes 
To ensure that the frequency constraints are satisfied, limited frequencies with 

optimal results were considered and are presented in Table 10. In all examples, the 
constraints were adequately satisfied, and the frequencies were approximately close to 
the limit values with an average difference of 0.02%. 

Table 10. Constrained natural frequencies of structures (Hz). 

Structure Frequency Limited 
Frequencies 

Ten 
Variable 

Thirty 
Variable 

GRO GRO 

Disk 
𝜔ଵ 0.29 0.2900 0.2900 𝜔ଶ 0.27 0.2700 0.2700 

Silo 
𝜔ଵ 0.49 0.4900 0.4900 𝜔ଷ 0.3 0.3000 0.3000 

Cooling 
Tower 

𝜔ଵ 0.3 0.3000 0.3000 𝜔ଷ 0.28 0.2800 0.2800003 

Mode shapes of the frequencies and the optimal schemes obtained by the GRO 
algorithm in the first and third modes are shown in Figures 8–10. In structures, the first 
mode showed a sway-type shape, and the third mode had a vertical displacement. 

 
Figure 8. The mode shapes of the Disk. (a) First mode shape. (b) Third mode shape. 

 
Figure 9. The mode shapes of the Silo. (a) First mode shape. (b) Third mode shape.

Symmetry 2022, 14, x FOR PEER REVIEW 20 of 22 
 

 

Figure 9. The mode shapes of the Silo. (a) First mode shape. (b) Third mode shape. 

 
Figure 10. The mode shapes of the Cooling Tower. (a) First mode shape. (b) Third mode shape. 

5. Conclusions 
Problems of optimizing structures with cyclic symmetry, considering the frequency 

constraints and multiple displacements, including non-convex search spaces, are among 
the most challenging issues in civil engineering. In this study, a design optimization was 
performed using GRO meta-heuristic algorithms to deal with this problem. It is practically 
impossible to use algorithms to optimize real-scale structures due to the large volume and 
the calculations time. The concept of cyclic symmetry was used to reduce the volume and 
time of analyses. By decomposing the main structure into repetitive patterns called 
substructures, the number of calculations was significantly reduced. To evaluate the 
performance of the proposed method, Disk, Silo, and Cooling Tower were modeled at real 
scale to confirm the ability of the concept of cyclic symmetry and the GRO algorithm. To 
better evaluate the performance of this algorithm, two well-known and widely used 
algorithms, CSS and TLBO, were used for comparison. According to the obtained results, 
the GRO algorithm was stable and well performed in finding optimal answers. Results 
show GRO reduces the structure’s weight by 14–20% with good accuracy in finding global 
optimal designs. The algorithm correctly satisfies the constraints and shows that using the 
concept of cyclic symmetry is an efficient and useful solution in reducing computation 
time for analyzing symmetric structures. However, it does not apply to nonlinear 
analyses. As a new application of the concept of cyclic symmetry, it can be used to 
ellipsoid symmetry problems. The authors intend to implement the proposed scheme for 
optimizing ellipsoid structures, considering the frequency constraints and multiple 
displacements. 

Author Contributions: S.S.: Conceptualization, methodology, software, validation, analysis, 
investigation, resources, data curation, writing—original draft preparation, writing—review. 
M.S.M.: Conceptualization, methodology, resources, data curation, review—editing, supervision, 
project administration. M.E.S.: resources, review—editing. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This research received no external funding. 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Figure 10. The mode shapes of the Cooling Tower. (a) First mode shape. (b) Third mode shape.

5. Conclusions

Problems of optimizing structures with cyclic symmetry, considering the frequency
constraints and multiple displacements, including non-convex search spaces, are among
the most challenging issues in civil engineering. In this study, a design optimization
was performed using GRO meta-heuristic algorithms to deal with this problem. It is
practically impossible to use algorithms to optimize real-scale structures due to the large
volume and the calculations time. The concept of cyclic symmetry was used to reduce the



Symmetry 2022, 14, 725 20 of 21

volume and time of analyses. By decomposing the main structure into repetitive patterns
called substructures, the number of calculations was significantly reduced. To evaluate
the performance of the proposed method, Disk, Silo, and Cooling Tower were modeled at
real scale to confirm the ability of the concept of cyclic symmetry and the GRO algorithm.
To better evaluate the performance of this algorithm, two well-known and widely used
algorithms, CSS and TLBO, were used for comparison. According to the obtained results,
the GRO algorithm was stable and well performed in finding optimal answers. Results
show GRO reduces the structure’s weight by 14–20% with good accuracy in finding global
optimal designs. The algorithm correctly satisfies the constraints and shows that using the
concept of cyclic symmetry is an efficient and useful solution in reducing computation time
for analyzing symmetric structures. However, it does not apply to nonlinear analyses. As
a new application of the concept of cyclic symmetry, it can be used to ellipsoid symmetry
problems. The authors intend to implement the proposed scheme for optimizing ellipsoid
structures, considering the frequency constraints and multiple displacements.
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