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Abstract: Symmetries play a vital role in the study of physical phenomena in diverse areas such
as dynamic systems, optimization, physics, scientific computing, engineering, mathematical biol-
ogy, chemistry, and medicine, to mention a few. These phenomena specialize mostly in solving
equilibria-like problems in abstract spaces. Motivated by these facts, this research provides two
innovative modifying extragradient strategies for solving pseudomonotone equilibria problems in
real Hilbert space with the Lipschitz-like bifunction constraint. Such strategies make use of multiple
step-size concepts that are modified after each iteration and are reliant on prior iterations. The
excellence of these strategies comes from the fact that they were developed with no prior knowledge
of Lipschitz-type parameters or any line search strategy. Mild assumptions are required to prove
strong convergence theorems for proposed strategies. Various numerical tests have been reported to
demonstrate the numerical behavior of the techniques and then contrast them with others.

Keywords: Lipschitz-like conditions; equilibrium problem; strong convergence theorems; variational
inequality problems; fixed-point problem

MSC: 47J25; 47H09; 47H06; 47J05

1. Introduction

Consider that Σ is a nonempty, convex, and closed subset of a real Hilbert space Π.
The inner product and norm are indicated with 〈., .〉 and ‖.‖, respectively. Furthermore,
R and N symbolize the set of real numbers and the set of natural numbers, respectively.
Assume thatR : Π×Π→ R is indeed a bifunction with the equilibrium problem solution
set EP(R, Σ). Let

s∗ = PEP(R,Σ),

whereas θ represents a zero element in Π. In this case, Σ characterizes the subset of a Hilbert
space Π and R as follows: R : Π×Π → R is a bifunction through R(r1, r1) = 0, for all
r1 ∈ Σ. The equilibrium problem [1,2] forR on Σ is to:

Find s∗ ∈ Σ such that R(s∗, r1) ≥ 0, ∀ r1 ∈ Σ. (1)

Symmetry 2022, 14, 1045. https://doi.org/10.3390/sym14051045 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14051045
https://doi.org/10.3390/sym14051045
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-1454-2962
https://orcid.org/0000-0001-8773-4821
https://orcid.org/0000-0003-2659-8226
https://orcid.org/0000-0002-8775-4790
https://doi.org/10.3390/sym14051045
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14051045?type=check_update&version=2


Symmetry 2022, 14, 1045 2 of 22

The above-mentioned framework is an appropriate mathematical framework that
incorporates a variety of problems, including vector and scalar minimization problems,
saddle point problems, variational inequality problems, complementarity problems, Nash
equilibrium problems in non-cooperative games, and inverse optimization problems [1,3,4].
This issue is primarily connected to Ky Fan inequity on the grounds of his prior contribu-
tions to the field [2]. It is also important to consider an approximate solution if the problem
does not have an exact solution or is difficult to calculate. Several methodologies have been
proposed and tested to tackle various types of equilibrium problems (1). Many successful
algorithmic techniques, as well as theoretical characteristics, have already been proposed
to solve the (1) issue in both finite- and infinite-dimensional spaces.

The regularization technique is the most significant method for dealing with many ill-
posed problems in various subfields of applied and pure mathematics. The regularization
approach is distinguished by the use of monotone equilibrium problems to convert the
original problem into a strongly monotone equilibrium subproblem. As a result, each
computationally productive subproblem is strongly monotone and has a unique solution.
The discovered subproblem, for example, may be more successfully resolved than the initial
problem, and the regularization solutions may lead to some solution to the basic problem
once the regularization variables look to have an adequate limit. The two most prevalent
regularization methods are the proximal point and Tikhonov’s regularized approaches.
These approaches were recently extended to equilibrium problems [5–13]. A few techniques
to address non-monotone equilibrium problems can be found in [14–26].

The proximal method [27] is indeed an innovative approach for determining equilib-
rium problems that are founded on minimization problems. Along with Korpelevich’s
contribution [28] technique to addressing the saddle point problem, this procedure has also
been known as the two-step extragradient method in [29]. Tran et al. [29] constructed an
iterative sequence of {sk} in the following manner:

s1 ∈ Σ,
mk = arg min

v∈Σ
{λR(sk, v) + 1

2‖sk − v‖2},

sk+1 = arg min
v∈Σ

{λR(mk, v) + 1
2‖sk − v‖2},

where 0 < λ < min
{ 1

2c1
, 1

2c2

}
. The iterative sequence created by the aforementioned

approach exhibits weak convergence, and prior knowledge of Lipschitz-type variables is
necessary in order to use it. Lipschitz-type parameters are frequently unknown or difficult
to calculate. To address this issue, Hieu et al. [30] introduced the following adaptation of
the approach in [31] for equilibrium: Let [t]+ = max{t, 0} and select s1 ∈ Σ, µ ∈ (0, 1) with
λ0 > 0, such that 

mk = arg min
v∈Σ

{λkR(sk, v) + 1
2‖sk − v‖2},

sk+1 = arg min
v∈Σ

{λkR(mk, v) + 1
2‖sk − v‖2},

along with

λk+1 = min
{

λk,
µ(‖sk −mk‖2 + ‖sk+1 −mk‖2)

2[R(sk, sk+1)−R(sk, mk)−R(mk, sk+1)]+

}
.

To solve a pseudomonotone equilibrium problem, the authors have suggested a non-
convex combination iterative technique in [32]. The availability of a strong convergence
iterative sequence without the need for hybrid projection or viscosity techniques is the main
contribution. The details of the algorithm are as follows: Choose 0 < λk < min

{ 1
2c1

, 1
2c2

}
,

δk ⊂ [δ, 1) with δ > 0 and φk such that

lim
k→+∞

φk = 0 and
+∞

∑
k=1

φk = +∞.
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
mk = arg min

v∈Σ
{λkR(sk, v) + 1

2‖sk − v‖2},

rk = arg min
v∈Σ

{λkR(mk, v) + 1
2‖sk − v‖2},

and
sk+1 = PΣ

[
φksk + (1− φk)rk − φkδksk

]
.

The main objective of this study is to focus on using well-known projection algorithms
that are, in general, easier to apply due to their efficient and easy mathematical computation.
We design and adapt an explicit subgradient extragradient method to solve the problem of
pseudomonotone equilibrium and other specific classes of variational inequality problems
and fixed-point problems, inspired by the works of [30,33]. Our techniques are a variation
on the approaches described in [32]. Strong convergence results matching the sequence of
the two methods are achieved under specific, moderate circumstances. Some applications
of variational inequality and fixed-point problems are given. Consequently, experimental
investigations have shown that the proposed strategy is more successful than the current
one [32].

The rest of the article is organized as follows: Section 2 includes basic definitions
and lemmas. Section 3 proposes new methods and their convergence analysis theorems.
Section 4 contains several applications of our findings to variational inequality and fixed-
point problems. Section 5 contains numerical tests to demonstrate the computational
effectiveness of our proposed methods.

2. Preliminaries

Suppose that a convex function= : Σ→ R and subdifferential of= at r1 ∈ Σ is expressed
as follows:

∂=(r1) = {r3 ∈ Π : =(r2)−=(r1) ≥ 〈r3, r2 − r1〉, ∀ r2 ∈ Σ}.

A normal cone of Σ at r1 ∈ Σ is expressed as follows:

NΣ(r1) = {r3 ∈ Π : 〈r3, r2 − r1〉 ≤ 0, ∀ r2 ∈ Σ}.

Lemma 1. ([34]) Suppose that a convex function = : Σ → R is subdifferentiable and lower
semicontinuous upon Σ. Then r1 ∈ Σ is a minimizer of a function = if and only if

0 ∈ ∂=(r1) + NΣ(r1),

where ∂=(r1) and NΣ(r1) denotes the subdifferential of = at r1 ∈ Σ and the normal cone of Σ at r1,
respectively.

Definition 1. ([35]) A metric projection PΣ(r1) for r1 ∈ Π onto a convex and closed subset Σ of
Π is stated as follows:

PΣ(r1) = arg min{‖r2 − r1‖ : r2 ∈ Σ}.

Lemma 2. ([36]) Consider that a metric projection PΣ : Π→ Σ. Then

(i) For some r2 ∈ Σ and r1 ∈ Π in order that

‖r1 − PΣ(r1)‖ ≤ ‖r1 − r2‖2.

(ii) r3 = PΣ(r1) if and only if

〈r1 − r3, r2 − r3〉 ≤ 0, ∀ r2 ∈ Σ.
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Lemma 3. ([37]) For some r1, r2 ∈ Π and χ ∈ R. Then
(i)

‖χr1 + (1− χ)r2‖2 = χ‖r1‖2 + (1− χ)‖r2‖2 − χ(1− χ)‖r1 − r2‖2;

(ii)
‖r1 + r2‖2 ≤ ‖r1‖2 + 2〈r2, r1 + r2〉.

Lemma 4. ([38]) Consider a sequence of non-negative real numbers {χk} such that

χk+1 ≤ (1− τk)χk + τkδk, ∀ k ∈ N,

while {τk} ⊂ (0, 1) and {δk} ⊂ R conforming to the following parameters:

lim
k→+∞

τk = 0,
+∞

∑
k=1

τk = +∞, and lim sup
k→+∞

δk ≤ 0.

Thus, limk→+∞ χk = 0.

Lemma 5. ([39]) Assume that {χk} is a sequence of real numbers namely that there exists a
subsequence {ki} of {k} such that

χki
< χki+1

, for all i ∈ N.

Then, there would be a nondecreasing sequence {ek} ⊂ N, namely that ek → +∞ as k→ +∞,
and the following criteria are fulfilled by all (sufficiently big) integers k ∈ N :

χek ≤ χmk+1 and χk ≤ χmk+1 .

In fact, ek = max{j ≤ k : χj ≤ χj+1}.

Now, we consider the following bifunction monotonicity notions (for more informa-
tion, see [1,40]). A bifunctionR : Π×Π→ R on Σ for ξ > 0 such that
(1) strongly monotone if

R(r1, r2) +R(r2, r1) ≤ −ξ‖r1 − r2‖2, ∀ r1, r2 ∈ Σ;

(2) monotone if
R(r1, r2) +R(r2, r1) ≤ 0, ∀ r1, r2 ∈ Σ;

(3) strongly pseudomonotone if

R(r1, r2) ≥ 0 =⇒ R(r2, r1) ≤ −ξ‖r1 − r2‖2, ∀ r1, r2 ∈ Σ;

(4) pseudomonotone if

R(r1, r2) ≥ 0 =⇒ R(r2, r1) ≤ 0, ∀ r1, r2 ∈ Σ.

Suppose that R : Π × Π → R meets the Lipschitz-type condition [41] over Σ if
c1, c2 > 0, such that

R(r1, r3) ≤ R(r1, r2) +R(r2, r3) + c1‖r1 − r2‖2 + c2‖r2 − r3‖2, ∀ r1, r2, r3 ∈ Σ.

We shall presume that the requirements listed below have been satisfied. A bifunction
Rmeets the following criteria:

(R1)R(r2, r2) = 0 for all r2 ∈ Σ andR is pseudomonotone on feasible set Σ;
(R2)Rmeet the Lipschitz-type condition on Π with constants c1 and c2;
(R3)R(r1, r2) is jointly weakly continuous on Π×Π;
(R4)R(r1, .) need to be convex and subdifferentiable over Π for each r1 ∈ Π.
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3. Main Results

We add a method and have strong convergence results for that method. The following
is a detailed algorithm:

The following lemma can be used to demonstrate that the step-size sequence λk
generated by the previous formula decreases monotonically and is bounded, as required
for iterative sequence convergence.

Lemma 6. A sequence {λk} is decreasing monotonically with lower bound min
{ µ

2 max{c1,c2}
, λ0
}

and converge to λ > 0.

Proof. It is straightforward that {λk} decreases monotonically. LetR(sk, rk)−R(sk, mk)−
R(mk, rk) > 0, such that

µ(‖sk −mk‖2 + ‖rk −mk‖2)

2[R(sk, rk)−R(sk, mk)−R(mk, rk)]

≥ µ(‖sk −mk‖2 + ‖rk −mk‖2)

2[c1‖sk −mk‖2 + c2‖rk −mk‖2]
≥ µ

2 max{c1, c2}
.

Thus, sequence {λk} has the lower bound min
{ µ

2 max{c1,c2}
, λ0
}

. Thus, there exists a
real number λ > 0, to ensure that limk→+∞ λk = λ.

The following lemma can be used to verify the boundedness of an iterative sequence.

Lemma 7. LetR : Π×Π→ R be a bifunction that satisfies the conditions (R1)–(R4). For any
s∗ ∈ EP(R, Σ) 6= ∅, we have

‖rk − s∗‖2 ≤ ‖sk − s∗‖2 −
(

1− µλk
λk+1

)
‖sk −mk‖2 −

(
1− µλk

λk+1

)
‖rk −mk‖2.

Proof. By the value rk and Lemma 1, we obtain

λkR(mk, y)− λkR(mk, rk) ≥ 〈sk − rk, y− rk〉, ∀ y ∈ Πk. (2)

From definition of Πk, we have

λkR(sk, rk)− λkR(sk, mk) ≥ 〈sk −mk, rk −mk〉. (3)

Using the value of λk+1, we can write

R(sk, rk)−R(sk, mk)−R(mk, rk) ≤
µ(‖sk −mk‖2 + ‖rk −mk‖2)

2λk+1
. (4)

Expressions (2)–(4) imply that (see Lemma 3.3 in [42]):

‖rk − s∗‖2 ≤ ‖sk − s∗‖2 −
(

1− µλk
λk+1

)
‖sk −mk‖2 −

(
1− µλk

λk+1

)
‖rk −mk‖2.

The strong convergence analysis for Algorithm 1 is presented in the following theorem.
The details of the convergence theorems are given below.
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Algorithm 1 Self-Adaptive Explicit Extragradient Method with Non-Convex Combination

Step 0: Let s1 ∈ Π, λ0 > 0, µ ∈ (0, 1), δk ⊂ [δ, 1) through δ > 0 and φk ⊂ (0, 1) such
that

lim
k→+∞

φk = 0 and
+∞

∑
k=1

φk = +∞.

Step 1: Compute

mk = arg min
v∈Σ

{λkR(sk, v) +
1
2
‖sk − v‖2}.

In the case that mk = sk, stop and sk ∈ EP(R, Σ). Otherwise, go to the next step.
Step 2: First, choose ωk ∈ ∂R(sk, mk) satisfying sk−λkωk−mk ∈ NK(mk) and generate
a half-space

Πk = {z ∈ Π : 〈sk − λkωk −mk, z−mk〉 ≤ 0}.

Solve rk = arg min
v∈Πk

{λkR(mk, v) + 1
2‖sk − v‖2}.

Step 3: Compute
sk+1 = PΣ

[
φksk + (1− φk)rk − φkδksk

]
.

Step 4: Revise the step size as follows and continue:

λk+1 =


min

{
λk, µ(‖sk−mk‖2+‖rk−mk‖2)

2[R(sk ,rk)−R(sk ,mk)−R(mk ,rk)]

}
if R(sk, rk)−R(sk, mk)−R(mk, rk) > 0

λk otherwise.

Set k := k + 1 and move back to Step 1.

Theorem 1. Let a sequence {sk} be generated by Algorithm 1. Then, sequence {sk} converges
strongly to s∗ ∈ EP(R, Σ).

Proof. Given that λk → λ, then ε ∈ (0, 1− µ), is a number such that

lim
k→+∞

(
1− µλk

λk+1

)
= 1− µ > ε > 0.

As a result, there exists a finite number k1 ∈ N such that(
1− µλk

λk+1

)
> ε > 0, ∀ k ≥ k1. (5)

Using Lemma 7, we have

‖rk − s∗‖2 ≤ ‖sk − s∗‖2, ∀ k ≥ k1. (6)
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We derive using Lemma 3 (i) for any k ≥ k1, such that

‖sk+1 − s∗‖2 = ‖PΣ
[
φk(1− δk)sk + (1− φk)rk

]
− PΣ(s∗)‖2

≤ ‖φk(1− δk)sk + (1− φk)rk − s∗‖2

= ‖φk
[
(1− δk)sk − s∗

]
+ (1− φk)(rk − s∗)‖2

≤ φk‖(1− δk)sk − s∗‖2 + (1− φk)‖rk − s∗‖2

≤ φk
[
‖(1− δk)(sk − s∗) + δks∗‖2]+ (1− φk)‖sk − s∗‖2

− (1− φk)
[(

1− µλk
λk+1

)
‖sk −mk‖2 +

(
1− µλk

λk+1

)
‖rk −mk‖2

]
≤ φk

[
(1− δk)‖sk − s∗‖2 + δk‖s∗‖2]+ (1− φk)‖sk − s∗‖2

− (1− φk)
[
ε‖sk −mk‖2 + ε‖rk −mk‖2]

= (1− φkδk)‖sk − s∗‖2 + φkδk‖s∗‖2

− ε(1− φk)
[
‖sk −mk‖2 + ‖rk −mk‖2] (7)

≤ max{‖sk − s∗‖2, ‖s∗‖2}
≤ max{‖sk1 − s∗‖2, ‖s∗‖2}. (8)

It is deduced that sequence {sk} is a bounded sequence. Let qk = φksk + (1− φk)rk,
for any k ∈ N. By Lemma 3 (i), we have

‖qk − s∗‖2 = ‖φksk + (1− φk)rk − s∗‖2 ≤ ‖sk − s∗‖2, ∀ k ≥ k1. (9)

Notice that there is

sk+1 = PΣ(qk − φkδksk) = PΣ
[
(1− φkδk)qk + φkδk(1− φk)(rk − sk)

]
. (10)

By Lemma 3 (ii) and (9), (10) implies that (see Equation (3.6) [32])

‖sk+1 − s∗‖2

= ‖PΣ
[
(1− φkδk)qk + φkδk(1− φk)(rk − sk)

]
− PΣ(s∗)‖2

≤ (1− φkδk)‖sk − s∗‖2 + 2φkδk(1− φk)〈
rk − sk, (1− φkδk)qk + φkδk(1− φk)(rk − sk)− s∗

〉
+ 2φkδk(1− φk)

〈
− s∗, rk − sk

〉
+ 2φkδk

〈
− s∗, sk − s∗

〉
+ 2φ2

k δ2
k
〈
s∗, sk

〉
. (11)

The remains of the proof can be split into two parts:
Case 1: Let k2 ∈ N (k2 ≥ k1) such that

‖sk+1 − s∗‖ ≤ ‖sk − s∗‖, ∀ k ≥ k2.

Thus, limk→+∞ ‖sk − s∗‖, exists and let limk→+∞ ‖sk − s∗‖ = l. By relationship (7),
we have

ε
[
‖sk −mk‖2 + ‖rk −mk‖2] ≤ ‖sk − s∗‖2 − ‖sk+1 − s∗‖2 + φkδk‖s∗‖2

+ εφk
[
‖sk −mk‖2 + ‖rk −mk‖2], ∀ k ≥ k2. (12)

The existence of limk→+∞ ‖sk − s∗‖ = l, provides that

lim
k→+∞

‖sk −mk‖ = lim
k→+∞

‖rk −mk‖ = 0, (13)

and accordingly

lim
k→+∞

‖sk − rk‖ ≤ lim
k→+∞

‖sk −mk‖+ lim
k→+∞

‖mk − rk‖ = 0. (14)
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Thus, the sequence {sk} is a bounded sequence. Hence, we may select a subsequence
{skj
} of {sk} such that {skj

} converges weakly to a certain s ∈ Σ such that

lim sup
k→+∞

〈−s∗, sk − s∗〉 = lim sup
j→+∞

〈−s∗, skj
− s∗〉 = 〈−s∗, s− s∗〉. (15)

From (13) the subsequence {mkj
} also converges weakly to s as j→ +∞. Due to the

expression (3), we obtain

λkj
R(skj

, y)− λkj
R(skj

, mkj
) ≥ 〈skj

−mkj
, y−mkj

〉, ∀ y ∈ Σ. (16)

Allowing j→ +∞ entails that

R(s, y) ≥ 0, ∀ y ∈ Σ. (17)

As a result, s ∈ EP(R, Σ). Eventually, using (15) and Lemma 2 (ii), we derive

lim sup
k→+∞

〈−s∗, sk − s∗〉 = lim sup
j→+∞

〈−s∗, skj
− s∗〉

= 〈−s∗, s− s∗〉.
= 〈θ − PEP(R,Σ), s− PEP(R,Σ)〉.
≤ 0. (18)

We have the desired results from of the assertion on φk, δk, (11), (13), (14), (18) and
Lemma 4.

Case 2: Assume that there exists a subsequence {ki} of {k} such that

‖ski
− s∗‖ ≤ ‖ski+1

− s∗‖, ∀ i ∈ N.

Consequently, according to Lemma 5, there is indeed a sequence {nj} ⊂ N such that
nj → +∞, we have

‖snj − s∗‖ ≤ ‖smj+1 − s∗‖ and ‖sj − s∗‖ ≤ ‖smj+1 − s∗‖, for all j ∈ N. (19)

By the expression (7), we have

ε
[
‖snj −mnj‖

2 + ‖rnj −mnj‖
2] ≤ ‖snj − s∗‖2 − ‖snj+1 − s∗‖2 + φnj δnj‖s

∗‖2

+ εφnj

[
‖snj −mnj‖

2 + ‖rnj −mnj‖
2], ∀ nj ≥ k1. (20)

The above expressions imply that

lim
j→+∞

‖snj −mnj‖ = lim
j→+∞

‖rnj −mnj‖ = 0, (21)

thus
lim

j→+∞
‖snj − rnj‖ ≤ lim

j→+∞
‖snj −mnj‖+ lim

j→+∞
‖mnj − rnj‖ = 0. (22)

By statements identical to those in expression (18), we have

lim sup
j→+∞

〈−s∗, snj − s∗〉 ≤ 0. (23)
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From expression (11), we obtain

‖snj+1 − s∗‖2

≤ (1− φnj δnj)‖snj − s∗‖2 + 2φnj δnj(1− φnj)〈
rnj − snj , (1− φnj δnj)qnj + φnj δnj(1− φnj)(rnj − snj)− s∗

〉
+ 2φnj δnj(1− φnj)

〈
− s∗, rnj − snj

〉
+ 2φnj δnj

〈
− s∗, snj − s∗

〉
+ 2φ2

nj
δ2

nj

〈
s∗, snj

〉
. (24)

It is given that ‖snj − s∗‖ ≤ ‖smj+1 − s∗‖, implies that

‖snj+1 − s∗‖2

≤ (1− φnj δnj)‖smj+1 − s∗‖2 + 2φnj δnj(1− φnj)〈
rnj − snj , (1− φnj δnj)qnj + φnj δnj(1− φnj)(rnj − snj)− s∗

〉
+ 2φnj δnj(1− φnj)

〈
− s∗, rnj − snj

〉
+ 2φnj δnj

〈
− s∗, snj − s∗

〉
+ 2φ2

nj
δ2

nj

〈
s∗, snj

〉
. (25)

The expression (19) and (25) implies that

‖sj − s∗‖2 ≤ ‖snj+1 − s∗‖2

≤ 2(1− φnj)
〈
rnj − snj , (1− φnj δnj)qnj + φnj δnj(1− φnj)(rnj − snj)− s∗

〉
+ 2(1− φnj)

〈
− s∗, rnj − snj

〉
+ 2
〈
− s∗, snj − s∗

〉
+ 2φnj δnj

〈
s∗, snj

〉
, ∀ k ≥ k1. (26)

Because φnj → 0, it derives via expressions (21), (22) such that

lim
k→+∞

‖sj − s∗‖2 ≤ lim
k→+∞

‖snj+1 − s∗‖2 ≤ 0. (27)

Consequently, sk → s∗. This is the required result.

Now, a modification of Algorithm 1 proves a strong convergence theorem for it. For
the purpose of simplicity, we will adopt the notation [t]+ = max{0, t} and the conventional
0
0 = +∞ and a

0 = +∞ (a 6= 0). The following is a more detailed algorithm:

Lemma 8. Let R : Π ×Π → R be a bifunction satisfies the conditions (R1)–(R4). For any
s∗ ∈ EP(R, Σ) 6= ∅, we have

‖rk − s∗‖2 ≤ ‖PΣ(sk)− s∗‖2 −
(

1− µλk
λk+1

)
‖PΣ(sk)−mk‖2 −

(
1− µλk

λk+1

)
‖rk −mk‖2.

The strong convergence analysis for Algorithm 2 is presented in the following theorem.
The details of the convergence theorems are given below.

Algorithm 2 Modified Self-Adaptive Explicit Extragradient Method with Non-Convex
Combination

Step 0: Let s1 ∈ Π, λ0 > 0, µ ∈ (0, 1), δk ⊂ [δ, 1) with δ > 0 and φk, ϕk ⊂ (0, 1) such
that

lim
k→+∞

φk = 0,
+∞

∑
k=1

φk = +∞ and lim inf
k→+∞

ϕk(1− ϕk) > 0.

Step 1: Compute

mk = arg min
v∈Σ

{λkR(PΣ(sk), v) +
1
2
‖PΣ(sk)− v‖2}.

If mk = sk, then sk is the solution of problem (EP). Otherwise, go to next step.
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Algorithm 2 Cont.

Step 2: First, choose ωk ∈ ∂R(PΣ(sk), mk) satisfying PΣ(sk)− λkωk − mk ∈ NK(mk)
and generate a half-space

Πk = {z ∈ Π : 〈PΣ(sk)− λkωk −mk, z−mk〉 ≤ 0}.

Solve
rk = arg min

v∈Πk

{λkR(mk, v) +
1
2
‖PΣ(sk)− v‖2}.

Step 3: Compute

sk+1 = φk(1− δk)sk + (1− φk)
[
ϕkrk + (1− ϕk)sk)

]
.

Step 4: Modify step size as follows:

λk+1 = min
{

λk,
µ(‖PΣ(sk)−mk‖2 + ‖rk −mk‖2)

2[R(PΣ(sk), rk)−R(PΣ(sk), mk)−R(mk, rk)]+

}
.

Set k := k + 1 and go back to Step 1.

Theorem 2. Let a sequence {sk} be generated by Algorithm 2 and satisfy the conditions (R1)–(R4).
Then, a sequence {sk} is strongly convergent to an element s∗ of EP(R, Σ).

Proof. Using Lemma 8, we have

‖sk+1 − s∗‖2

= ‖φk(1− δk)sk + (1− φk)
[
ϕkrk + (1− ϕk)sk

]
− s∗‖2

= ‖φk
[
(1− δk)sk − s∗

]
+ (1− φk)

[
ϕk(rk − s∗) + (1− ϕk)(sk − s∗)

]
‖2

≤ φk‖(1− δk)sk − s∗‖2 + (1− φk)‖ϕk(rk − s∗) + (1− ϕk)(sk − s∗)‖2

≤ φk‖(1− δk)(sk − s∗) + δks∗‖2

+ (1− φk)
[
ϕk‖rk − s∗‖2 + (1− ϕk)‖sk − s∗‖2 − ϕk(1− ϕk)‖rk − sk‖2]

≤ φk
[
(1− δk)‖sk − s∗‖2 + δk‖s∗‖2]+ (1− φk)

[
‖sk − s∗‖2

− ϕk

(
1− µλk

λk+1

)
‖PΣ(sk)−mk‖2 − ϕk

(
1− µλk

λk+1

)
‖rk −mk‖2 − ϕk(1− ϕk)‖rk − sk‖2

]
≤ (1− φkδk)‖sk − s∗‖2 + φkδk‖s∗‖2 − (1− φk)

[
ϕk

(
1− µλk

λk+1

)
‖PΣ(sk)−mk‖2

+ ϕk

(
1− µλk

λk+1

)
‖rk −mk‖2 + ϕk(1− ϕk)‖rk − sk‖2

]
. (28)

It is given that λk → λ, there exists a fixed number ε0 ∈ (0, 1− µ), which is indeed a
specific number such that

lim
k→+∞

(
1− µλk

λk+1

)
= 1− µ > ε0 > 0.

Thus, there exists a fixed number m1 ∈ N such that(
1− µλk

λk+1

)
> ε0 > 0, ∀ k ≥ m1. (29)
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Combining the expression (28) and (29), we obtain

‖sk+1 − s∗‖2 ≤ max{‖sk − s∗‖2, ‖s∗‖2} ≤ max{‖sm1 − s∗‖2, ‖s∗‖2}. (30)

The value of sk+1 with Lemma 3 provides (see Equation (3.17) [32])

‖sk+1 − s∗‖2 ≤ (1− φkδk)‖sk − s∗‖2 + 2φkδk(1− φk)ϕk〈rk − sk, sk+1 − s∗〉
+ 2φkδk〈−s∗, sk+1 − s∗〉. (31)

The rest of the discussion will be divided into two parts:
Case 1: Assume that there exists an integer m2 ∈ N (m2 ≥ m1) such that

‖sk+1 − s∗‖ ≤ ‖sk − s∗‖, ∀ k ≥ m2. (32)

Thus, the limk→+∞ ‖sk − s∗‖ exists. By expression (28), we have

ε0 ϕk
[
‖PΣ(sk)−mk‖2 + ‖rk −mk‖2]+ ϕk(1− ϕk)‖rk − sk‖2

≤ ‖sk − s∗‖2 − ‖sk+1 − s∗‖2 + φkδk‖s∗‖2

+ ε0φk ϕk
[
‖PΣ(sk)−mk‖2 + ‖rk −mk‖2]+ φk ϕk(1− ϕk)‖rk − sk‖2. (33)

The above, together with the assumptions on λk, φk and ϕk, yields that

lim
k→+∞

‖PΣ(sk)−mk‖ = lim
k→+∞

‖rk −mk‖ = 0 = lim
k→+∞

‖sk − rk‖ = 0. (34)

As a result, {sk} is bounded, and we may choose a subsequence {skj
} of {sk} such

that {skj
} converges weakly to s ∈ Σ and

lim sup
k→+∞

〈
− s∗, sk − s∗

〉
= lim sup

j→+∞

〈
− s∗, skj

− s∗
〉
=
〈
− s∗, s− s∗

〉
. (35)

As with expression (3) with (34), we have

λkR(PΣ(skj
), y)− λkj

R(PΣ(skj
), mk) ≥

〈
PΣ(skj

)−mkj
, y−mkj

〉
, ∀y ∈ Σ. (36)

Allowing j→ +∞, indicates thatR(s, y) ≥ 0, ∀ y ∈ Σ. It continues that s ∈ EP(R, Σ).
In the end, by expression (35) and Lemma 2, we may obtain

lim sup
k→+∞

〈−s∗, sk − s∗〉 = lim sup
j→+∞

〈−s∗, skj
− s∗〉

= 〈−s∗, s− s∗〉.
= 〈θ − PEP(R,Σ), s− PEP(R,Σ)〉.
≤ 0. (37)

The needed result is obtained using Equation (31) and the Lemma 4.
Case 2: Assume that a subsequence {ki} of {k} such that

‖ski
− s∗‖ ≤ ‖ski+1

− s∗‖, ∀i ∈ N.

Thus, by Lemma 5 there exists a nondecreasing sequence {nj} ⊂ N such that {nj} →
+∞, which gives

‖snj − s∗‖ ≤ ‖smj+1 − s∗‖ and ‖sj − s∗‖ ≤ ‖smj+1 − s∗‖, for all j ∈ N. (38)
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Using expression (31), we have

‖snj+1 − s∗‖2

≤ (1− φnj δnj)‖snj − s∗‖2 + 2φnj δnj(1− φnj)ϕnj〈rnj − snj , snj+1 − s∗〉

+ 2φnj δnj〈−s∗, snj+1 − s∗〉 (39)

The remaining proof is analogous to Case 2 in Theorem 1.

4. Applications

In this section, we derive our main results, which are used to solve fixed-point and
variational inequality problems. An operator T : Σ ⊂ Π→ Σ is said to be

(i) κ-strict pseudocontraction [43] on Σ if

‖T r1 − T r2‖2 ≤ ‖r1 − r2‖2 + κ‖(r1 − T r1)− (r2 − T r2)‖2, ∀ r1, r2 ∈ Σ;

which is equivalent to

〈
T r1 − T r2, r1 − r2

〉
≤ ‖r1 − r2‖2 − 1− κ

2
‖(r1 − T r1)− (r2 − T r2)‖2, ∀ r1, r2 ∈ Σ.

(ii) Weakly sequentially continuous on Σ if

T (sk) ⇀ T (s∗) as each sequence in Σ satisfying sk ⇀ s∗.

Note: If we take R(x, y) = 〈x − Tx, y − x〉, ∀x, y ∈ Σ, the equilibrium problem
converts into to the fixed-point problem through 2c1 = 2c2 = 3−2κ

1−κ . The algorithm’s mk and
rk values become (for more information, see [32]):

mk = arg min
v∈Σ

{λkR(sk, v) + 1
2‖sk − v‖2} = (1− λk)sk + λkT (sk),

rk = arg min
v∈Πk

{λkR(mk, v) + 1
2‖sk − v‖2} = PΣ

[
sk − λk(mk − T (mk))

]
.

(40)

The following fixed-point theorems are derived from the results in Section 3.

Corollary 1. Suppose that Σ is a nonempty closed and convex subset of a Hilbert space Π. Let
T : Σ→ Σ is a weakly continuous and κ-strict pseudocontraction with Fix(T ) 6= ∅. Let s1 ∈ Σ,
λ0 > 0, µ ∈ (0, 1), δk ⊂ [δ, 1) with δ > 0 and φk ⊂ (0, 1)

lim
k→+∞

φk = 0 and
+∞

∑
k=1

φk = +∞.

Additionally, the sequence {sk} is created as follows:
mk = (1− λk)sk + λkT (sk),
rk = PΠk

[
sk − λk(mk − T (mk))

]
,

sk+1 = PΣ
[
φksk + (1− φk)rk − φkδksk

]
,

where
Πk = {z ∈ Π : 〈sk − λkT (sk)−mk, z−mk〉 ≤ 0}.

The relevant step-size λk+1 is obtained:

λk+1 = min
{

λk,
µ(‖sk −mk‖2 + ‖rk −mk‖2)

2
[〈
(sk −mk)− (T (sk)− T (mk)), rk −mk

〉]
+

}
.
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Thus, the sequence {sk} strongly converges to s∗ = PFix(T )(θ).

Corollary 2. Suppose that Σ is a nonempty closed and convex subset of a Hilbert space Π. Let
T : Σ→ Σ is a weakly continuous and κ-strict pseudocontraction with Fix(T ) 6= ∅. Let s1 ∈ Π,
λ0 > 0, µ ∈ (0, 1), δk ⊂ [δ, 1) with δ > 0 and φk, ϕk ⊂ (0, 1) such that

lim
k→+∞

φk = 0,
+∞

∑
k=1

φk = +∞ and lim inf
k→+∞

ϕk(1− ϕk) > 0.

Additionally, the sequence {sk} is created as follows:
mk = (1− λk)PΣ(sk) + λkT (PΣ(sk)),
rk = PΠk

[
sk − λk(mk − T (mk))

]
,

sk+1 = φk(1− δk)sk + (1− φk)
[
ϕkrk + (1− ϕk)sk)

]
,

where
Πk = {z ∈ Π : 〈PΣ(sk)− λkT (PΣ(sk))−mk, z−mk〉 ≤ 0}.

The relevant step size λk+1 is obtained as follows:

λk+1 = min
{

λk,
µ(‖PΣ(sk)−mk‖2 + ‖rk −mk‖2)

2
[〈
(PΣ(sk)−mk)− (T (PΣ(sk))− T (mk)), rk −mk

〉]
+

}
.

Thus, the sequence {sk} strongly converges to s∗ = PFix(T )(θ).

The variational inequality problem is presented as follows:

Find s∗ ∈ Σ such that
〈

G(s∗), y− s∗
〉
≥ 0, ∀ y ∈ Σ.

An operator G : Π→ Π is said to be

(i) L-Lipschitz continuous on Σ if

‖G(r1)− G(r2)‖ ≤ L‖r1 − r2‖, ∀ r1, r2 ∈ Σ;

(ii) pseudomonotone on Σ if〈
G(r1), r2 − r1

〉
≥ 0 =⇒

〈
G(r2), r1 − r2

〉
≤ 0, ∀ r1, r2 ∈ Σ.

Note: If R(x, y) :=
〈

G(x), y− x
〉

for all x, y ∈ Σ, the equilibrium problem converts
into a variational inequality problem via L = 2c1 = 2c2 (for more information, see [44]). By
the value of mk and rk in Algorithm 1, we derived

mk = arg min
v∈Σ

{λkR(sk, v) + 1
2‖sk − v‖2} = PΣ

[
sk − λkG(sk)

]
,

rk = arg min
v∈Πk

{λkR(mk, v) + 1
2‖sk − v‖2} = PΠk

[
sk − λkG(mk)

]
.

(41)

Due to ωk ∈ ∂R(sk, mk), we obtain

〈ωk, z−mk〉 ≤ 〈G(sk), z− sk〉 − 〈G(sk), mk − sk〉, ∀z ∈ Π

= 〈G(sk), z−mk〉, ∀z ∈ Π, (42)
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and consequently 0 ≤ 〈G(sk)−ωk, z−mk〉, ∀ z ∈ Π. It implies that

〈sk − λkG(sk)−mk, z−mk〉
≤ 〈sk − λkG(sk)−mk, z−mk〉+ λk〈G(sk)−ωk, z−mk〉
= 〈sk − λkωk −mk, z−mk〉. (43)

Assumption 1. Assume that G fulfills the following conditions:

(i) An operator G is pseudomonotone upon Σ and VI(G, Σ) is nonempty;
(ii) G is L-Lipschitz continuous on Σ with L > 0;
(iii) lim sup

k→+∞
〈G(sk), y− sk〉 ≤ 〈G(s∗, y− s∗〉 for any y ∈ Σ and {sk} ⊂ Σ meet sk ⇀ s∗.

Corollary 3. Let G : Σ → Π be an operator and satisfies Assumption 1. Assume that sequence
{sk} is generated as follows: Let s1 ∈ Π, λ0 > 0, µ ∈ (0, 1), δk ⊂ [δ, 1) with δ > 0 and
φk ⊂ (0, 1) such that

lim
k→+∞

φk = 0 and
+∞

∑
k=1

φk = +∞.

Moreover, sequence {sk} is generated as follows:
mk = PΣ

[
sk − λkG(sk)

]
,

rk = PΠk

[
sk − λkG(mk)

]
,

sk+1 = PΣ
[
φksk + (1− φk)rk − φkδksk

]
,

where
Πk = {z ∈ Π : 〈sk − λkG(sk)−mk, z−mk〉 ≤ 0}.

Next, step size λk+1 is obtained as follows:

λk+1 = min
{

λk,
µ(‖sk −mk‖2 + ‖rk −mk‖2)

2
[〈

F(sk)− F(mk), rk −mk
〉]

+

}
.

Then, sequence {sk} strongly converges to the solution s∗ ∈ VI(G, Σ).

Corollary 4. Let G : Σ → Π be an operator that satisfies Assumption 1. Assume that {sk}, is
generated as follows: Let s1 ∈ Π, λ0 > 0, µ ∈ (0, 1), δk ⊂ [δ, 1) with δ > 0 and φk, ϕk ⊂ (0, 1)
such that

lim
k→+∞

φk = 0,
+∞

∑
k=1

φk = +∞ and lim inf
k→+∞

ϕk(1− ϕk) > 0.

Moreover, the sequence {sk} generated as follows:
mk = PΣ

[
PΣ(sk)− λkG(PΣ(sk))

]
,

rk = PΠk

[
PΣ(sk)− λkG(mk)

]
,

sk+1 = φk(1− δk)sk + (1− φk)
[
ϕkrk + (1− ϕk)sk)

]
,

where
Πk = {z ∈ Π : 〈PΣ(sk)− λkG(PΣ(sk))−mk, z−mk〉 ≤ 0}.

Next step-size λk+1 is obtained as follows:

λk+1 = min
{

λk,
µ(‖PΣ(sk)−mk‖2 + ‖rk −mk‖2)

2
[〈

F(PΣ(sk))− F(mk), rk −mk
〉]

+

}
.
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Then, sequence {sk} strongly converges to the solution s∗ ∈ VI(G, Σ).

5. Numerical Illustration

The computational results in this section show that our proposed algorithms are more
efficient than Algorithms 3.1 and 3.2 in [32]. The MATLAB program was executed in
MATLAB version 9.5 on a PC (with Intel(R) Core(TM)i3-4010U CPU @ 1.70 GHz 1.70 GHz,
RAM 4.00 GB) (R2018b). In all our algorithms, we used the built-in MATLAB fmincon
function to solve the minimization problems. (i) The setting for design variables for
Algorithm 3.1 (Algo. 3.1) and Algorithm 3.2 (Algo. 3.2) in [32] possess different values that
are given in all examples.

φk =
1

40k
, δk =

1
10

+
1

10k
, λk =

k
3 + 2c1

, ϕk =
1
4
+

1
4n

and Dk = ‖sk −mk‖ ≤ ε.

(ii) The settings for the design variables for Algorithm 1 (Algo. 1 ) and Algorithm 2 (Algo. 2) are

φk =
1

40k
, δk =

1
10

+
1

10k
, ϕk =

1
4
+

1
4k

, Dk = ‖sk −mk‖ ≤ ε and for different λ0.

Example 1. Let us consider a bifunctionR : Σ× Σ→ R, which is represented as follows:

R(s, m) =
5

∑
i=2

(mi − si)‖s‖, ∀ s, m ∈ R5.

In addition, the convex set is defined as follows:

Σ =
{
(s1, · · · , s5) : s1 ≥ −1, si ≥ 1, i = 2, · · · , 5

}
.

Consequently, R is Lipschitz-type continuous across c1 = c2 = 2 and meets the condition
(R1)–(R4). The obtained simulations are shown in Figures 1 and 2 and Tables 1 and 2 by using
s1 = (2, 3, 2, 5, 5) and ε = 10−4.

0 5 10 15 20 25 30 35

Number of iterartions

10-5

10-4

10-3

10-2

10-1

100

101

Figure 1. Algorithm 1 is compared to Algorithm 3.1 in [32].
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100

101

Figure 2. Algorithm 2 is compared to Algorithm 3.2 in [32].

Table 1. Algorithm 1 is compared to Algorithm 3.1 in [32].

Number of Iterations CPU Time in Seconds

λ0 Algo. 3.1 Algo. 1 Algo. 3.1 Algo. 1

0.20 35 33 1.6799 1.6119
0.50 - 30 - 1.4787
0.70 - 25 - 1.1520
1.00 - 22 - 1.0100

Table 2. Algorithm 2 is compared to Algorithm 3.2 in [32].

Number of Iterations CPU Time in Seconds

λ0 Algo. 3.2 Algo. 2 Algo. 3.2 Algo. 2

0.20 99 109 4.9391 5.3081
0.50 - 84 - 4.0511
0.70 - 72 - 3.2269
1.00 - 64 - 2.9225

Example 2. According to the articles [29], the bifunctionR might be written as follows:

R(s, m) = 〈As + Bm + c, m− s〉,

where c ∈ R5 and A, B are

A =


3.1 2 0 0 0
2 3.6 0 0 0
0 0 3.5 2 0
0 0 2 3.3 0
0 0 0 0 3

 B =


1.6 1 0 0 0
1 1.6 0 0 0
0 0 1.5 1 0
0 0 1 1.5 0
0 0 0 0 2

 c =


1
−2
−1
2
−1

.

The Lipschitz parameters are also c1 = c2 = 1
2‖A− B‖ (see [29]). The possible set Σ and its

subset R5 are given as
Σ := {s ∈ R5 : −5 ≤ si ≤ 5}.
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Figures 3 and 4 and Tables 3 and 4 display the numeric effects with s1 = (1, · · · , 1) and
ε = 10−6.

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Number of iterartions

10-6

10-5

10-4

10-3

10-2

10-1

100

Figure 3. Algorithm 1 is compared to Algorithm 3.1 in [32].
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Number of iterartions

10-6
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10-2

10-1

100

Figure 4. Algorithm 2 is compared to Algorithm 3.2 in [32].

Table 3. Algorithm 1 is compared to Algorithm 3.1 in [32].

Number of Iterations CPU Time in Seconds

λ0 Algo. 3.1 Algo. 1 Algo. 3.1 Algo. 1

0.20 149 126 7.0363 5.7321
0.50 - 114 - 5.0527
0.70 - 107 - 4.8159
1.00 - 101 - 4.5495
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Table 4. Algorithm 2 is compared to Algorithm 3.2 in [32].

Number of Iterations CPU Time in Seconds

λ0 Algo. 3.2 Algo. 2 Algo. 3.2 Algo. 2

0.20 300 326 14.7791 14.2233
0.50 - 273 - 13.7107
0.70 - 236 - 11.7754
1.00 - 211 - 11.2054

Example 3. Consider that Π = L2([0, 1]) is indeed a Hilbert space with

‖s‖ =

√∫ 1

0
|s(t)|2dt,

where the internal product

〈s, m〉 =
∫ 1

0
s(t)m(t)dt, ∀ s, m ∈ Π.

Suppose that unit ball is Σ := {s ∈ L2([0, 1]) : ‖s‖ ≤ 1}. Let us begin by defining an
operator

G(s)(t) =
∫ 1

0

(
s(t)− H(t, s)R(s(s))

)
ds + g(t),

where

H(t, s) =
2tse(t+s)

e
√

e2 − 1
, R(s) = cosx, g(t) =

2tet

e
√

e2 − 1
.

As illustrated in [45], G is monotone and L-Lipschitz-continuous via L = 2. Figures 5 and 6
and Tables 5 and 6 illustrate the numerical results with s1 = t and ε = 10−6.

0 10 20 30 40 50 60 70 80

Number of iterartions

10-6

10-4

10-2

100

Figure 5. Algorithm 1 is compared to Algorithm 3.1 in [32].
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Figure 6. Algorithm 2 is compared to Algorithm 3.2 in [32].

Table 5. Algorithm 1 is compared to Algorithm 3.1 in [32].

Number of Iterations CPU Time in Seconds

λ0 Algo. 3.1 Algo. 1 Algo. 3.1 Algo. 1

0.20 64 72 0.0174 0.0331
0.50 – 61 – 0.0295
0.70 – 53 – 0.0273
1.00 – 47 – 0.0265

Table 6. Algorithm 2 is compared to Algorithm 3.2 in [32].

Number of Iterations CPU Time in Seconds

λ0 Algo. 3.2 Algo. 2 Algo. 3.2 Algo. 2

0.20 213 200 0.0313 0.0500
0.50 – 181 – 0.0460
0.70 – 177 – 0.0352
1.00 – 155 – 0.0260

Discussion About Numerical Experiments: The following conclusions may be
drawn from the numerical experiments outlined above: (i) Examples 1–3 have reported
data for numerous methods in both finite- and infinite-dimensional domains. It is apparent
that the given algorithms outperformed in terms of number of iterations and elapsed
time in practically all circumstances. All trials demonstrate that the suggested algorithms
outperform the previously available techniques. (ii) Examples 1–3 have reported results for
several methods in finite and infinite-dimensional domains. In most cases, we can observe
that the scale of the problem and the relative standard deviation used impact the algo-
rithm’s effectiveness. (iii) The development of an inappropriate variable step size generates
a hump in the graph of algorithms in all examples. It has no impact on the effectiveness of
the algorithms. (iv) For large-dimensional problems, all approaches typically took longer
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and showed significant variation in execution time. The number of iterations, on the other
hand, changes slightly less.

6. Conclusions

The paper provides two explicit extragradient-like approaches for solving an equi-
librium problem involving a pseudomonotone and a Lipschitz-type bifunction in a real
Hilbert space. A new step-size rule has been presented that does not rely on Lipschitz-type
constant information. The algorithm’s convergence has been established. Several tests are
presented to show the numerical behavior of our two algorithms and to compare them to
others that are well known in the literature.
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