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Abstract: Coronavirus Disease 2019 (COVID-19) continues to spread throughout the world, and it is
necessary for us to implement effective methods to prevent and control the spread of the epidemic.
In this paper, we propose a new model called Spatial–Temporal Attention Graph Convolutional
Networks (STAGCN) that can analyze the long-term trend of the COVID-19 epidemic with high
accuracy. The STAGCN employs a spatial graph attention network layer and a temporal gated
attention convolutional network layer to capture the spatial and temporal features of infectious
disease data, respectively. While the new model inherits the symmetric “space-time space” structure
of Spatial–Temporal Graph Convolutional Networks (STGCN), it enhances its ability to identify
infectious diseases using spatial–temporal correlation features by replacing the graph convolutional
network layer with a graph attention network layer that can pay more attention to important features
based on adaptively adjusted feature weights at different time points. The experimental results show
that our model has the lowest error rate compared to other models. The paper also analyzes the
prediction results of the model using interpretable analysis methods to provide a more reliable guide
for the decision-making process during epidemic prevention and control.

Keywords: COVID-19; spatial–temporal sequence; STAGCN; graph attention; adjacency matrix;
interpretability analysis

1. Introduction

Novel coronavirus pneumonia was first discovered in China in December 2019, and
until now the number of confirmed cases has reached hundreds of millions worldwide.
COVID-19 is highly life threatening to living organisms, and severe disease can present
with dyspnea, shock and even multiple organ failure. Since 2021, there have been many
cases of local infection in small areas in China. Unlike the initial period of the sudden
outbreak of the epidemic in Wuhan, China now has adequate and complete prevention and
control measures. First, cases are quarantined and treated immediately, then all possible
dense contacts are traced back to the source, isolated and nucleic acid tested. Finally, the
risk level of cases and areas where dense contacts have occurred is raised and local areas
are blocked. Aggregation is strictly prohibited and nucleic acid tests are conducted on all
personnel in the region. Minimize the spread of the epidemic as quickly as possible. The
results of prevention and control are impressive. Cases in cities can be quickly cleared and
kept under control without affecting the normal life of the people as much as possible.

It can be seen that case activity tracking is similar to building a graph, where each
case’s activity route and regions are related to each other, forming a graph network, and
regions are nodes. This spatial association has a significant role in predicting the spread
trend of infectious diseases. Therefore, for predicting the epidemic transmission trend in
the future, scientific prevention and control of the epidemic, and precise implementation of
policies, monitoring the spatial and temporal data characteristics of infectious cases is very
important and effective.

Symmetry 2022, 14, 1064. https://doi.org/10.3390/sym14051064 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14051064
https://doi.org/10.3390/sym14051064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://doi.org/10.3390/sym14051064
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14051064?type=check_update&version=1


Symmetry 2022, 14, 1064 2 of 20

Currently, there are two data-driven methods to predict the spread trend of epidemic:
methods based on time series and methods based on spatial–temporal sequence.

As predicting the infectiousness of COVID-19 is relevant to time series, methods based
on time series have mostly been applied. In terms of time series data, the commonly used
method is autoregressive integrated moving average (ARIMA). For example, Pan et al. [1]
proposed an ARIMA-based infectious disease prediction model, Mekparyup et al. [2]
established an unconstrained seasonal ARIMA infectious disease prediction model, An-
war et al. [3] introduced environmental and climate data into ARIMA-built prediction
models, and Roy et al. predicted the trend of epidemic in India based on ARIMA [4].
However, these models require stable time series data and cannot predict the spread trend
with nonlinearity.

In response to this, machine learning methods such as Support Vector Regression
(SVR) method [5–7] and Extreme Gradient Boosting (XGBoost) method [8,9] can effectively
process non-linear data and obtain higher prediction accuracy. Using general prediction
methods based on deep learning, such as Gate recurrent unit (GRU) [10], Multi-channel
LSTM [11,12], and LSTM-RNN [13], which are based on attention mechanisms, can extract
more complex and high-dimensional data to predict trends.

Theoretically, measuring the spread trend of epidemics should take into account not
only the time dimension (i.e., the number of new infections per day), but also the spatial
dimension (i.e., the number of new infections in different cities or regions). Models based
on time series data do not take into account the spatial dimension between different nodes,
so it is difficult to capture spatial correlation [14]. Therefore, a spatial–temporal series
data-driven approach is proposed. Graph Convolutional Network (GCN) can efficient
capture location information and process high-dimensional data, which makes it useful
for capturing spatially related features, such as intelligent transportation [15,16], behavior
recognition [17,18], and epidemic trend prediction [19,20]. In predicting epidemic trend
of infectious diseases, Derr et al. [19] proposed Epidemic Graph Convolutional Network
(EGCN) to capture the spatial characteristics of disease transmission by analyzing the
characteristics of an infectious disease transmission network. Heo et al. [20] used GCN
models in the analysis of epidemic space–time data. Graphic convolution networks capture
geospatial characteristics, and gated loop units capture temporal dynamics.

However, these methods also have two shortcomings:

1. The distribution of weights is inaccurate due to the lack of consideration for the
importance ranking of features and the lack of attention to important features. For
example, a period of time with a larger migration index should have a greater impact
on outcomes, and the epidemic transmission of infectious diseases in a region is more
affected by its neighboring regions, which cannot be generalized.

2. Lack of explanation for the results. End-to-end model processing and output results
belong to black-box processing, which cannot be traced back to the source and lacks
some confidence.

In view of the above problems, this paper mainly makes the following work:

1. The spatial map information is innovatively introduced into the data, that is, the
intensity of association adjacency matrix between risk areas is constructed to represent
the relationship between regions and neighborhood characteristics, and to improve
the sensitivity of the model to the spatial information of the data.

2. A prediction model STAGCN based on a space–time series is proposed. The model
introduces the attention mechanism to adaptively assign the feature weights of epi-
demic data in different time periods, and adaptively extracts the spatial information
of epidemic data using the attention network. We use the time series model LSTM
to compare the effect with the model, and take STACN as the benchmark model to
evaluate the generalization ability of the time series and time series models.

3. The migration index in explainable data is analyzed and interpreted using explanatory
methods, taking cities as units.
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The structure of this paper is arranged as follows: First, we introduce the data source
and composition, then we explain the structure of the benchmark model STGCN and how
we can improve on the basis of STGCN to get our proposed model STAGCN, and then
introduce the structure of STAGCN in detail. In the next step, we introduce the experiment
and result analysis, and finally analyze the interpretability of migration index.

2. Materials and Methods
2.1. Data Description

The experimental data used in this paper are from a desensitized infectious disease
dataset provided by a platform from Xi’an, Shaanxi province [21]. There are 5 cities and
392 regions in the infectious disease data set, with a total of 2,154,184 data records. This
data set describes the specific information of infectious diseases in all cities and regions in
detail, and provides enough data support for the following model experiments. The goal
of our experiment is to predict the number of new infections in the next few days. The
data set counts the daily number of new infections of infectious diseases for 60 days from
1 May 2020 to 29 June 2020. The original data set mainly includes the following files:

Migration Data: Indicates the migration of people between different cities. The
geographic units are cities.

Grid Density Data: Indicates the current population density of a grid. The geographic
units are grids.

Transfer Data: Indicates the intensity of population migration between different grids
in a city. The intensity of migration of human traffic is used to indicate the degree of
association. The geographic unit is the grid, and the time unit is the hour.

Grid Attribution Area Data: Indicates that a grid belongs to an area. Indicates owner-
ship: The grid belongs to an area.

Infection Data: Indicates the number of new infections per day added to each region
of a city, and also indicates the attribution: the area belongs to the city.

The original data divides a city into areas with their own ID, each of which is densely
divided into rectangular grids (in grids), each of which uses four latitude and longitude
coordinate points to determine the extent of the area and the grid’s center coordinate to
uniquely identify the grid (Figure 1).
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Figure 1. Geographic figure (each circle represents a city, each city is divided into n area rectangles,
and each area is divided into n grids.

The daily characteristics of each area in each city are shown in the following table
(Table 1). Among them, cities are named with “capital letters”, such as city “A”, and regions
are named with “capital letters Arabic numerals”, which is the administrative region of
the city, such as region “A_0”. According to the statistics of the distribution of the data set,
city C has the largest number of regions, totaling 135, and city B has the smallest number of
regions, totaling 30.
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Table 1. This is a table as data format of the data features.

Date Region Name Features (F)

20200501

A_0 temperature
A_1 Migration scale index

. . . . . . . . . . . .
E_33 Transfer intensity

20200502

A_0 temperature
A_1 Migration scale index

. . . . . . . . . . . .
E_33 Transfer intensity

. . . . . .

A_0 temperature
A_1 Migration scale index

. . . . . . . . . . . .
E_33 Transfer intensity

20200629

A_0 temperature
A_1 Migration scale index

. . . . . . . . . . . .
E_33 Transfer intensity

Each region contains a period of time series features, so it is necessary to aggregate
different features of infectious disease data into one feature, and use this feature to represent
the attributes of a regional node, so as to ensure that the time information and spatial
information of infectious disease data can be simultaneously input into the model for
training and learning (Figure 2). For all the existing features, the corresponding feature
aggregation is required, and the calculation process is shown in Formula (1). Fi represents
the characteristic value of infectious diseases, Ci represents the corresponding weight of
features, n represents the number of features, and hl represents the new feature vector set
generated by aggregation.

hl = (F1 ∗ c1 + F2 ∗ c2 + · · ·+ Fn ∗ cn) (1)
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Figure 2. Spatial–temporal structure of the data (Each circular node represents an area, and the color
of the node indicates the development of infectious diseases in the area. The darker the color, the
more serious the infectious diseases in the area. The edges between nodes represent the strength of
the association between the infectious disease areas, the redder the edges, the correlation is stronger;
the greener the edges, the correlation is weaker).

After unifying the time and geographical units, the data features are aggregated to get
a region feature file (Region Features), using

(
hl

t−M+1, . . . , hl
t

)
represents all the regional

features of the M days, hl
t represents the features of the t day.

In the process of epidemic prevention and control, each person’s range of activities
will associate regions, and each area will become nodes. The degree of association between
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different regions is the aggregation of people’s activities. Thus, an appropriate graph
network can be constructed to represent the spatial characteristics of data. The adjacency
matrix is a good data structure to store the network information of a graph. Therefore, we
aggregate the region-based intensity data based on the grid’s intensity data, and construct
an adjacency matrix from it.

2.2. Construction of Adjacency Matrix

The correlation degree of regions can better reflect the connectivity between different
regions. For example, there are different degrees of correlation between the 10 regions of
city a and the 8, 9, 11 and 12 regions of city A, which means that they are connected with
each other, but the strength of connection is different. The correlation strength between the
10 regions of city a and the regions of other cities such as city B and C is zero, that is, there
is no connectivity. The association strength of the region is constructed as an adjacency
matrix, which is used as the information supplement when the graph attention network is
used to adaptively aggregate the characteristics of the nodes in the neighborhood region,
which is helpful to improve the prediction accuracy of the model.

The corresponding adjacency matrix e is constructed based on the data of regional
correlation degree, and each element eij in the adjacency matrix is calculated as shown in
the Equation (2).

eij =

 exp
(
−

w2
ij

σ2

)
, i 6= j and exp

(
−

w2
ij

σ2

)
≥ ε

0, otherwise
, (2)

The wij in equation (2) represents the degree of correlation between region i and
region j. σ2 and ε is the threshold that controls the e distribution and sparsity of the
adjacency matrix. Depending on the actual situation, the σ2 and ε are specified as 10 and
0.5, respectively.

Connectivity between 392 regions in 5 cities in infectious disease data was calculated
and an adjacency matrix e was obtained. To visualize the input and output forms of the
data during the construction process, the results are shown in Figure 3.
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Figure 3. (a) Connectivity between different regions (Different squares represent different regions,
and connectivity between regions is represented by color. The darker the color, the stronger the
connectivity between the two, and the lighter the color, the weaker the connectivity between the
two.); and (b) adjacency matrix thermograms.

The data format of the correlation matrix e is shown in Table 2.
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Table 2. This is a table of the data format of the correlation matrix e.

Area\Area A_0 A_1 . . . E_33

A_0 0 0.076853/e(A1, A0) . . . 0

A_1 0.230571/e(A0, A1) 0 . . . 0

. . . . . . . . . . . . . . .

E_33 0 0 . . . 0

Finally, we use the
(

hl
t−M+1, . . . , hl

t

)
and adjacency matrix e as the input data.

2.3. STAGCN
2.3.1. STGCN

Traditional convolution neural networks have limited ability to process graph data,
because the local structure of each node in the graph data is different, which results in
the loss of translation invariance. Due to the ubiquitous existence of graph data, the deep
learning model constructed on the graph is gradually active, and the Graph Convolutional
Network (GCN) has become an extremely important one [22]. There are two main methods
to build graph convolution neural networks: spectral method and spatial method. The
spectral method is mainly based on the convolution operator in the frequency or spectral
domain of the Fourier transform. The spatial method is based on the spectral method to
parameterize the convolution kernel and use the attention mechanism, serialization model
and other means to model the weights between nodes [18]. The process of defining the
graph convolution operator is shown in the Equation (3).

h(l+1)
i = σ(∑j∈N(i)

1
cij

W(l)h(l)j ), (3)

hl
j represents the feature information of node j on layer l, cij represents the normal-

ization factor, W represents the weight matrix of the nodes, hl+1
i represents the feature

information of target node i on layer l + 1. The convolution process can be summarized as
transferring the feature information of a node to a neighborhood node, which aggregates its
own feature information with the feature information transmitted from the neighborhood.
At the same time, an activation function is introduced to transform the nodes to enhance
the expressive ability of the model.

The STGCN network reconstructs the predicted space-time convolution modules, each
consisting of two time-gated convolutions, one space map convolution, and one time-gated
convolution consisting of a 1D convolution and a GLU unit, where the kernel width of
the 1D convolution is Kt, the spatial map convolution is the Graph Convolution Neural
Network Layer (GCN). This configuration not only greatly reduces the consumption of time-
dependent feature capture, but also captures global information through convolution layer.

However, it still has the problem of inaccurate weight distribution. Graphic con-
volution network (GCN) aggregates neighborhood node information to extract spatial
information of data. It is only a simple standardization for the aggregation and calcu-
lation of neighborhood node characteristics, and the weights of different neighborhood
nodes are the same. Therefore, based on this improvement, we propose our own network
framework STAGCN.

2.3.2. STAGCN

The model mainly includes two ST-Blocks and one Output layer. ST-Block inherits the
sandwich structure of STGCN network and makes its own improvements. The model first
receives the pre-processed data and the adjacency matrix e. After ST-Block processing, the
model outputs the daily number of new infections in all areas of the city from the Output
layer, which is shown in Figure 4.
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Figure 4. The frame structure of STAGCN model.

The ST-Block network structure is shown in Figure 5. The upper and lower layers are
time-gated attention convolution network layers (TGACN), and the middle layer is a spatial
graphical attention network layer (SGAT). In order to effectively solve the problem of model
prediction weight misalignment, we introduced the Attention mechanism into time-gated
convolution (TGCN) to become a new time-gated attention convolution (TAGCN), which
adaptively assigns weights to infectious disease data at different time steps, thus improving
the model’s ability to focus on time information of infectious disease data. The spatial map
convolution (GCN) is improved. Graphic Attention Network (GAT) is used to extract the
spatial features of infectious disease data, improve the representation of node features, and
introduce adjacency matrix to supplement the spatial information of infectious disease data.
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Enter hl in module. After learning from the multilayer network in the module, the
final output is hl+1, as shown in Equation (4).

hl+1 = Γl
1 ∗ τ Relu(Θl ∗ G

(
Γl

0 ∗ τ hl
)

, (4)

Θl is the spectral core of the convolution. τ represents a graph convolution operator
used to extract the spatial characteristics of infectious diseases. Define the Fourier transform
on the graph, convolute the spatial structure information of the nodes in the GCN, and then
use the convolution operator τ find the basis vectors of the Fourier transform to describe
the local structure of the region nodes. Γl

0 and Γl
1 is the time kernel of time-gated attention

convolution network layers in the space–time map convolution module to extract the time
characteristics of infectious diseases. Relu(·) is an activation function and G refers to the
graph information.
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2.3.3. The TAGCN Layer of ST-Block

The STGCN model [22] mainly captures the temporal characteristics of infectious
diseases in the time dimension through the time-gated convolution network. The time gated
convolution layer is composed of one-dimensional convolution and nonlinear gated linear
units, in which the kernel width of one-dimensional convolution is Kt. For each regional
node of infectious disease epidemic network, make the channel Ci, where i represents the
number of channels, the input is an infectious disease sequence Y ∈ RM×Ci with length M.
Convolution kernel Γ ∈ RKt×Ci×2C1 is used to map the input infectious disease sequence Y
to a single output element [P, Q] (P and Q are divided by the same channel size). Therefore,
the time-gated convolution network is defined as Equation (5).

Γ∗τ Y = P� σ(Q) ∈ R(M−Kt+1)×C1 , (5)

P and Q in Equation (5) are the inputs of gated linear unit, � represents Hadamard
product, and R is the set of real number, σ(Q) is used to control the correlation between
the current state P and the composition structure and dynamic change of time series. Based
on the network layer, we introduce the attention mechanism so as to improve the attention
ability of the model to the time information of infectious disease data.

As shown in Figure 6, in the attention layer, the network layer inputs the infectious
disease data

(
hl

t−M+1, hl
t−M, . . . , hl

t

)
of t steps, there is a dependency between the infectious

disease data of each time step and the data of the next time step, and each time step will
generate an implicit state value Hi. The attention layer obtains the correlation coefficient
αT = Ht ·Hi by calculating the implicit value Hi of each time step and the implicit value Ht

generated in the t time step. Finally, the attention coefficient conforming to the probability
βT is obtained by normalizing the softmax layer. Multiply the infectious disease data of
each time step to obtain the infectious disease data of T + 1 time steps hl

t+1 = ∑T
i βihl

i
(i.e., the next day).
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2.3.4. The SGAT Layer of ST-Block

The Graphic Attention Network Layer is composed of two Graphic Attention Network
(GAT) [20] overlays, as shown in Figure 7.

The input hl = (hl
t−M+kt

, . . . , hl
t), hl

i ∈ RF is the region information of a set of epidemic
epidemic networks processed by the time-gated attention convolution network, where M is
the historical number of days of infectious disease, kt is the kernel width of one-dimensional
convolution, and F is the characteristic dimension of the area nodes, that is, each input is
the infectious disease area node, and each area node has F feature information. Producing
predicted regional node feature information hl+1 =

(
hl+1

t−M+kt
, . . . , hl+1

t

)
, hl+1

i ∈ RF′ from



Symmetry 2022, 14, 1064 9 of 20

the attention layer, which represents the regional node characteristics of the output predic-
tion, with F′ feature information for each regional node. For better expressive ability, the
layer of attention needs several linear transformations based on the input infectious disease
characteristics to obtain higher-level features. First, we consider the influence of edge
weights between neighbor nodes on the relationship between two nodes. We introduce
the adjacency matrix e of epidemic disease network as information complement between
nodes, and hl

i = hl
i · e transformation for node i. Then, a weight matrix W is trained for

all the region nodes, and a shared attention mechanism, self-attention, is applied to each
region node of the epidemic network to calculate the attention factor cij. The formulas for
calculating them are as follows (6).
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cij = a
(

Whl
i , Whl

j

)
, (6)

where a(·) is a function of calculating the correlation degree of two regional nodes (eigen-
vectors), it is implemented by a single-layer feed-forward neural network parameterized
by the weight vector

→
a ∈ R2F. The masked attention is also introduced into the epidemic

network structure. The function of masked attention is to compute only the first-order
neighbor region node j, the region node j ∈ Ni, and the interval area node is not obscured
as a neighbor area node of area node i. Considering the convenience and comparability of
correlation coefficient calculation, the first-order neighbor region node j regularization of
all region nodes i is performed using the softmax function, for example, Equation (7).

αij = softmaxj
(
cij
)
=

exp
(
cij
)

∑k∈Ni
exp(cik)

, (7)

After adding leaky relu nonlinear activation function, the attention coefficient is
calculated as Equation (8).

αij =
exp(LeakyReLu(

→
a [W

→
h i||W

→
h j]))

∑k∈Ni
exp(LeakyReLu(

→
a [W

→
h i||W

→
h j]))

, (8)

The attention coefficient calculated by Equation (5) is used to calculate the linear
combination of corresponding features. After aggregating the features of all neighbor
regional nodes, the output feature hl+1

i of each regional node is predicted, calculated as
Equation (9).

hl+1
i = σ(∑j∈Ni

αijW
→
h j), (9)
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Compared with graph convolution neural network (GCN), the node characteristics
of neighbor regions are standardized and summed in a graph convolution operation, as
shown in Equation (10).

hl+1
i = σ(∑j∈Ni

1
dij

W
→
h j), dij =

√
|N(i)|

√
|N(i)|, (10)

Graph attention network (GAT) replaces the standardized operation in graph convolu-
tion neural network with attention mechanism, adapts and learns the weight coefficient,
and finally aggregates the node characteristics of neighbor regions. Through the superposi-
tion of the attention layer of the graph, the structure of the epidemic network of infectious
diseases is gradually topological, and the migration index of infectious disease data is
introduced as the adjacency matrix to supplement the importance between neighborhood
nodes, which improves the ability to capture the spatial characteristics of the epidemic
network of infectious diseases.

2.3.5. The Output Layer of STAGCN

After two ST-Block processing, the output layer of the model is composed of time
gated attention convolution network layer (TGACN) and fully connected networks layer
(FCN), as shown in Figure 8.
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After the second ST-Block, the output is (hl+2
t−M+4(Kt−1), . . . , hl+2

t ), after gating, pay

attention to convolution network layer output to obtain (hl+2
t−M+5(Kt−1), . . . , hl+2

t ), and then

the one-step prediction value ĥ is obtained by linear change mapping on channel C by the
fully connected network layer. The loss function predicted by the infectious disease model
uses L2, so its calculation formula is shown in Equation (11).

L(ĥ; Wθ) = ∑t ||ĥ
(

hl
t−M+1, . . . , hl

t, Wθ
)
− hl

t′+1||
2
, (11)

where ĥ(·) is the prediction result of infectious disease model, hl
t′+1 is the true value, Wθ is

the relevant training parameter.

3. Experiments and Results

The experimental data comes from the data set of the transmission trend prediction
competition of highly pathogenic infectious diseases [23]. The data of the first 45 days are
divided into model training set and verification set, and the remaining 15 days are used as
the test set of the model.
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The model is run on a Linux server (CPU: 4 cores, GPU: Tesla V100, video memory:
16GB, RAM: 32GB). We will train 60 epochs for the model, set the learning rate to 0.005,
and the optimizer defaults to Adam to predict the number of new infections in each region
in the next 15 days. In order to test and evaluate the performance of the model, we will use
RMSE and RMSLE as error evaluation indexes. The benchmark model selects the common
prediction model of infectious disease transmission trend: (1) ARIMA [24]; (2) LSTM [25];
and (3) STGCN [26].

Calculate the error evaluation indexes RMSE and RMSLE of different prediction
models under 5 days, 10 days and 15 days. The results are shown in Table 3.

Table 3. This is a table as error evaluation comparison of different models.

Period Evaluate
Models

ARIMA LSTM STGCN STAGCN

5 days RMSE 20.62 18.94 17.07 16.67
RMSLE 3.2137 2.1308 1.8613 1.7015

10 days RMSE 20.78 19.44 18.99 18.71
RMSLE 3.4992 2.2152 2.0870 1.9251

15 days RMSE 22.68 20.52 19.28 18.93
RMSLE 3.6209 2.4595 2.3393 2.0515

The error evaluation indexes of STAGCN model based on spatial–temporal sequence
data are basically smaller than other benchmark models, which shows that the improved
STAGCN model can effectively capture the spatial–temporal characteristics of infectious
disease data, and the prediction error results are better than other methods. As can be seen
from Figure 9, the RMSLE value of STAGCN model is 8.59%, 7.76% and 12.30% lower than
that of STAGCN model, respectively.
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In order to verify the improvement effect of our model, we conducted model ablation
experiment, controlled other network layers to remain unchanged, and deleted a specific
network layer to observe the prediction accuracy of the model. The results are shown in
Table 4 and Figure 10.

It is obvious from the chart that the prediction effect will decline in varying degrees
after removing the Attention layer or GAT layer in the model. The model error of STAGCN
proposed by us is the smallest. Therefore, the attention mechanism and GAT introduced
can better improve the prediction accuracy of the model.

Finally, our STAGCN model is used to fit the infectious disease data set. From Figure 11,
it can be seen that the fitting effect of the model is obviously better than that of other models.
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Table 4. This is a table as error evaluation comparison of model ablation.

Period Evaluate
Models

STAGCN without
Attention

STAGCN
without GAT STAGCN

5 days RMSE 17.87 18.31 16.67
RMSLE 1.8366 1.9059 1.7015

10 days RMSE 18.78 18.84 18.71
RMSLE 1.9907 2.0192 1.9251

15 days RMSE 19.38 19.57 18.93
RMSLE 2.1290 2.2026 2.0515
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In addition to the above analysis of the experimental results, this paper starts with
several problems that can best reflect the scenario of infectious disease prediction task, and
gets the benchmark list for analysis and display.

The points listed in the table are the most relevant to the method of this paper, and
they are the key points that need to be faced and dealt with in the task of infectious disease
prediction. The first is the time evolution characteristics. In recent years, most of the
research on the prediction of infectious diseases has focused on this point. ARIMA and
LSTM have better time series performance. Papers [24,25,27,28] all use time series data
to improve or compare ARIMA and LSTM to predict the growth trend and mortality of
infectious diseases in the future, without paying attention to the spatial factors of infectious
disease transmission. The second is the spatial characteristics. The spatial transmission
characteristics of infectious diseases have great research value and practical significance.
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Therefore, as shown in article [29], the author improved the spatial generalized linear
mixed model, and got the spatial-temporal prediction model, simulating the predicted
quantity, and getting the influence of spatial diffusion. In article [30], the author constructed
the model according to the spatial-temporal characteristics of the number of infected
people, which was used to predict and allocate emergency medical resources. On the basis
of temporal and spatial characteristics, we should further consider the importance and
influence of different spatial characteristics. For example, in the paper [31], the author
constructed and trained the spatial-temporal model based on Bayesian hierarchical spatial-
temporal SEIR model, which predicted the spread of illness and death and the spatial-
temporal variability in small areas of Britain, pointed out the key factors, and put forward
valuable suggestions for regional prevention and control.

As shown in Table 5, the content of comparison is based on whether the compared
works cover the questions raised, with 25 score for each point, totaling four points. Com-
pared with ours, Benchmark#1 [27] only covers one point, and Benchmark#2 [28] and
Benchmark#3 [30] cover only two points, while our work covers all.

Table 5. Benchmark list.

Comparison Point Benchmark#1 [27] Benchmark#2 [28] Benchmark#3 [30] Proposed

Handling time series data √ √ √ √

Handling space series data × √ √ √

Considering the impacts of
different features × × × √

Considering the complex data × × × √

Score 25 50 50 100
Difference 75 50 50 /

4. Interpretability Analysis

It can be seen from that the experimental results show the good performance of the
model, but due to the black box nature of the deep learning model, we have no way to know
what role the data features play in the prediction process and how much contribution they
make. Theoretically, the adjacency matrix e of correlation strength between regions can well
reflect the spatial characteristics, and it should make a great contribution to the prediction
results. However, we cannot try to analyze its interpretability. The reason is that the data
characteristics of the matrix are obtained through the transformation of the original data,
which cannot represent the real meaning of the original data characteristics, and the object
of interpretability analysis needs to have real physical meaning. Luckily, the characteristics
of migration index in the original data—the indicators of daily migration from other
cities to or from other cities to other cities have the same spatial relevance. Therefore,
our interpretable analysis of different migration indexes can provide some reference for
relevant departments and contribute to the prevention and control of the epidemic.

4.1. Influence Weight of Each Migration Index of the Sample

By calculating the influence weight of each migration index on the prediction results
of the model, the contribution degree and importance ranking of the index are obtained, so
as to analyze how it affects the final results. We first calculate the contribution weight of
each migration index of a single sample by using Shapley additive explanations (SHAP)
method [32], and then observe the influence of migration index on the overall sample.

Taking A as an example, the meaning of each migration index is given, as shown in
Table 6.
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Table 6. Meaning of each migration index (city A).

Parameters Quantity

AtoB Migration index from city A to city B
AtoC Migration index from city A to city C
AtoD Migration index from city A to city D
AtoE Migration index from city A to city E
BtoA Migration index from city B to city A
CtoA Migration index from city C to city A
DtoA Migration index from city D to city A
EtoA Migration index from city E to city A

4.1.1. Impact Analysis of Each Migration Index of a Single Sample

The impact of each migration index of city a on the prediction results of the model on
the 15th day is shown in Figure 12. The average value of 39.04 output from the model is
positively pushed up by BtoA, DtoA and other migration indexes, and inversely pulled
down by AtoE and CtoA migration indexes. After a series of positive and negative pro-
motion of migration index, the predicted value 59 of the sample is finally output, that is,
the number of new infections on that day. The results show that each migration index has
different contribution to the prediction results of the model, and promotes the prediction
results of the model from the forward and reverse.
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We calculate the specific SHAP value of each migration index for this sample, and
more clearly observe the process of each migration index driving the prediction results of
the model forward and backward, as well as the contribution ranking of each migration
index, as shown in Figure 13. It can be seen intuitively that the migration index BtoA has
pushed up the predicted value by 29.8, indicating that the number of newly infected people
in City A on the same day is greatly affected by the migration of population in City B. We
can appropriately increase the detection intensity of personnel input in City B, control the
gate of City B, limit the outflow of people, reduce unnecessary personnel flow and reduce
the risk of infectious disease infection. Therefore, the monitoring intensity and personnel
arrangement can be adjusted appropriately, and resources can be allocated reasonably to
improve the ability of controlling infectious diseases.
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4.1.2. Impact Analysis of Each Migration Index of a Single Sample

As shown in Figure 14. Taking AtoE as an example, the SHAP value corresponding to
its smaller value is in the positive range, that is, the prediction result of the model is pushed
forward. The larger value will make the corresponding SHAP value in the negative range,
which will reverse the prediction result of the model. This analysis result is in line with
practical significance. When the number of people moving out of City A to City E is large,
the number of people in City A will be reduced, so the incidence of infectious diseases in
City A will be reduced. Similarly, the CtoA is analyzed and explained.
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Figure 14. The distribution of input variables affecting the predicted value of the model output (each
color point corresponds to the input migration index, the feature value of the vertical axis represents
the value of the migration index, and the color represents its value). If the color is blue, it means its
value is small, and if the color is red, it means its value is large. The horizontal axis represents the
SHAP values of different input variables.

The CtoA distribution in Figure 14 shows that the value corresponding to the small
distribution mainly focuses on the interval of negative numbers, that is, the small value
of CtoA will reverse the prediction results of the model. It is also in line with the actual
situation, that is, when the number of people moving from City C to City A is small, the
number of infected people in city a will be reduced accordingly. According to the above
analysis, it is concluded that reducing the flow of people from City C to City A can reduce
the incidence of infectious diseases in City A.
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4.2. Analysis on the Dependence and Interaction of Migration Index

The dependence analysis of migration index can analyze the linear or nonlinear
correlation between them to some extent through the calculation of the dependence between
the model prediction results and characteristics. The interaction analysis of infectious
diseases can analyze the relationship between different migration index combinations from
the perspective of variables and understand the interaction between them. These methods
provide a new analysis scheme for the prediction of infectious diseases, and provide the
basis and explanation for the prediction of the development trend of infectious diseases in
a more comprehensive way.

4.2.1. The Dependence Analysis of Migration Index

The dependence of migration index is analyzed by using partial dependence graph
method and individual period conditional expectation. Partial dependency graph mainly
analyzes how the input features affect the model prediction, and can show the different
relationships between the model prediction results and features, including linear, nonlinear
or more complex mapping. The principle of individual conditional expectation is mainly
to calculate the dependence between the prediction result of the model and a character-
istic variable in each sample. It is a global method. It draws the dependence between
the prediction results of the model and a certain feature in the sample in a visual way.
Different from the average value of the partial dependence diagram, each sample is a
row, which can more intuitively see the dependence between the prediction results and
the characteristic variables of different samples. Taking the migration indexes CtoA as
examples, the dependence between the model prediction results and CtoA is analyzed by
using the partial dependence diagram method, as shown in Figure 15. It can be seen that
when CtoA is in the range of [0.10, 0.25], it will slowly promote the increase of the number
of infected people, and then it will not have a significant impact on the increase of the
number of infected people. The above dependency analysis is helpful to set the threshold
of population migration index between different cities and reduce the risk of sustained
epidemic of infectious diseases.
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The individual conditional expectation method is used to analyze the dependence
between the model prediction results and AtoE. The results are shown in Figure 16. It can
be seen that when AtoE falls in the range of [0.00, 0.04], the corresponding number of new
infections will have a slight upward trend. When it falls in the range of [0.04, 0.05], the
corresponding number of new infections will have a significant downward trend, and the
number of new infections will stabilize in a numerical range. This is basically consistent
with the previous prediction results of the model using the partial dependency graph
method and the dependency analysis results of AtoE. The dependence analysis based on
the above interpretable methods visualizes the dependence between the prediction results
of the model and the migration index, and improves the reliability of the prediction results
of infectious diseases.
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4.2.2. Interactive Analysis of Migration Index

We use the SHAP method to calculate the interaction value, which refers to the
interaction attribution value between features, and mainly extract the interaction effect
between each feature. Take AtoE and CtoA migration index as the basic object of interactive
analysis, and introduce DtoA as another interactive analysis object. The results are shown
in Figure 17. Taking AtoE as an example, when the corresponding value is in the interval
[0.04, 0.06], the greater the value of DtoA, the corresponding shake interaction value will
increase accordingly, which will push up the prediction results of the model. In practice,
this interaction relationship can be expressed as that when the number of people moving
out of City A to City E is within a certain range, the more people moving in from City D to
City A, the number of new infections in City A will increase, and the two characteristics
have a certain interaction.

In addition, we can describe the interaction between two migration indexes through
the thermodynamic diagram, as shown in Figure 18. It can be seen from the figure that
AtoE has strong interaction with AtoB, CtoA and EtoA, while it has weak or no obvious
interaction with DtoA, BtoA and AtoD. This way of showing the interaction between the
characteristics of infectious diseases by means of thermal map can intuitively view the
relationship between different characteristics, which is conducive to the interpretability
analysis of the prediction results of the model.



Symmetry 2022, 14, 1064 18 of 20Symmetry 2022, 14, x FOR PEER REVIEW 18 of 20 
 

 

 
 

(a) (b) 

Figure 17. (a) is the SHAP interaction value between AtoE, CtoA; (b) is the SHAP interaction value 
between AtoE and DtoA. 

In addition, we can describe the interaction between two migration indexes through 
the thermodynamic diagram, as shown in Figure 18. It can be seen from the figure that 
AtoE has strong interaction with AtoB, CtoA and EtoA, while it has weak or no obvious 
interaction with DtoA, BtoA and AtoD. This way of showing the interaction between the 
characteristics of infectious diseases by means of thermal map can intuitively view the 
relationship between different characteristics, which is conducive to the interpretability 
analysis of the prediction results of the model. 

 
Figure 18. The interaction thermodynamic diagram between two migration indexes. 

5. Conclusions 
Our data set is very comprehensive, covering almost a series of characteristics that 

lead to the spread of the virus. Based on this, our model takes into account the temporal 
and spatial characteristics, and uses attention mechanism to enhance the model’s attention 
to important characteristics, thus improving the prediction level of the number of infected 
people from all aspects of data and methods, according to the results of the experiments, 

Figure 17. (a) is the SHAP interaction value between AtoE, CtoA; (b) is the SHAP interaction value
between AtoE and DtoA.

Symmetry 2022, 14, x FOR PEER REVIEW 18 of 20 
 

 

 
 

(a) (b) 

Figure 17. (a) is the SHAP interaction value between AtoE, CtoA; (b) is the SHAP interaction value 
between AtoE and DtoA. 

In addition, we can describe the interaction between two migration indexes through 
the thermodynamic diagram, as shown in Figure 18. It can be seen from the figure that 
AtoE has strong interaction with AtoB, CtoA and EtoA, while it has weak or no obvious 
interaction with DtoA, BtoA and AtoD. This way of showing the interaction between the 
characteristics of infectious diseases by means of thermal map can intuitively view the 
relationship between different characteristics, which is conducive to the interpretability 
analysis of the prediction results of the model. 

 
Figure 18. The interaction thermodynamic diagram between two migration indexes. 

5. Conclusions 
Our data set is very comprehensive, covering almost a series of characteristics that 

lead to the spread of the virus. Based on this, our model takes into account the temporal 
and spatial characteristics, and uses attention mechanism to enhance the model’s attention 
to important characteristics, thus improving the prediction level of the number of infected 
people from all aspects of data and methods, according to the results of the experiments, 

Figure 18. The interaction thermodynamic diagram between two migration indexes.

5. Conclusions

Our data set is very comprehensive, covering almost a series of characteristics that
lead to the spread of the virus. Based on this, our model takes into account the temporal
and spatial characteristics, and uses attention mechanism to enhance the model’s attention
to important characteristics, thus improving the prediction level of the number of infected
people from all aspects of data and methods, according to the results of the experiments,
we can see the best accuracy and the smallest error compared with other time or spatial-
temporal series models.

Through our research, it is proved that spatial characteristics have an important
influence on epidemic prevention and control, and how to effectively reduce spatial mobility
is the key to reduce the number of infected people. Therefore, through interpretable analysis
of migration index, we pointed out the direction and suggestions for spatial prevention
and control from the perspective of scientific analysis, and provided scientific guarantee
for perfecting the epidemic prevention and control management mechanism.
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However, our method still has some shortcomings. From the data point of view, we do
not take into account the incubation period of the virus and the special migration situation
in various holidays. Methodologically, we only applied the attention mechanism to the
characteristics of time dimension, but the more important migration matrix did not do this,
and could not get the arrangement of urban areas with serious epidemic situation. In the
future, we will improve from these two directions to further optimize the forecasting ability.
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