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1. Introduction

Interest in hyperbolic quasi-linear equations has arisen firstly in mathematical physics,
and it continues to be maintained due to the connection with the necessity of solving
gas dynamics problems (see, for example, refs. [1–3]). At the same time, along with the
search for exact solutions to the gas dynamics equations system and analogous equations of
mathematical physics, a significant place in research is the study of the phenomenon, which
consists of the discontinuous solutions formation. Such solutions are called weak Hugoniot
solutions (see, for example, refs. [1,4–6]). Later, there was interest in the appearance of
dynamic mode in their solutions, which is commonly called the chaotic solution when
nonlinearity is present in such systems [7]. Finally, in connection with the problems of
mathematical physics, in the formulation, of which there is no a priori information about
the general qualitative properties of solutions of the used quasi-linear systems of equations,
there is an urgent need to determine the area of their hyperbolicity (see, refs. [8–10]). This
work is devoted just to solving this problem.

Consider the system quasi-linear evolution of differential equations of the first order.
Let u(x, t) = 〈ua(x, t) ; a = 1, . . . , n〉 : Rm 7→ Rn be the collection of functions that depend
on the coordinates x = 〈x1, . . . , xm〉 ∈ Rm and on the parameter t ∈ R. Then this system
has the form

u̇a(x, t) =
n

∑
b=1

m

∑
k=1

A(a,b)
k (x, t)

∂ub(x, t)
∂xk

+ Ha(u, x, t) , a = 1÷ n . (1)

Later, throughout the work, we distinguish vectors from the definition space Rm of
a vector function u(x, t) and the space Rn of the values of these functions. Therefore, we
use different fonts to denote vectors from these spaces. Vectors from Rm are displayed in
sanserif font, and vectors from Rn are displayed in bold.

Verification of hyperbolicity of the fixed system of quasi-linear equations of the first
order, in the case when the coefficients of the Equation (1) are fixed numbers, is carried out
by a simple algorithm. On the contrary, if the coefficients depend on parameters, which can
vary widely, and if they are functionals, the study of the hyperbolicity of the system becomes
dramatically more complicated. Solving such a problem can be a rather time-consuming
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procedure (see, for example, refs. [9,10]). Such a problem becomes especially difficult in
the case when the system of equations has a large dimension n. The relevance of solving
such a problem becomes very important due to the fact that the quasi-linear equations
system, with such differential operators, may have a variable type, that is, at some of their
possible values, such equations may no longer have the property of “evolutionarity”. It is
always important if a system of first-order quasi-linear equations is intended for modeling
physical processes. In particular, it is connected with its use for describing the processes in
continuous media when any physical dissipation mechanisms are neglected. This is due
to the fact that, for any solution v(x, t) ∼ v0 exp[iωt + (x, q)] of corresponding linearized
systems of equations, with the matrix T(q), the so-called “dispersion equation” must be
fulfilled from a physical point of view, which connects the wave frequency ω with the
wave vector q. In such a situation, all solution branches ωj(q), j = 1÷ n of this algebraic
equation (see, the defining Equations (3) and (4)) should be real when q is real. If a solution
branch ωk(q) has non-zero imaginary parts for some vectors q, then it leads to the existence
of the complex-conjugate solution ω∗j (q) due to the realness of the dispersion equation. In
this case, the presence of the imaginary part leads not only to the existence of solutions
v(x, t) of the system, tending asymptotically to some stationary evolutionary regime, but
also to the mandatory existence of solutions v(x, t), having no physical sense, when there is
an unlimited increase in some areas of change of the spatial variable x.

Thus, when selecting physically reasonable systems of equations, it is necessary to
require the realness of all solutions ωj(q), j = 1÷ n. In addition, a power-law increase
of the solutions v(x, t) of the linearized system, with respect to t, may occur under the
conditions of the realness of all solutions ωj(q), j = 1÷ n, but when the matrix T(q) of
the system is not diagonalized. In this regard, when choosing a physically reasonable
evolutionary system of quasi-linear equations, it is necessary to require diagonalizability
of this matrix. As a result, we come to the conclusion that the hyperbolicity condition
(see, Definition 1) of the quasi-linear equations system of the first order, or the strong
hyperbolicity, as such a property is also called, is a natural requirement imposed on them
from the point of view of physics.

It should be emphasized that the study of the hyperbolicity conditions of systems of
quasi-linear equations in the cited works [9,10] is still limited to small-dimensional systems.
At the same time, in general, the problem under study is connected with the so-called
covariant differential equation systems (see, for example, ref. [11]), the importance of which
is due to their applicability in mathematical modeling in physics of complex condensed
matter. The coefficients of such systems of equations are some arbitrary functions of the
invariants of the group O3 transformations of the system of equations, and the dimension
of such systems can vary from a minimum of 3 to about 20 (see, for example, refs. [12,13]).
Therefore, the research presented in this paper is aimed at finding necessary and sufficient
features of the characteristic matrix T(q), which would guarantee strong hyperbolicity of a
system of quasi-linear equations of the first order in a general case.

2. Hyperbolic Systems of First Order Equations

We find the connection between two concepts. First of them is the strong hyperbolicity
of the quasi-linear equations system of first order. In future, we will simply call it the
hyperbolicity. The second concept is the Friedrichs hyperbolicity, or the so-called t-hyper-
bolicity. But we modified a little of the definition of the last concept.

The linear system of equations (see, refs. [1–3]) for the set v(x, t) is connected with the
system (1). This system is obtained by linearization of the system (1) at the point u(x, t)

v̇a(x, t) =
n

∑
b=1

m

∑
k=1

A(a,b)
k (u)

∂vb(x, t)
∂xk

+
n

∑
b=1

∂Ha

∂ub
vb(x, t) , a = 1, . . . , n (2)
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where the set of functions v(x, t) = 〈va(x, t) ; a = 1, . . . , n〉 corresponds to the fixed set
u = 〈u1, . . . , un〉 ∈ Rn values of the set 〈ua(x, t) ; a = 1, . . . , n〉 at the point x and at the time
moment t.

In order for this system of equations to be solvable, at least locally, with respect to t,
for arbitrarily selected initial conditions that are “in general position”, it is necessary and
sufficient that it has the hyperbolicity property. This property assumes that the collection
〈Ak ; k = 1÷m〉 of n× n-matrix coefficients of the system (1), which are defined by matrix
elements A(a,b)

k =
(
Ak
)

a,b, a, b = 1, . . . , n, must have the following special property.

Definition 1. The given definition corresponds to the so-called strong hyperbolicity. The system (1)
is called hyperbolic if, in the corresponding system (2), the n× n-matrix T(q) with matrix elements

Ta,b(q) =
m

∑
k=1

qk A(a,b)
k (x, t) (3)

is diagonalizable and has only real eigenvalues ω(l), l = 1, . . . , n for any set q = 〈qs; s = 1÷m〉 ∈ Rm,
at any temporal point t ∈ R, and for any set u ∈ Rn, x ∈ Rm.

Thus, the hyperbolicity of the system (1) consists in the realness of the roots ω(l),
l = 1, . . . , n of the equation

det(ω− T(q)) = 0 (4)

with respect to ω and the presence of eigenvectors for each multiple solution. In future, we
will call matrices T(q) satisfying this condition the hyperbolic ones.

Due to the difficulty of establishing the fact of hyperbolicity of systems of quasi-linear
equations in the cases pointed out in the introduction, they resort to checking the availability
of the property that is, generally speaking, stronger than hyperbolicity (see Theorem 1,
Sufficiency), namely, it is the so-called t-hyperbolicity (the Friedrichs hyperbolicity) (see,
for example, refs. [4,14]). We give the following definition of the t-hyperbolicity of the
system (1), which is somewhat modernized in comparison with [1].

This will permit us to establish the equivalence of the upgraded definition with
Definition 1, which opens the way for research on the hyperbolicity of systems (1) by a
simpler method than if the original definition of hyperbolicity is used.

Definition 2. System (1) is called t-hyperbolic if the matrix T(q) is diagonalizable for any sets
q = 〈q1, . . . , qn〉 ∈ Rm and u = 〈u1, . . . , un〉 and there exists such a symmetric positive n× n-
matrix D, for which the matrix DT(q) is symmetric.

3. Coincidence of Hyperbolicity Definitions

n× n-matrix B is called diagonalizable if it has exactly n eigenvectors {er; r = 1, . . . , n}
or, in other words, these vectors form a basis in Rn. In this section, we will prove an
important auxiliary theorem on the diagonalizability of a matrix, which can be attributed
to the field of matrix analysis and which may represent an independent interest. In future,
it will allow us to prove the equivalence of Definitions 1 and 2. Further, we follow the
terminology of the monograph [15] when formulating and proving all statements.

Theorem 1. In order for the real n × n-matrix B to be diagonalizable and all its eigenvalues
〈µ1, . . . , µn〉 to be real, it is necessary and sufficient that there exists such a symmetric positive
n× n-matrix D for which the matrix DB is symmetric. In this case, the set of eigenvalues of the
matrix B coincides with the set of eigenvalues of the matrix DB

Proof. Necessity. Let all eigenvalues of the matrix B be real. The proof of the existence of
the matrix D consists of the following items 1–5.
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1. Let the real matrix B represent the implementation of the linear operator in Rn in the
standard basis {e(0)a ∈ Rn; a = 1, . . . , n}, (e(0)a )b = δab, a, b = 1, . . . , n. We will consider this
operator in Cn. Further, let c = 〈c1, . . . , cn〉 ∈ Rn be an eigenvector in Rn corresponding
to the real eigenvalue µ of the matrix B, that is Bc = µc. This eigenvector can always be
chosen so that all its components are real.

In fact, under the specified condition, at least one of the real vectors Re c = 〈Re c1, . . . ,
Re cn〉 or Im c = 〈 Im c1, . . . , Im cn〉 is not equal to zero. Assuming, for certainty, that such
is the first of them, and calculating the real part of both parts of the equality Bc = µc, we
find that Rec is the eigenvector of the matrix B corresponding to the same eigenvalue µ.
Therefore, since µ is an arbitrarily chosen eigenvalue of the matrix B, which, by supposi-
tion, has a complete set of real eigenvalues 〈µ1, . . . , µn〉 with corresponding eigenvectors
{e1, . . . , en}, then all of them can be selected with real components.

2. For any basis {e1, . . . , en} in the space Rn, there is such a real nonsingular n× n-
matrix V, for which the set of vectors {V e1, . . . ,V en} is orthonormal. Indeed, we apply the
Sonin-Schmidt orthogonalization process of the vector set {e1, . . . , en}. As a result, we get
an orthonormal set {e′1, . . . , e′n}, which is complete in the space Rn.

This set is decomposed

e′a =
a

∑
b=1

Vabeb , a = 1÷ n

on the basis of the original vector set {e1, . . . , en}, to which the process is applied, where
the coefficients of this expansion are real. The matrix V is defined by matrix elements(
V
)

ab = Vab. It has a non-zero determinant, since the set {e′1, . . . , e′n} is the basis in Rn, and
this matrix is triangular.

3. Since {e1, . . . , en} are eigenvectors of the matrix B, with eigenvalues 〈µ1, . . . , µn〉,
B er = µrer, (

VBV−1
)
Ver = VB er = µrVer , r = 1, . . . , n .

Then vectors {Ve1, . . . ,Ven} are orthonormal, and each of them is the eigenvector of
the matrix VBV−1.

Thus, a consequence of items 1 and 2 is the fact that, for any diagonalizable real
n× n-matrix B with real eigenvalues, there exists such a real nonsingular n× n-matrix
V, for which the matrix VBV−1 is diagonalizable and it has only real eigenvalues. All its
eigenvectors form an orthonormal basis in Rn.

4. Let us introduce n× n-matrix C = VBV−1. This matrix is symmetric, cT = C, since
this property has any matrix with a complete orthonormal set of eigenvectors with real
eigenvalues.

5. From the item 4, it follows that the matrix V TCV is symmetric, since
(
V TCV

)T
=

V TCTV = V TCV. In addition, D = V TV is a positive symmetric matrix. Then

DB = (V TV)B = V TCV

is also a symmetric matrix.

Sufficiency. It is known that there exists a real symmetric positive matrix D for
a real n × n-matrix B, such that the matrix DB is real and symmetric. The proof of the
diagonalizability of the matrix B and the realness of its eigenvalues consists of the following
items 6–10.

6. Under given conditions, there exists an orthonormal set {er; r = 1, . . . , n}, such
that there are real positive eigenvalues µr > 0 r = 1, . . . , n of the matrix D for each of its
ejgenvectors. At the same time, according to the item 1, all eigenvectors of the matrix D
corresponding to these eigenvalues can be chosen with real components in Cn.

There is a unitary and, therefore, nonsingular matrix U, UU+ = 1 (+denotes Hermitian
conjugation), which diagonalizes the matrix D, that is Ue

(0)
r = er, r = 1, . . . , n, where
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{e(0)r = 〈δr′ ,r; r′ = 1, . . . , n〉; r = 1, . . . , n} is the standard basis in Rn and UDU+ =
diag〈µr; r = 1, . . . , n〉.

From the equalities Ue
(0)
r = er, taking into account the realness of the components of

basis vectors {er; r = 1, . . . , n} and vectors {e(0)r ; r = 1, . . . , n}, it follows (ImU) e
(0)
r = 0 for

all r = 1, . . . , n, that is, for all vectors of the standard basis. Hence, the matrix ImU is null.
Thus, the matrix U is real and, therefore, U+ = UT. Then, the unitarity condition of the
matrix U takes the form UTU = 1, therefore, this matrix is orthogonal.

7. We define the real-valued matrix V by the equality V T = UTdiag〈µ1/2
r ; r = 1, . . . , n〉.

The matrix V is also non-singular since it is the product of non-singular real matrices. From
the equality UDU+ = diag〈µr; r = 1, . . . , n〉 and the realness of the matrix U, it follows that

D = UT diag〈µr; r = 1, . . . , n〉U = V TV .

8. Since the matrix V is non-singular, we define C =
(
V T)−1

DBV−1. Since the matrix

DB is symmetric, the matrix C is also symmetric, CT =
(
V−1)T[

DB
]T[(

V T)−1]T
=(

V T)−1
DBV−1 = C. Additionally, it takes place

DB = V TCV = V TVB .

Consequently, B = V−1CV.
9. All solutions of the characteristic equation det(C− µ) = 0 are real, since the matrix

C is symmetric. Since

det(B− µ) = detV · det(B− µ) · detV−1 = det(VBV−1 − µ) = det(C− µ) ,

all these solutions are eigenvalues of the matrix B. Thus, all eigenvalues of the matrix B
are real.

10. Let e′r, r = 1, . . . , n be the collection of eigenvectors of the symmetric matrix C
and µr, r = 1, . . . , n be the collection of eigenvalues corresponding to it, Ce′r = µre

′
r. Then,

substituting the expression C = VBV−1 in VBV−1e′r = µre
′
r, we find that

B
(
V−1e′r

)
= µrV

−1 e′r , r = 1, . . . , n .

Therefore, V−1e′r, r = 1, . . . , n is the collection of eigenvectors of the matrix B, which
means that the matrix B has strictly n eigenvectors; therefore, it is diagonalizable.

The statement of the theorem that one may reformulate is as follows.

Corollary 1. The matrix B is diagonalizable and its eigenvalues are real if and only if it is repre-
sentable as the product of two symmetric matrices and one of them is strictly positive.

Proof. The statement follows from equalities DB = V TCV, B = D−1(V TCV
)
.

Remark 1. The matrix D is defined by arbitrary positive multipliers. However, even if we take into
account this kind of ambiguity of its choice, the class of possible matrices D, the existence of which is
stated in the theorem, significantly depends on the type of matrix B, and it takes place even in the
case when it is non-degenerate.

The statement about the coincidence of the concepts of hyperbolicity and t-hyperbolicity
is the consequence of Theorem 1.

Theorem 2. In order for the system (1) of quasi-linear equations to be hyperbolic, it is necessary
and sufficient that it should be t-hyperbolic.
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Proof. Based on the definition of hyperbolicity of first-order quasi-linear equations sys-
tems, the proof follows by applying the statement of Theorem 1 to the matrix T(q) with
elements (3).

Thus, the question about the hyperbolicity of the Equation (1) system boils down to
determining the factorization possibility of the matrix T(q) in the form of T(q) = F(q)G(q),
where F(q) and G(q) are symmetric matrices, with F(q) > 0. It is essential that the matrix
T(q) depends linearly on the vector q.

The proved statement simplifies the proof of hyperbolicity property of a given system
with a large number of quasi-linear equations when the set of matrices 〈Ak(x, t); k = 1, . . . , m〉
is fixed, reducing it to finding a suitable matrix D, while the direct search for conditions
under which the matrix T(q) is hyperbolic seems much more laborious.

For effective application of such a method, it is necessary to specify some transparently
verifiable sign of hyperbolicity of an arbitrarily selected n × n-matrix T(q), depending
linearly on the vector q ∈ Rm. The following sections of the work are devoted to this
problem. We will focus on the somewhat more general algebraic problem, namely, we
study the matrix hyperbolicity of the fixed matrix T of dimension n.

Corollary 2. In order for the matrix T to be hyperbolic, it is necessary and sufficient that there
exists a symmetric positive matrix D that satisfies the equation

TTD = DT . (5)

Proof. The equality (5) follows from the symmetry of matrices DT and D, that is
(DT)T = TTDT = TTD.

In future, we will call the matrix D the binder one. Equation (5) is also convenient to
represent in the following form. Introducing matrices T+ = (T+TT)/2 T− = (T−TT)/2,
we obtain the following conclusion.

Corollary 3. In order for the matrix T to be hyperbolic, it is necessary and sufficient that there
exists such a symmetric positive matrix D that satisfies the equation

[T+,D] = {T−,D} (6)

where [·, ·] is the commutator of the matrix pair and {·, ·} is the anticommutator of them.

Proof. Equation (6) is valid due to T = T+ + T−, TT = T+ − T−.

Corollary 4. If [T+,T−] = 0, then the symmetric solution of the Equation (6) relative to the
matrix D does not exist.

Proof. In the case of matrix commutation, due to the self-conjugacy of the matrices
T+ and iT− in Cn, they have an orthonormal basis of eigenvectors common to them
{er : r = 1, . . . , n}. Denote the sets {λ(+)

r : r = 1, . . . , n} and {iλ(−)
r : r = 1, . . . , n} of

eigenvalues corresponding to these matrices with real values λ
(±)
r : r = 1, . . . , n. We

calculate the matrix elements (ea, ·eb) of both sides of the Equation (6),

(ea, [T+,D]eb) = (λ
(+)
a − λ

(+)
b )(ea,Deb) ,

(ea, {T−,D}eb) = i(λ(−)
a + λ

(−)
a )(ea,D}eb) .

Then, at a = b, the left-hand side of the equality,

(ea, [T+,D]eb) = (ea, {T−,D}eb)
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is equal to zero. However, at T− 6= 0, at least for one of eigenvalues iλ(−)
r 6= 0, r = 1÷ n,

and for this number l, it is valid (el ,Del) = 0 that it is impossible for the positive matrix D.
Consequently, this equality is possible only in the trivial case T− = 0.

4. Hyperbolicity of Diagonizable Matrices T

Let R be a n× n-matrix is hyperbolic in the sense of the definition of this term given
in Section 2, that is whose all eigenvalues are real and are not multiples. Next, let Q be
an arbitrary n× n-matrix. Consider the one-parametric family of matrices R+ ηQ, η ∈ R.
Now, we will prove the following statement.

Let us now prove the statements (Theorems 3–5) that show the fundamental possibility
of analytical establishing of the strong hyperbolicity presence by studying the dependence
of the matrix T(q) on the equations system parameters using the strong hyperbolicity of a
reference system.

Theorem 3. All eigenvalues of each matrix R+ ηQ at η ∈ (ρ−, ρ+) are real and do not have
multiples, where 0 ∈ (ρ−, ρ+) and ρ−, ρ+ are points on a real axis, which are nearest on the left
and on the right to the point η = 0, correspondingly, in which the equation det(zE− R− ηQ) = 0
relative to z ∈ R has multiple roots. These eigenvalues are analytic functions on η ∈ R in the
domain of the complex plane, containing the interval (ρ−, ρ+).

Proof. Let P(z, η) = ∑n
r=0 ar(η)zn−r be a polynomial on z ∈ R with the degree n and

with coefficients ar(η), r = 0, . . . , n, which depend on the parameter η. The P(z, 0) has
n real, which is not multiple at |η| < ε when ε > 0 is sufficiently small. If coefficients of
polynomials P(z, η) depend on η in an analytic way, its roots are also analytic functions on
η. They are built by analytic continuation from the circle {η : |η| < ε} with sufficiently
small ε > 0.

We apply this statement to the polynomial

P(z, η) = det(zE− R− ηQ) = zn +
n−1

∑
r=0

ar(η)zn−1−r ,

which has coefficients ar(η) depending on η ∈ R in a polynomial way (see, ref. [16]), and
its roots are eigenvalues of the matrix R+ ηQ.

From Theorem 3, we find the following sufficient criterium of the hyperbolicity of the
matrix T.

Theorem 4. Let the symmetric matrix [T+ TT] have no multiple eigenvalues and 1 ∈ (ρ−, ρ+),
where ρ± are boundary points of the interval in which the parameter η specified by Theorem 3 is
changed (ρ± may be infinite). The matrix (1 + η)T+ (1− η)TT has no multiple roots in this
interval and, therefore, the matrix T is hyperbolic.

Proof. The statement follows directly from Theorem 3 at R = T+TT and Q = T−TT.

The points ρ± are defined on the basis of the coefficients ar(η), r = 0, . . . , n− 1 by
means of applying the Bésout theorem for the polynomial P(z; η). To do this, one should
apply the Euclid algorithm to this polynomial and its derivative P1(z; η) ≡ P′(z; η) on z
(see, for example, ref. [16]). The polynomial Pn(η) of zero degrees on z is obtained as the
remainder when this algorithm applying is equal to zero in those points η, where P(z; η)
has a multiple root. Thus, it is valid.
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Theorem 5. If 1 ∈ (ρ−, ρ+) where the points ρ± are nearest the roots of the equation Pn(η) = 0,
correspondingly on the left and on the right of the point η = 0, and Pn(η) is a result of the
application of the Euclid algorithm to polynomials

P(z; η) = det(zE− (1 + η)T− (1− η)TT)

and P′(z; η), then the matrix T is hyperbolic.

In principle, by calculating the polynomial Pn(η), we may find the necessary condition
of the hyperbolicity of the matrix T on the basis of the statement of Theorem 5. However, its
implementation faces a rather routine analysis if the matrix order n is not a small number.
In this regard, we proceed to a deeper study of the hyperbolicity of the advance given
matrix T using Theorem 3.

5. The Case n = 2

Let n = 2. This case is important for future study. Let S(j), j = 1, 2, 3 be the standard
Pauli 2× 2-matrices,

S(1) =

(
0 1
1 0

)
, S(2) =

(
0 −i
i 0

)
, S(3) =

(
1 0
0 −1

)
.

They form the basis, together with the unit matrix E of the dimension 2 in the linear
space of all complex 2× 2-matrices. We represent the real matrix T of the dimension 2 in
the form of the expansion according to this basis

T = t0E+ T′ , T′ = t1S
(1) + it2S

(2) + t3S
(3) =

(
t3 t1 + t2

t1 − t2 −t3

)
, (7)

where the coefficients tj, j = 0, 1, 2, 3 are real. Eigenvalues λ± of the matrix T are defined
by roots of quadratic trinomial λ2 − λSpT+ detT relative λ. Since matrices S(j), j = 1, 2, 3
have no traces, then SpT = 2t0. In this case, detT = t2

0 − t2
1 + t2

2 − t2
3. Consequently,

eigenvalues are real if and only if 0 ≤ (SpT)2/4− detT = t2
1 + t2

3 − t2
2. On the basis of the

analysis carried out, boundary points of the interval [ρ−, ρ+] of the hyperbolicity violation
are defined by the condition t2

1 + t2
3 = t2

2.
Consider the question of the non-diagonalizability of the matrix T. This can only be

the case if the equality is realized and there exists the eigenvalue t0. On the other hand, it is
easily verified that the matrix T′ (see, (7)) is nilpotent T′2 = 0 in such conditions, that is,
the T is really not diagonalizable.

We show that obtained condition of the matrix T hyperbolicity is consistent with the
conclusion of Theorem 2. To do this, we introduce, together with the decomposition (7), the
analogous expansion D = d0E+ d1S

(1) + d3S
(3), where d2 = 0, due to the symmetry of the

matrix D. Since matrices T+ and T− are represented in the form T+ = t0E+ t1S
(1) + t3S

(3),
T− = t2S

(2), in the case under consideration, using the famous commutation relations of
the Pauli matrices

{S(j),S(k)} = 2δjkE , [S(j),S(k)] = 2iε jklS
(l) , j, k = 1, 2, 3,

where ε jkl is the Levi-Civita symbol, we find that

{T−,D} = {it2S
(2), d0E+ d1S

(1) + d3S
(3)} = 2it2d0S

(2) ,

[T+,D] = [t0E+ t1S
(1) + t3S

(3), d0E+ d1S
(1) + d3S

(3)] =

= t1d3[S
(1),S(3)] + t3d1[S

(3),S(1)] = 2i(t3d1 − t1d3)S
(2) .

Substituting obtained expression in (6), we find the condition of hyperbolicity of the
matrix T in the form of the following restriction t2d0 = t3d1 − t1d3 of coefficients d0, d1, d3.
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Then, in the case when the roots of the Equation (4) are multiples, it should be fulfilled

±d0

√
t2
1 + t2

3 = t3d1 − t1d3. Consequently, introducing angles ϕ and ψ, such that cos ϕ =

t1
(
t2
1 + t2

3
)−1/2, sin ϕ = t3

(
t2
1 + t2

3
)−1/2, cos ψ = d1

(
d2

1 + d2
3
)−1/2, sin ψ = d3

(
d2

1 + d2
3
)−1/2,

we obtain the condition for coefficients d0, d1, d3 in the form d2
0 = (d2

1 + d2
3) cos2(ϕ− ψ). If

roots are multiples, then there is such a choice of angle ϕ = −ψ for any angle ψ when it is
fulfilled d2

0 = (d2
1 + d2

3), that is detD = 0, and, therefore, the matrix D is not positive.

6. Investigation of the Equation for the Matrix DDD

Consider Equation (5) in the general case. If this equation has a degenerate equation D
with detD = 0, then the kernel of the matrix D is not empty. If the vector is g ∈ KerD and,
therefore, Dg = 0, then it follows DTg = TTDg = 0 from Equation (5), that is, due to the
arbitrariness of the vector g ∈ KerD choice, the matrix kernel is invariant relative to the
transformation of matrix T. For this reason, further, we exclude from our consideration the
degenerated solutions of Equation (5).

Since the matrix T has, at least, one eigenvalue, and since all its eigenvalues coincide
with eigenvalues of the matrix T+, then the system of uniform equations is relative to
matrix elements (D)ab ≡ Dab, which follows from the matrix equation TTD− DT = 0,
and has, at least, one solution. Furthermore, we allow that for the antisymmetric solution
DT = −D. It then follows from (5) that the equality (TD)T = TTD+DTT = 0 is fulfilled
for such a solution. Consequently, TD and, due to the nondegeneracy of the matrix D,
we have T = 0. We excluded this trivial case from our consideration. Then, Equation (5)
always has the solution in the form of a symmetric matrix. Indeed, let D be a solution
of a nontrivial matrix T. If it is not a symmetric matrix, then, applying the transposition
operation to both parts of the equation, we obtain that its solution is also the matrix DT.
Since DT 6= −D, the matrix D+DT is the symmetric solution of Equation (5).

Thus, the main problem is to find the conditions for the existence of a solution D of
Equation (5), which is diagonalizable, and all its eigenvalues are positive. In order to solve
this problem, we will introduce into consideration such a set T− of matrices in the space of
all possible antisymmetric n× n-matrices, consisting of all matrices T−, for which there
is a symmetric positive solution D. The following statements, namely Theorem 6 and its
related consequences, clarify the qualitative structure of the set of all hyperbolic matrices.
It is valid in the following.

Theorem 6. The set T− of all possible matrices T− is centrally symmetric, relative to the zero matrix.

Proof. We fixed the matrix T+ and the symmetric positive matrix D. Let T− ∈ T−. The
latter matrix obeys the Equation (6) at given T+ and D. Then, due to its antisymmetry,
the matrix −T− = TT

− also obeys Equation (5), and, consequently, Equation (6). Due to
choosing arbitrariness of the matrix T−, the set T− is centrally symmetric.

Now, we will prove an auxiliary statement that has a technical sense.

Theorem 7. Let the matrix T− satisfy Equation (6), together with the symmetric positive matrix
D, which has a set of eigenvalues ζk > 0 with eigenvectors ek, k = 1, . . . , n. Then, matrix elements
T(±)

ab = (T±)ab, a, b = 1÷ n of matrices T±, which are calculated in the orthonormal basis ek,
k = 1, . . . , n, satisfy the equation

T(−)
ab =

ζb − ζa

ζb + ζa
T(+)

ab . (8)
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Proof. Let us calculate the matrix elements of linear operators on both sides of the Equation (6),
using the scalar production (·, ·) of vectors in Rn. Since (ea,Deb) = ζaδab, (ea, T±eb) = T(±)

ab ,
a, b = 1, . . . , n, then

(ea, {T−,D}eb) = T(−)
ab (ζa + ζb) , (ea, [T+,D]eb) = T(+)

ab (ζb − ζa).

On the basis of (6), we conclude that the equality of these expressions should be
fulfilled, which follows (8), due to ζa + ζb > 0.

Corollary 5. For the fixed symmetric matrix T+, each matrix T− ∈ T− is uniquely defined by
matrix elements T(−)

ab , which are calculated on the basis of equality (8) by means of the orthogonal

n× n-matrix W, which translates the standard basis {e(0)a = δab ; b = 1, . . . , n} in Rn into the
basis {e(0)a : a = 1, . . . , n} and by means of the collection of eigenvalues 〈ζa > 0 ; a = 1, . . . , n〉.

Proof. It follows directly from (8).

Corollary 6. The dimension dim T− does not exceed the number of non-zero matrix elements
T(+)

ab = 0 at a > b.

Proof. If T(+)
ab = 0 in the formula (8), then it is valid T(−)

ab = 0 for these values a and b.
The dimension of the space of matrices T(−) in (8) is determined by an arbitrary choice of
non-zero matrix elements for a > b, since this matrix is antisymmetric and T(−)

aa = 0. The
number of such elements T(−)

ab does not exceed the numbers of the corresponding elements

of the matrix T(+)
ab .

Then, the validity of the theorem statement follows from the fact that, for every
solution of D of Equation (5) and, consequently, of Equation (6), and for any orthogonal
matrix W (the orthogonality of matrices W are connected with their realness), the matrix
DW = WDW T is the solution of the equation WT+W

TDW = DWWTW T.

Corollary 7. The set T− is compact ‖T−‖ ≤ ‖T+‖.

Proof. Since |(ζb − ζa)/(ζb + ζa)| ≤ 1 at ζl > 0, l = 1, . . . , n, then

‖T−‖ = max{|T(−)
ab | ; a, b = 1, . . . , n} ≤ ‖T+‖ .

Corollary 8. The set T− is connected.

Proof. Changing parameters ζl(s) by means of a continuous dependence on the parameter
s ∈ [0, 1], such that ζl(0) = ζl , ζ(1) = 0, l = 1, . . . , n and sgn(ζb(s)− ζa(s)) = sgn(ζb − ζa),
a, b = 1, . . . , n, we find that, for any solution T− ∈ T−, there always exists such a continuous
curve located in the subset T− of the matrix space which connects the matrix T− with a
zero matrix.

Let Tab = (ea,Teb) be matrix elements of the matrix T in the basis of eigenvectors of
the matrix D. Then, it follows from the Equation (5) that

ζaTab = ζbTba , a, b = 1, . . . , n . (9)

We find from this equality that the original equation for the matrix D has the solution if
and only if non-zero values of productions Ta,j1 Tj1,j2 . . . Tjs−1,js Tjs ,b should be unchanged for
any pair {a, b} and for any sequence of different numbers 〈j1, j2, . . . , js〉, s ≤ n− 2. At n = 2,
since there is only one equality in (9) at a 6= b, such restrictions of matrix elements Tab do
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not arise. Therefore, we studied this case separately in the previous section. However,
for example, at n = 3, there are already three independent equalities ζ1T12 = ζ2T21,
ζ2T23 = ζ3T32, and ζ1T13 = ζ3T31. In this case, we have

ζ1T12T23T31 = ζ2T21T23T13 = ζ3T32T21T13 = ζ1T13T32T21

and, consequently, due to ζ1 6= 0, it should be fulfilled that T12T23T31 = T13T32T21.
Namely, the presence of the entire set of specified fierce conditions that the matrix elements
Tab must obey in the basis {er : r = 1, . . . , n} determines the possibility of solvability of
Equations (5) and (6).

Let us prove, now, the statement, which gives a sufficient condition of the hyperbolic-
ity of the matrix T and significantly simplifies its establishment. Thus, it gives a sufficient
indication of the hyperbolicity of the system of quasi-linear equations. It essentially simpli-
fies the hyperbolicity analysis of the matrix T and, therefore, the hyperbolicity analysis of
the quasi-linear equations system. We will show that Equation (6) has a symmetric positive
solution D, which is sufficiently close to a positive matrix sE for any matrix T− in the case
of a non-degenerate spectrum of the matrix T+. It is clear that this result agrees with the
conclusions of the previous section in the two-dimensional case.

Theorem 8. Let {λl : l = 1, . . . , n} be the collection of eigenvalues of the matrix T+, which are
non-equal in pairs to each other. Let further δ = min{|λj − λk| : j 6= k; j, k = 1, . . . , n}. Then, at
δ > 2nε‖T−‖ > 0, there exists symmetric positive matrix D, satisfying the equation

[T+,D] = ε{T−,D} . (10)

Proof. We represent the solution of the equation in the form of series

D =
∞

∑
l=0

εlD(l) (11)

where [T+,D(0)] = 0. Further, we choose the matrix D(0) in the form D(0) = sE, where s > 0
is a sufficiently large value, such that the matrix D is positive and [T+,D(l)] = {T−,D(l−1)},
l ∈ N. Let {el : l = 1, . . . , n} be the orthonormal basis of eigenvectors of the matrix T+,
with eigenvalues {λl : l = 1, . . . , n}. Write down the equality of the matrix elements in the
basis {el : l = 1, . . . , n}, which is followed from the last recurrent relation

(ej, [T+,D(l)]ek) = (λj − λk)(ej,D(l)ek) = (ej, {T−,D(l−1)}ek) .

Since the matrix {T−,D(l−1)} is antisymmetric when D(l−1) is the symmetric matrix,
then the right-hand side of the last equality is equal to zero at j = k. Without contradicting
this equality, we suppose (ek,D(l)ek) = 0, k = 1, . . . , n. Consequently, considering it as the
equation relative non-diagonal matrix elements of the matrix, we find that it is D(l), and
this equation is solvable and takes place at the recurrent communication

(ej,D(l)ek) = (λj − λk)
−1 ×

×
n

∑
m=1

[
(ej,T−em)(em,D(l−1)ek) + (ej,D(l−1)em)(em,T−ek)

]
.

From here, it follows the estimate

|(ej,D(l)ek)| ≤ ‖D(l)‖ ≤ 2n
δ
‖T−‖‖D(l−1)‖ .
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Consequently, the series is converged according to the matrix norm ‖ · ‖ at 2nε‖T−‖/δ < 1,
and the following estimate is valid

‖D‖ ≤ ‖D(0)‖
∞

∑
l=0

εl
(2n‖T−‖

δ

)l
=

s
1− 2nε‖T−‖/δ

.

7. Conclusions

We have carried out the investigation devoted to the problem of strong hyperbolicity
of quasi-linear equations systems of the first order. As a result, a modified formulation
of the strong hyperbolicity concept is proposed and the equivalence of this formulation
and the so-called hyperbolicity according to Friedrichs is proved. The necessary and
sufficient condition is formulated, showing that this equations system is hyperbolic. It is
done in terms of the matrix T(q), which defines evolution of a linearized (tangent) system
of differential equations of the first order with constant coefficients corresponding to the
original system. This condition is given in Corollary 3. We have named matrices T(q)
satisfying this condition as the hyperbolic ones.

We conducted a qualitative study of the set of matrices T−(q), for which the specified
necessary and sufficient condition holds for a given matrix T+(q), that is, when there is a
solution to Equation (6). Moreover, we found an effectively verifiable necessary condition
for the class of matrices T−(q) in order for such a solution to actually exist.

However, it is necessary to further study the problem despite the fact that the obtained
results allow, in some cases (see, for example, refs. [12,13]), to prove the hyperbolicity of
the quasi-linear equations systems of mathematical physics. Namely, it is necessary to
obtain such quantitative results that will allow to accurately estimate both from above and
from below the location of the hyperbolicity region boundary for each pre-defined matrix
T(q). It should be noted that the problem closely related to the one studied in the paper is
also of interest. Namely, it is important to find the criterion that the system (1) is elliptical.
Apparently, in this case, the matrix T(q) is diagonalizable and it has purely imaginary
eigenvalues. Such matrices are naturally called the elliptical ones.
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