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Abstract: In this paper, control analysis of a stochastic lagging discrete ecosystem is investigated.
Two-dimensional stochastic hysteresis discrete ecosystem equilibrium points with symmetry are
discussed, and the dynamical behavior of equilibrium points with symmetry and their control analysis
is discussed. Using the orthogonal polynomial approximation theory, the stochastic lagged discrete
ecosystems are approximately transformed as its equivalent deterministic ecosystem. Based on the
stability and bifurcation theory of deterministic discrete systems, through mathematical analysis,
asymptotic stability and Hopf bifurcation are existent in the ecosystem, constructing control functions,
controlling the behavior of the system dynamics. Finally, the effects of different random strengths on
the bifurcation control and asymptotic stability control are verified by numerical simulations, which
validate the correctness and effectiveness of the main results of this paper.

Keywords: stochastic lagging discrete ecosystems; approximation; orthogonal polynomial; control
analysis

1. Introduction

The ecosystem provides the natural environment on which human beings depend for
survival. In recent years, ecological complexity is a new hot topic in international ecological
research [1–3], and its basic idea is to understand the dynamic behavior of ecosystems.
Ecosystems are typically complex systems, and internal interactions lead to the complexity
of ecosystems. In ecology, branching and chaotic phenomena often correspond to the
catastrophe of the studied species, so there has been a growing interest in the study of
mathematical ecology. In economics, ecosystems, mechanics and aviation, dynamics play
an important role [4–9].

In 1976, May studied simple mathematical models with very complicated dynamics
and had a paper published in Nature [10], which established that many ecosystems were
remarkable complexity in dynamics. The Wang et al. analysis of dynamic and bifurcation
in an ecosystem is investigated in reference [11]. Reference [12] studied stochastically
globally exponential stability for stochastic impulsive differential systems. In reference [13],
the control of a hyperchaotic discrete system is investigated. Tie and Lin are studied
controllability of two-dimensional discrete-time bilinear systems [14]. Reference [15] studies
the stability of two-dimensional discrete systems. Ooba studied asymptotic stability of
two-dimensional discrete systems with saturation nonlinearities [16]. Jia et al. investigate
the stochastic dynamics of a prey–predator type ecosystem driven by Poisson white noise
excitation [17]. Wan studied an iterative learning control of two-dimensional discrete
systems in the general model [18]. Wang et al. studied dynamic analysis of the coupled
logistic map [19]. Reference [20] studied the logistic mapping bifurcation control. Wang
et al. studied chaos control of two dimensional logistic mapping in references [21]. The
dynamical behavior of discrete systems and their control are studied in references [22–24].
In the ecosystem, because these stochastic factors cannot be ignored, various stochastic
ecosystems will be considered. In the real world, the stochastic factors determine the
changing trends of ecosystems, and delays exist in ecosystems. Thus, it is very necessary to
research the dynamical behavior in lagged discrete ecosystems with random parameters.
In recent years, Xu et al. have studied the dynamic behavior and dynamic control problems

Symmetry 2022, 14, 1039. https://doi.org/10.3390/sym14051039 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14051039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14051039
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14051039?type=check_update&version=1


Symmetry 2022, 14, 1039 2 of 12

of systems with random parameters. For instance, bifurcation, chaos and so on [25–28].
In particular, Ma et al. is investigated stochastic Hopf bifurcation behavior of a stochastic
lagged logistic system [29].

Motivated by the above discussion, and inspired by reference [29], we consider control
analysis of a stochastic lagged discrete ecosystem with a random parameter, the influence
of a random parameter in the stochastic lagged discrete ecosystem on bifurcation control
and asymptotic stability control is investigated by orthogonal polynomial approximation.

2. Materials and Methods
The Lagged Discrete Ecosystem with Random Parameter and Its Orthogonal
Polynomial Approximation

In reference [29], the authors considered two-dimensional lagged discrete ecosystems,
as follows: {

z1(n + 1) = z2(n),

z2(n + 1) = µz2(n)(1− z1(n)),
(µ ∈ (0, 2.28), z1, z2 ∈ (0, 1)). (1)

Obviously, the system (1) has only one fixed point S(1 − 1/µ, 1 − 1/µ). In order
to facilitate the system dynamics behavior and control analysis, we use the coordinate
transformation, S is transformed to the origin O(0, 0), and then we have{

x(n + 1) = y(n),

y(n + 1) = y(n)− (µ− 1)x(n)− µx(n)y(n),
(2)

Adding a linear control term to Equation (2) yields the controlled system as{
x(n + 1) = y(n) + Kx(n),

y(n + 1) = y(n)− (µ− 1)x(n)− µx(n)y(n) + Ky(n),
(3)

denotes the linear control term as

U(∗) = K
[

x(n)
y(n)

]
, (4)

and K 6= 0, and where µ is a random parameter which can be described as

µ = µ + δk, (5)

where µ is the deterministic system parameter about µ, δ is regarded as strength of random
disturbance, and k is a random variable which obeys density function of the Poisson
distribution pk with standard deviation λ.

Therefore, under condition of the convergence in mean square, it follows from the
orthogonal polynomial approximation that the solution of (3) can be expressed as following

x(n, k) =
M
∑

i=0
xi(n)Qi(k),

y(n, k) =
M
∑

i=0
yi(n)Qi(k),

(6)

where xi(n) =
N
∑

k=0
pkx(n, k)Qi(k), yi(n) =

N
∑

k=0
pky(n, k)Qi(k), Qi(k) is the ith Charlier

orthogonal polynomial, M represents order of the polynomial.
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Substituting (5) and (6) into (3), we obtain

M
∑

i=0
xi(n + 1)Qi(k) =

M
∑

i=0
yi(n)Qi(k) + K

M
∑

i=0
xi(n)Qi(k),

M
∑

i=0
yi(n + 1)Qi(k) =

M
∑

i=0
yi(n)Qi(k)− (µ + δk− 1)

M
∑

i=0
xi(n)Qi(k)

−(µ + δk)
(

M
∑

i=0
xi(n)Pi(k)

M
∑

i=0
yi(n)Qi(k)

)
+ K

M
∑

i=0
yi(n)Qi(k).

(7)

According to a cycle recurrence formula of Charlier polynomial

kQ(λ)
i (k) = Q(λ)

i+1(k) + (i + λ)Q(λ)
i (k) + λiQ(λ)

i−1(k), (8)

the non-linear and random terms of (7) can be written as

δk
(

M
∑

i=0
xi(n)Qi(k)

M
∑

i=0
yi(n)Qi(k)

)
= δk

2M
∑

i=0
Si(n)Qi(k)

= δ
2M
∑

i=0
[Qi(k)(λ(i + 1)Si+1(n) + (i + λ)Si(n)− Si−1(n))− Si(n)Qi+1(k)],

(9)

respectively, and

δk
M
∑

i=0
xi(n)Qi(k)

= δ
M
∑

i=0
[Qi(k)(λ(i + 1)xi+1(n) + (i + λ)xi(n)− xi−1(n))− xi(n)Qi+1(k)],

(10)

where Si(n) is the linear combination of non-linearity term are calculated by mathematics
software.

By using (9), (10) and (7), Equation (7) can be further simplified as follows:

M
∑

i=0
xi(n + 1)Qi(k) =

M
∑

i=0
yi(n)Qi(k) + K

M
∑

i=0
xi(n)Qi(k),

M
∑

i=0
yi(n + 1)Qi(k) =

M
∑

i=0
yi(n)Qi(k)− (µ− 1)

M
∑

i=0
xi(n)Qi(k)−

δ
M
∑

i=0
[Qi(k)(λ(i + 1)xi+1(n) + (i + λ)xi(n)− xi−1(n))− xi(n)Qi+1(k)]

−µ
2M
∑

i=0
Si(n)Qi(k)− δ

2M
∑

i=0
[Pi(k)(λ(i + 1)Si+1(n) + (i + λ)Si(n)− Si−1(n))

−Si(n)Qi+1(k)] + K
M
∑

i=0
yi(n)Qi(k).

(11)

By the principle of approximation, x−1(n) = 0, xM+1(n) = 0, S−1(n) = 0, SM+1(n) = 0.
Multiplying both sides of (11) by Qi(k), i = 1, 2, 3, · · · , taking expectation with

respect to k, we can obtain the equivalent ecosystems of (7). Obviously, when M→ ∞, the
lagged discrete ecosystems with random parameter are strictly equivalent to (7). In this
paper, for convenient analysis, let M = 1, λ = 1 and obtain the equivalent deterministic
system of stochastic lagged discrete ecosystems as follows:
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x0(n + 1) = Kx0(n) + y0(n),

y0(n + 1) = (1− µ− δ)x0(n) + (1 + K)y0(n)− δx1(n)− (µ + δ)S0(n)− δS1(n),

x1(n + 1) = Kx1(n) + y1(n),

y1(n + 1) = −δx0(n) + (1− µ− 2δ)x1(n) + (1 + K)y1(n) + δS0(n)− (µ + 2δ)S1(n).

(12)

Therefore, the approximate random response of the original stochastic discrete ecosys-
tems can be expressed as follows:

x(n, k) =
M
∑

i=0
xi(n)Qi(k),

y(n, k) =
M
∑

i=0
yi(n)Qi(k),

and as k = 0, the sample response of the mean parameter system (SMR) and the ensemble
mean response to it (EMR) are calculated as

E[x(n, k)] =
1
∑

i=0
x1(n)E[Qi(k)] = x0(n) ≈

1
∑

i=0
x1(n)Qi(0) = x(n, 0),

E[y(n, k)] =
1
∑

i=0
y1(n)E[Qi(k)] = y0(n) ≈

1
∑

i=0
y1(n)Qi(0) = y(n, 0).

In this paper, the strength of the random disturbance δ is taken small value. So, we
take initial conditions of the deterministic equivalent (12) and initial conditions of the
deterministic system the same as follows, namely,

x0 = x0(0) = 0.2, y0 = y0(0) = 0.1, x1(0) = y1(0) = 0,

namely, x(0) = (0.2, 0)T , y(0) = (0.1, 0)T .

3. Results
3.1. Stability Control Analysis of the Stochastic Lagged Discrete Ecosystems

This section discusses the stability control of stochastic lagged discrete ecosystems, in
order to derive stability of system, first introduced the related conclusions on stability of
deterministic discrete dynamical systems.

Lemma 1. (see [30]) Let the spectral radius of the coefficient matrix A of the discrete dynamical
system is greater than 1, the zero solution of the corresponding system is asymptotically unstable; if
the spectral radius of the coefficient matrix A of the discrete dynamical system is less than 1, the
zero solution of the corresponding system is asymptotically stable.

Theorem 1. When control coefficient K = 1
2 −
√

2
√

13δ+2δ−4µ+5
2 , that is, when a controller is

applied to a random lag ecosystem U(•) =
(

1
2 −
√

2
√

13δ+2δ−4µ+5
2

)[
x(n)

y(n)

]
, it can make the

random lag ecosystem reach a stable state.

Proof. Since (12) has a Jacobi matrix A at the zero equilibrium point

A =


K 1 0 0

1− µ− δ 1 + K −δ 0

0 0 K 1

−δ 0 1− µ− 2δ 1 + K

 (13)
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By using Maple, the characteristic polynomial of A is

f (z) = a0z4 + a1z3 + a2z2 + a3z + a4 (14)

where the coefficients of the characteristic polynomial are a0 = 1, a1 = −2, a2 = −1 + 2µ− δ,
a3 = 2− 2µ + δ, a4 = −3δ2 − µδ + µ2 + δ− 2µ + 1.

By using the Maple software, eigenvalues of Formula (14) are

z1,2 = K +
1
2
±

√
2
√

13δ + 2δ− 4µ + 5

2
, (15)

z3,4 = K +
1
2
±

√
−2
√

13δ + 2δ− 4µ + 5

2
, (16)

when −2
√

13δ + 2δ− 4µ + 5 > 0, then 2
√

13δ + 2δ− 4µ + 5 > 0, where δ > 0.

According to Lemma 1, when control coefficient K = 1
2 −
√

2
√

13δ+2δ−4µ+5
2 , substitute

in (15) and (16) we can obtain z1 = 1, z2 < 1, z3 < 1, z4 < 1, so (12) is stable. The above
analysis can be summarized as the controller

U(•) =

1
2
−

√
2
√

13δ + 2δ− 4µ + 5

2

[ x(n)
y(n)

]
.

The proof is finished. �

3.2. Hopf Bifurcation Control Analysis of the Stochastic Lagged Discrete Ecosystems

This section discusses the Hopf bifurcation control of stochastic lagged discrete ecosys-
tems, first introducing the conclusions on Hopf bifurcation of deterministic discrete dynam-
ical systems.

Lemma 2. (see [31]) For map x → F(x, µ), x, µ ∈ Rn, let the eigenvalues of Jacobi matrix at the
bifurcation parameter point µ = µc, and the following conditions should be met:

(1) The Jacobi matrix of the discrete system has a pair of complex conjugate eigenvalues λ1(µ)

and λ1(µ) with |λ1(µc)| = 1 at µ = µc and the other eigenvalues λj(µ), j = 3, 4, . . ., with∣∣λj(µc)
∣∣ < 1;

(2) Transversality condition: d|λ1(µc)|/dµ 6= 0;
(3) Nonresonance condition λm

1(µc) 6= 1 or resonance condition λm
1(µc) = 1, m = 3, 4, · · ·

Theorem 2. For thelagging discrete ecosystems with stochastic parameters controller

U(∗) = K
[

x(n)
y(n)

]
, when control coefficient − 3

2 < K < 1
2 and k 6= 0, Hopf bifurcation of

the (12) can be controlled and the system can reach a stable state.

Proof. When K = 0, the system is an uncontrolled random system, Hopf bifurcation
behavior occurs in the system. For (17) and (18), if

2
√

13δ + 2δ− 4µ + 5 < 0,

that is,

µ >
2
√

13δ + 2δ + 5
4

,
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we have

z1,2 = K +
1
2
±

√
−2
√

13δ− 2δ + 4µ− 5

2
i
(

i2 = −1
)

,

Let the modes of eigenvalues |z1| = |z2| = 1, we obtain µ1 =
√

13+1
2 δ + 2− K2 − K.

Thus,

K = −1
2
±

√√
13 + 1

2
δ +

9
4
− µ,

and obviously,

d|z1(µc)|
dµ

=
1
2

1√
(K + 1

2 )
2
+ −2

√
13δ−2δ+4µ−5

4

∣∣∣∣∣∣
µ=µc

=
1
2

1√
1
2 K2 + 1

2 K
.

If
− 2
√

13δ + 2δ− 4µ + 5 < 0,

namely,

µ >
−2
√

13δ + 2δ + 5
4

,

we have

z3,4 = K +
1
2
±

√
2
√

13δ− 2δ + 4µ− 5

2
i
(

i2 = −1
)

.

Let the modes of eigenvalues |z3| = |z4| = 1, we obtain µ2 = 1−
√

13
2 δ + 2− K2 − K.

Thus,

K = −1
2
±

√
1−
√

13
2

δ +
9
4
− µ,

And obviously,

d|z3(µc)|
dµ

=
1
2

1√
(K + 1

2 )
2
+ 2
√

13δ−2δ+4µ−5
4

∣∣∣∣∣∣
µ=µc

=
1
2
6= 0.

When k = 0, we obtain z3,4 = 1
2 ±

√
3

2 i, zm
3 (µc) =

(
1
2 +

√
3

2 i
)6

= 1. According to
Lemma 2, the system bifurcation points is as follows

µc =
1−
√

13
2

δ + 2.

The above analysis can obtain

K2 + K− 3
4
< 0(K 6= 0)

that is, − 3
2 < K < 1

2 and K 6= 0, Hopf bifurcation of stochastic lagged discrete ecosystems
is controlled, K within a certain range allowing the system to reach a steady state.

The proof is finished. �

3.3. Numerical Simulations and Numerical Analysis

Let intensity δ = 0, control coefficient K = 0, namely, the system is free from interfer-
ence and control, so that the stochastic lagged discrete ecosystems (2) can be degenerated
to a deterministic original lagged discrete ecosystem. The phase trajectory diagram and the
bifurcation diagram of the ecosystem are shown in Figures 1 and 2, respectively.
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It can be seen from Figure 1 that the system has abundant dynamic behaviors, such as
bifurcation and chaos. Figure 2 shows the bifurcation phenomenon at an equilibrium point.
This shows that the ecosystem is unstable, so it is of great practical significance to control
and disturb the ecosystem.

Because the intensity of δ is very small, when intensity δ = 0.001, K = 0, phase
trajectories and the time history diagrams of EMR of equivalent system (12) gradually
converge to zero in Figures 2 and 3a. We know that the stochastic lagged discrete ecosystem
occurs bifurcation, which is shown by Figure 2. When δ = 0.01, K = 0, the phase trajectories
and time history diagrams of (12) that converge a limit cycle is shown in Figure 4. When
the random intensity δ = 0.05, K = 0, the system limits cycle amplitude increases are
shown in Figure 5. From Figures 2–6, under the condition that the system is not controlled,
it can be seen that the system limit loop increases as the stochastic intensity continues
to increase, which also indicates that the intensity of external perturbations affects the
stochastic lagged ecosystem dynamic behavior. It affects the stability of the ecosystem and
places the equilibrium point of the system in an unstable state.
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When random intensity δ = 0.08 and control coefficient K = −0.15, the limit cycle
amplitude of the ecosystem is significantly smaller than that of the system without control
by Figure 7 with phase portrait (a) and time history diagram (b). Starting from Figures 7–10,
the designed control function is constantly changing; specifically, the control coefficient is
gradually changing, i.e., impose controls on the ecosystem, we will find that the bifurcation
of the random lag ecosystem is controlled, leaving the ecosystem in a stable state.
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Figure 8. Phase portrait (a) and time history diagram (b) for δ = 0.08, K = −0.25.
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Figure 10. Phase portrait (a) and time history diagram (b) for δ = 0.08, K = −0.45.

Apparently, in Figures 6–10, the control functions of stochastic lagged discrete ecosys-
tem satisfy the control function conditions involved in Theorem 1 and Theorem 2. We
obtain that the asymptotic stability and Hopf bifurcation in the stochastic lagged discrete
ecosystem varies from random intensity and control functions by the numerical analysis.
At the same time, it is also confirmed that the control function designed by us can control
the dynamic behavior of the discrete ecosystem with random lag and make the system
reach a stable state.

Next, Figure 11 shows the above design of the control function of random delay
discrete control effect of the ecosystem, we will find that the system with the limit cycle
amplitude control function coefficient decreases gradually, until a steady state is reached,
such as the red part of the phase diagram (a), and the time history diagram (b) refers to a
stable state.

According to theoretical analysis and numerical simulation, we have shown stochas-
tic lagged discrete ecosystem stability with the variety of control functions. Obviously,
comparing to the deterministic system, random intensity affects the dynamic behavior of
its stochastic system, and the system bifurcation limit ring amplitude increases with the
random intensity. However, we have designed control functions that control the asymptotic
stability and bifurcation behavior of stochastic time-lag discrete ecosystems until the system
reaches a steady state.



Symmetry 2022, 14, 1039 11 of 12
Symmetry 2022, 14, x FOR PEER REVIEW 11 of 12 
 

 

  
(a) (b) 

Figure 11 Phase portrait (a) and time history diagram (b) for 20.0,10.0,005.0 == K，δ . 

According to theoretical analysis and numerical simulation, we have shown stochas-
tic lagged discrete ecosystem stability with the variety of control functions. Obviously, 
comparing to the deterministic system, random intensity affects the dynamic behavior of 
its stochastic system, and the system bifurcation limit ring amplitude increases with the 
random intensity. However, we have designed control functions that control the asymp-
totic stability and bifurcation behavior of stochastic time-lag discrete ecosystems until the 
system reaches a steady state. 

4. Conclusions 
Using the orthogonal polynomial approximation theory of discrete random function, 

it is possible to study the control analysis of stochastic lagged discrete ecosystem. We suc-
cessfully simplified the stochastic lagged discrete ecosystem to its equivalent determinis-
tic system. The stability theory of deterministic systems and Hopf bifurcation theory, a 
control function is drawn up and control conditions for system stability are derived. The-
oretical results are verified by numerical simulation and numerical analysis. 

Funding: This research received no external funding 

Conflicts of Interest: The authors declare no conflict of interest. 

References 
1. Parrott, L. Measuring ecological complexity. Ecol. Indic. 2010, 10, 1069–1076. 
2. Goldenberg, S.U.; Nagelkerken, I.; Marangon, E.; Bonnet, A.; Ferreira, C.M.; Connell, S.D. Ecological complexity buffers the 

impacts of future climate on marine consumers. Nat. Clim. Change 2018, 8, 229–233. 
3. Farina, A. Ecoacoustic codes and ecological complexity. Biosystems 2018, 164, 147–154. 
4. Liu, Q.K.; Zhang, Z.J.; Chen, X.M.; Li, Y.H. Stability Analysis of Enterprises Competition Based on Ecological Model. Math. 

Pract. Theory 2016, 46, 1–7. 
5. Chen, X.X.; Song, G.H.; Wang, X.J.; Li, Z.Y. Stability and Hopf Bifurcation of a Kind of Pinus Koraiensis Ecological System with 

Time Delay. J. Biomath. 2014, 29, 577–585. 
6. Jiang, H.B.; Li, X.Z.-P. Bifurcation Analysis of Complex Behavior in the Logistic Map via Periodic Impulsive Force. Acta Phys. 

Sin. 2013, 62, 120508. 
7. Zan, Q.T. Study on the Complicated Dynamical Behaviors of Nonlinear Ecosystem. Appl. Math. Mech. 1988, 9, 925–931. 
8. Niu, S.Y.; Jin, Y.F. Stability Analysis of a Stochastic Predator-Prey Model with Harrison Function Response. J. Dyn. Control 2016, 

14, 276–282. 
9. Li, D.M.; Ma, Z.F. Looking to the Future of Mathematical Ecology and Ecological Modelling. Acta Ecol. Sin. 2000, 20, 1083–1089. 
10. May, R.M. Simple Mathematical Models with Very Complicated Dynamics. Nature 1976, 261, 459–467. 
11. Wang, Y.; Zhao, M.; Yu, H.; Dai, C.; Mei, D.; Wang, Q.; Ma, Z. Analysis of spatiotemporal dynamic and bifurcation in a wetland 

ecosystem. Discret. Dyn. Nat. Soc. 2015, 2015, 185432. 
12. Liu, X.; Zhu, Q. Stochastically globally exponential stability of stochastic impulsive differential systems with discrete and infi-

nite distributed delays based on vector Lyapunov function. Complexity 2022, 2020, 7913050. 
13. Chen, L.Q.; Liu, Z.R. Control of a hyperchaotic discrete system. Appl. Math. Mech. 2001, 22, 741–746. 

x(
n)

y(
n)

Figure 11. Phase portrait (a) and time history diagram (b) for δ = 0.05, K = 0, 0.10, 0.20.

4. Conclusions

Using the orthogonal polynomial approximation theory of discrete random function,
it is possible to study the control analysis of stochastic lagged discrete ecosystem. We suc-
cessfully simplified the stochastic lagged discrete ecosystem to its equivalent deterministic
system. The stability theory of deterministic systems and Hopf bifurcation theory, a control
function is drawn up and control conditions for system stability are derived. Theoretical
results are verified by numerical simulation and numerical analysis.
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