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Abstract: Glass fiber-reinforced polymer- (GFRP-) packaged optical fiber (OF) sensors are considered
a promising engineering-suitable sensor for structural health monitoring. To date, some critical
characteristics of the GFRP-packaged OF (GFRP-OF) sensors have not yet been thoroughly studied.
This study aimed to systematically characterize the properties of the GFRP-OF sensors. Firstly, we
proposed a dimension optimization method for GFRP-OF sensors by strain transfer theory, which
is based on a symmetrical three-layered cylindrical model. Then, we experimentally investigated
the properties of the GFRP-packaged fiber Bragg grating sensor and GFRP-packaged distributed
optical fiber sensor, including their mechanical properties, strain/temperature sensing performance,
fatigue resistance, and corrosion resistance. The experimental results showed that the shear bearing
capacity of GFRP-OF sensors was more than 120 times larger than that of the other three coated
OF sensors, indicating that GFRP dramatically enhanced the robustness of the OF sensor. The
GFRP–OF sensors also feature excellent strain and temperature sensing performance with high
linearity and repeatability. The results also demonstrated that the GFRP–OF sensors have good
fatigue properties with absolute fluctuations of strain sensitivity coefficients throughout the fatigue
cycles within 0.02 pm/µε; repeatability error did not exceed 0.5%, and nonlinear errors were less
than 2%. A case study presented in the last section also illustrates the effectiveness of the GFRP-OF
sensor in a field application.

Keywords: optical fiber sensor; property characterization; engineering-suitable; glass fiber-reinforced
polymer; symmetric package

1. Introduction

Optical fiber was one of the most important inventions in the late 20th century. It was
initially utilized in signal transmission. Subsequently, various optical sensing techniques
based on optical fibers became available, such as fiber Bragg gratings (FBG) [1], Fabry–
Perot [2], distributed Brillouin optical time-domain analysis (BOTDA) [3–5], Brillouin
optical time-domain reflectometry (BOTDR) [6,7], Brillouin optical correlation-domain
reflectometry (BOCDR) [8], and distributed acoustic sensing (DAS) [9]. Since optical fiber
(OF) sensors have some excellent advantages such as electromagnetic resistance, small size,
corrosion resistance, and so forth, they have been applied to measure strain, temperature,
pressure, vibration, etc., for structural health monitoring purposes in civil engineering
fields [10–19].

However, due to the bare OF sensors’ fragility, it is rather challenging to install them
in civil structures, usually in rough construction conditions and harsh environments. So,
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the bare OF sensors need to be packaged properly to ensure they are robust enough and
function well in long-term structural health monitoring. Various materials, mainly metal,
high-molecular polymer, and fiber-reinforced polymer (FRP), have been used for packaging
OF sensors. Metallic materials such as stainless steel, aluminum, copper, and titanium
alloys have been investigated to package OF sensors through an adhesive interlayer [20–24].
However, metal-packaged OF sensors have suffered from the plasticity and corrosion of
metal materials as well as the creep and aging characteristics of the adhesive interlayer,
resulting in a small measurement range (less than 2000 µε) and deficiencies in durability,
linearity, and repeatability [25,26]. OF sensors packaged by high-molecular polymers have
many advantages, such as small size, light weight, anti-corrosion properties, etc. [27–29].
However, the polymer materials that are used for packaging OF sensors are mostly a
class of polymers with low modulus, such as rubber, polyurethane, etc. The modulus of
these materials generally ranges from a few megapascals to a few hundred megapascals,
while the modulus of optical fiber is as high as 72 GPa. The large difference in modulus
between the optical fiber and the encapsulated material will cause a high strain transfer
loss [26]. Moreover, the polymer’s aging characteristics and viscoelastic effect will affect the
polymer-packaged OF sensors’ service life and measurement stability [27], thus seriously
restricting their applications in long-term monitoring.

With the development of glass fiber-reinforced polymer (GFRP) for practical infras-
tructure, GFRP has become a popular construction material because of its high strength,
high durability, whole process pseudoelasticity, corrosion resistance, and fatigue resistance.
Moreover, the quasi-elastic constitutive relation of FRP materials is linear to 15,000 µε, so it
is a good candidate as a packaging material for OF strain sensors. Many GFRP-packaged
OF (called GFRP-OF) sensors, including GFRP-packaged FBG (called GFRP-FBG) and
GFRP-packaged distributed OF sensors (called GFRP-DOF), have been widely studied and
successfully used in practical applications [30–35]. These studies have confirmed that the
GFRP-packaged OF sensors have many advantages: high shear strength, corrosion resis-
tance, easy installation, high viability, etc. However, previous studies mainly focused on
the fabrication method of GFRP-OF sensors and their application effects in various practical
projects. There are still some critical characteristics of the GFRP-OF sensors that have not
yet been thoroughly studied. For instance, the thickness of the package layer affects the
strain transfer efficiency of the sensors [26]. How to determine the reasonable packaging
thickness of GFRP-OF by mechanical analysis to achieve high strain transfer efficiency? In
addition, some mechanical properties and sensing characteristics of the GFRP-OF sensors
(shear performance, strain measuring range, temperature and strain characteristics, etc.),
especially their long-term fatigue performance, have not been systematically studied. These
issues are related to the optimal design, fabrication, and installation methods of the sensors
and their long-term monitoring performance, so further research is still needed.

This study introduces a GFRP-OF sensor fabrication method and proposes a dimen-
sion optimization method for GFRP-OF sensors based on strain transfer theory. In addition,
the characterization of GFRP-OF sensors, including their ruggedness, strain, temperature
sensing properties, fatigue resistance, and corrosion resistance were systematically investi-
gated. A case study was also presented to show the effectiveness of the GFRP-OF sensor
for long-term structural health monitoring in a field application.

2. Materials and Methods
2.1. GFRP-OF Sensor and Its Dimensional Optimization

The GFRP–OF sensor consists of a GFRP rod and built-in FBG or DOF sensors arranged
along the rod’s central axis (as shown in Figure 1). Based on this packaging structure, with
the characteristics of high strength, high durability, and corrosion resistance of GFRP, the
embedded FBG or DOF sensing elements can be well protected by GFRP, thus significantly
enhancing the robustness of these OF sensors.
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Figure 1. GFRP-OF sensors: (a) schematic drawing; (b) photo.

The GFRP-OF sensor is expected to be robust enough to resist harsh construction
and service environments in civil engineering applications. However, it introduces an
intermediate layer with different material properties between the OF sensor and the host
material. resulting in the measured deformation of the host material smaller than the
actual value due to the strain transfer loss [25,26]. Proper geometric dimensions are to be
determined by strain transfer analysis to reduce the strain transfer loss and improve the
accuracy of the GFRP-OF sensor. According to reference [26], a three-layered cylindrical
model for the strain transfer analysis can be established, as shown in Figure 2. The radii of
the OF sensor and GFRP layer are rof and rfrp, respectively. The Young’s modulus of is Eof,
and the longitudinal shear modulus of GFRP is Gfrp.
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Following reference [36], the relationships of strains between the host material and OF
sensor are theoretically deduced as:

εof(x) = εh ×
[

1 − sin h(βx)
sin h(βLof)

]
− Lof ≤ x ≤ Lof (1)

where εh and εof are strains of the host matrix and OF sensor, respectively.
The measured values of the OF sensor are the average strain in its gauge length, so the

average strain transfer coefficient (α) of the OF sensor, which explains the strain transfer
ratio, is defined as:

α =
εof
εh

=

∫ Lof
0 εof(x)dx

Lof
/

∫ Lof
0 εh(x)dx

Lof
= 1 − cos h(βLof)− 1

βLofsinh(βLof)
(2)
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where εh and εof are the average strains of the host matrix and OF sensor, respectively.
According to the physical meaning of the strain transfer coefficient, its reciprocal can

be defined as the modified factor k. The measured strain of the GFRP-OF sensor can be
corrected by multiplying the modified factor with the measured strain to reduce the strain
transfer error. The modified factor k can be expressed as,

k =
1

1 − η
(3)

Define the ratio of the error between the strain of the host matrix and the measured
strain of the OF sensor to the strain of the host matrix as the strain transfer error coefficient
η, which can be obtained as below:

η =
εh − εof

εh
= 1 − α =

cos h(βLof)− 1
βLof sin h(βLof)

(4)

where, β is the characteristic value of strain transfer rate.

β2 =
2Gfrp

Eofr2
of ln

rfrp
rof

(5)

Equations (2) and (5) show that the strain transfer rate of the GFRP-OF sensor highly
depends on the material properties (E and G) and radius (r) of the GFRP and OF sensor.
When the type of optical fiber is selected, the modulus of the optical fiber is constant. Thus,
only the longitudinal shear modulus and radius of the GFRP would affect the strain transfer
rate of the GFRP-OF sensors. Parametric studies on the longitudinal shear modulus and
radius of the GFRP were performed to determine the strain transfer rate for measurement
error correction. Table 1 lists the values for the parameters used in the parametric study.

Table 1. Material and geometrical parameters of the strain transfer model.

Description Symbols Values Unit

Young’s modulus of optical fiber Eof 7.2 × 1010 Pa
Radius of optical fiber rof 6.25 × 10−5 m

Longitudinal shear modulus of GFRP Gfrp 1 × 109~10 × 109 Pa
Thickness of GFRP rfrp 0.001~0.01 m

Half of the gauge length Lof 0.01 m

Figure 3a shows the strain transfer error as a function of the longitudinal shear modu-
lus of GFRP. The strain transfer error monotonically increases in general with the decrease
in the longitudinal shear modulus of GFRP. Thus, a higher longitudinal shear modulus of
GFRP yields minor strain transfer error, resulting in more accurate measurement. Figure 3b
shows the strain transfer error changing with the GFRP thickness ranging from 1 mm to
10 mm. A smaller radius of the packaged GFRP introduces minor strain transfer error.
Therefore, to obtain a GFRP-OF with a higher strain transfer rate, theoretically, a GFRP
with higher shear strength should be used to package OF sensors, and the diameter of
the GFRP-OF should be designed as small as possible. However, both shear strength and
diameter will affect the robustness of GFRP-OF. Specifically, the smaller the diameter is,
the worse the robustness of the GFRP-OF is. Thus, the determination of diameter should
seek a balance between strain transfer efficiency and robustness. As can be seen from
Figure 3, when the GFRP-OF has a longitudinal shear modulus within 3 GPa to 9 GPa and a
radius between 1 mm and 10 mm, the GFRP-OF sensors have a less than 5% strain transfer
error, which can be considered to meet measurement accuracy requirements in most cases.
While higher measurement accuracy is needed, the correction factor can be calibrated after
fabricating the GFRP-OF sensors following Equations (3) and (4).
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2.2. Fabrication of the GFRP-OF Sensor

The GFRP-OF sensor is fabricated by integrating a bare standard single-mode OF
sensor with GFRP in the process of making a GFRP bar, which is usually made by a
pultrusion technique. Pultrusion is a continuous, cost-effective manufacturing process
for producing composite structures with constant cross-sections [37,38]. Figure 4a shows
a schematic representation of the process. During the pultrusion process, unidirectional
roving glass fibers with an OF sensor are pulled through a resin impregnation bath, where
the OF sensor goes through a pre-designed hole in the middle of the splitting plate and
emerges into the roving glass fibers through a combiner plate. The roving fibers and OF
sensor become impregnated with resin and are later pulled through a heated die. Once
the impregnated fibers enter the heated die, the cross-linking process of the resin begins.
Herein, the optimum parameters for the best cross-linking will depend on the pulling speed
and the temperature gradient inside the die. As they are pulled through the die, the resin
gradually polymerizes, and the fibers and resin copy the cylindrical shape of the given die.
The bar exits the die once the resin is cured. Subsequently, the composite bar will be cut to
the desired length by a saw system at the end of the process line.

In this work, two types of sensors, FBG and DOF sensors, were embedded into the
GFRP bar, thus, developing GFRP-FBG and GFRP-DOF, respectively. The former can be
used for local measurements with high accuracy, while the latter can measure a full-scale
distributed measurement with long distances. GFRP-FBG or GFRP-DOF sensors with a
diameter of 5 mm were manufactured using the pultrusion machine (HB/LJ202, Harbin
Composite Material Equipment Development Co., Ltd., Harbin, China) at the Zhixing Tech-
nology Nantong Co., LTD (Nantong, China) facility. In the pultrusion process, 86 threads
of unidirectional 312T rovings with a nominal linear density of 9600 TEX (9600 g/1000 m)
made by China Jushi Co., Ltd. (Tongxiang, China) were utilized as reinforcement. The
matrix was Derakane 411-350 epoxy vinyl ester resin made by INEOS Group Holdings
(Rolle, Switzerland). The embedded bare FBG and DOF were made by Luna Innovations
Corporation (Roanoke, VA, USA) and Corning Inc. (New York, NY, USA), respectively. The
pulling speed was set as 150 mm/min, and the die block temperature was controlled at
200 ± 5 ◦C by measuring the temperature using two thermocouples within the body of the
die block.

Figure 4b shows the prototype of the GFRP-OF sensor. Figure 5a,b show the SEM
images of the GFRP-OF sensor. The bare OF sensor and GFRP were observed to be bonded
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together very well, indicating that the OF and GFRP are very compatible. That is, they have
excellent cooperative deformation ability.
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2.3. Experimental Program

A series of tests were conducted to fully investigate GFRP-OF sensor characteristics
that are closely related to engineering applications, including the fundamental mechanical
properties, strain and temperature sensing properties, fatigue properties, and corrosion
resistance properties. The experimental descriptions follow.

2.3.1. Mechanical Tests

GFRP-OF sensors’ ruggedness was evaluated by shear strength and ultimate tensile
strain and compared with bare OF, polyimide-coated OF, and carbon-coated OF. The details
of the tested OF sensors are shown in Table 2 for the sensor size and supplying companies.

A universal testing machine, WDW-100E (Shidai Shijin Testing Machine Co., Ltd.,
Jinan, China), provided the material testing equipment and software to complete the
shear test on the GFRP-OF sensors shown in Figure 6a. The tests were carried out by the
process and methods of national standards of P.R.C., “Fiber-reinforced plastic composites—
Determination of shear strength” (GB/T 1450.1-2005). For the SMF28 bare OF, polyamide-
coated OF, and carbon-coated OF, a small cutter was designed to test the shear strength
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of these thinner coated OFs, as shown in Figure 6b. The cutter consisted of a slot formed
by two steel blocks, a thin aluminum edge, and a long pole used for weight transfer and
adjustment. The shear force carried by the OF sensors can be calculated using the controlled
weight. During the tests, the coated OF were laid across the slot, and the two ends were
fixed using glue. Then, the weights were put in the plate step by step until the coated
OF was broken. For a statistically valid measurement, more than 20 samples were tested
for each type of coated OF, and the average shear strength of the 20 samples was used to
perform the comparison. In addition, the maximum and minimum measured shear strength
was removed from the sample data to calculate the average strength for higher reliability.

Table 2. OF sensors used for ruggedness characterization.

No Type of OF Sensor Coating/Packaging Material Dia. (mm) Company

1 SMF28 bare OF UV Acrylics 0.25 Corning Inc. (New York, NY, USA)
2 Polyimide-coated OF Polyimide 0.17 T&S Communications LTD (Shenzhen, China)
3 Carbon-coated OF Carbon 0.17 OFS Fitel, LLC (Norcross, GA, USA)

4 GFRP-packaged OF GFRP 5.00 Harbin Tide Science & Technology Inc.
(Harbin, China)
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For the ultimate tensile strain, Figure 7a shows the device designed to test the ultimate
tensile strain of the GFRP-OF. The device consists of a steel reaction frame, a pressure
transducer, and a hydraulic jack that provides the tensile load. The tension on the GFRP-
OF was measured by the extensometer and BOTDA system (DiTeSt STA202, Omnisens,
Lausanne, Switzerland). The used BOTDA system has a spatial resolution of 0.5 m, a strain
measurement accuracy of ±10 µε, and a temperature measurement accuracy of 1 ◦C. The
GFRP-OF was loaded gradually till failure. Figure 7b shows the designed loading device
for all other coated OFs (the SMF28 bare OF, polyamide-coated OF, and carbon-coated OF).
The coated OFs were fixed on the two rolling ends by glue at a given gauge, and they could
be extended along with controlled rolling displacement till failure. The strain could be
calculated based on the recorded displacement, in addition to strain measurements by the
BOTDA system.

2.3.2. Strain and Temperature Sensing Tests

Laboratory tests were performed to investigate the strain and temperature sensing
characteristics of GFRP-FBG and GFRP-DOF sensors. The tested GFRP-FBG had a diameter
of 5 mm with a gauge length of 10 cm, and the GFRP-DOF sensors had a gauge length of
1 m with the same diameter as the GFRP-FBG. The wavelength changes of the GFRP-FBG
were recorded by an FBG interrogator (SM130, Micron Optics, New York, NY, USA). The
Brillouin frequency of the GFRP-DOF was demodulated using a BOTDA system (DiTeSt
STA202, Omnisens, Lausanne, Switzerland).

The tensile tests of the GFRP-FBG were conducted on a universal testing machine
(WDW-100E, Shidai Shijin Testing Machine Co., Ltd., Jinan, China), and an extensometer
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was mounted on the test specimens to provide the reference strain values, as shown in
Figure 8 for the test setup. For the GFRP-DOF, the specimen was tested using a reaction
frame, as shown in Figure 7a. The load was provided by a hydraulic jack and was divided
into six loading steps of 200 µε for each step. Three loading cycles were repeated. BOTDA
was configured to acquire the Brillouin frequency with a sweep frequency range from 10.8
to 11.2 GHz at 0.5 m spatial resolution and 0.1 m readout resolution.
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A laboratory test was conducted to investigate the temperature sensing properties of
GFRP packaged OF sensors. Both the GFRP-FBG and GFRP-OF sensors were placed in a
thermostatic water bath (HH-600, Jintan Youlian Instrument Research Institute, Changzhou,
China), as shown in Figure 9. The thermostatic water bath had a temperature resolution of
0.1 ◦C and a temperature controlling accuracy of ±1.0 ◦C. During the test, the temperature
was raised from 0 ◦C to 60 ◦C with an increasing step of 5 ◦C. The initial water temperature
was set to 0 ◦C, which was achieved by placing ice cubes in the thermostatic water bath.

2.3.3. Fatigue Test

A fatigue performance test with a test frequency of 10 Hz was performed to investigate
the long-term sensing performance of the GFRP-FBG sensor under cyclic loading. The
samples were tested using the fatigue testing machine MTS-810 (MTS Systems Corporation,
Eden Prairie, MN, USA), as shown in Figure 10. The test was carried out by the process and
methods of national standards of P.R.C., “Test method for fatigue properties of polymer
matrix composite materials” (GB/T 35465-2020). In the test, the stress concentration at
the clamping device would seriously affect the fatigue performance of the specimens. To
reduce the influence of the clamping device on the test results of GFRP-FBG, the GFRP-FBG
was clamped on the fatigue testing machine by an extrusion anchorage with a length of
80 mm and outer diameter of 25 mm. The anchorage consisted of a steel barrel and an
aluminum sleeve. Figure 11 shows that the anchorage can firmly grip the CFRP-FBG by
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exerting proper radial contact pressure generated from the extrusion process. An extrusion
region was designed on the outside of the barrel to generate a suitable contact pressure
distribution on the CFRP-FBG. Using the anchorage enabled avoiding the premature
failure of the specimen due to stress concentration during the test. More details about the
anchorage can be found in reference [39].
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In the test, the specimens were cyclically loaded by controlling strain. Five test condi-
tions with high strain amplitudes at 10,000 µε, 8000 µε, 7000 µε, 6000 µε, and low strain
amplitude at 2000 µεwere conducted to investigate the fatigue performance of the GFRP-
FBG. Three groups of specimens with a diameter of 5 mm were tested under each test
condition. The center wavelength responses from the GFRP-FBG sensor were recorded
using an FBG demodulator produced by Micron Optics with a wavelength resolution of
5 pm and a scanning frequency of 250 Hz.

Before the test, the tensile test was carried out to determine the initial performance
indexes of the GFRP-FBG, such as linearity, repeatability, and sensitivity. During the test,
the loading was suspended after each specific cycle (e.g., 100,000 and 200,000 times). The
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performance indexes of the GFRP-FBG were measured again by a tensile test, and then
the cyclic loading was continued. Under the higher cyclic strain, when the wavelength
of the GFRP-FBG indicated abnormal drift, anchor failure, or GFRP-FBG breakage, the
experiment was terminated, and the number of recorded cycles treated as the fatigue life of
the sensor. Under lower cyclic strain, the GFRP-FBG sensor may not experience fatigue
damage for a long time. Therefore, the test was terminated at 8,000,000 cycles. In this case,
it could be considered that the strain gauge had good fatigue resistance and was suitable
for long-term monitoring.
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2.3.4. Accelerated Corrosion Test

To verify the corrosion resistance, the GFRP-FBG sensor and metal-packaged FBG
sensor were tested in a salt-spray corrosion testing cabinet for 1 year, with a working
temperature of 35 ◦C and a salt spray of 3.5% NaCl solution, as shown in Figure 12.
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3. Results and Discussions
3.1. Characterization of the Mechanical Behavior of the GFRP-OF Sensor

Table 3 shows the measured shear strength and ultimate tensile strain results for all
tested OF sensors. It shows that the polyimide-coated OF had the highest shear strength,
while the common Corning SMF28 bare had the lowest. Although the shear strength of the
GFRP-OF was not the strongest, its ultimate shear force (i.e., shear bearing capacity) was
more than 120 times larger than that of the other three coated OF sensors. This was because
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the diameter of GFRP-OF was much larger than that of the other three coated OF sensors.
The results demonstrate that the robustness of the OF sensor was dramatically enhanced
after being packaged in GFRP with high strength properties. The strain measurement
range of the polyimide-coated OF was the largest, at 47,907 µε, and that of the GFRP-OF
was around 20,000 µε. Both the coated OF sensors and GFRP-OF had improved ultimate
strain values compared to the bare OF. However, the ultimate strain of bare OF was not
significantly increased after GFRP encapsulation because the ultimate elongation of GFRP
material was 1.2–3.1% [40].

Table 3. Test results for OF with different coating/packaging materials.

No. OF Type Coating/Packaging
Materials

Dia.
(mm)

Shear Strength (MPa) Shear Force (N) Ultra Strain (µε)

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

Mean
Value

Standard
Deviation

1 SMF28 bare OF UV Acrylics 0.25 67.04 3.76 3.29 0.22 17,500 693
2 Polyimide-coated OF Polyimide 0.17 278.31 9.83 6.31 0.53 47,907 1919
3 Carbon-coated OF Carbon 0.17 145.12 7.22 3.29 0.16 31,939 1710
4 GFRP-packaged OF GFRP 5.00 105.00 5.03 741.83 26.21 20,375 1261

3.2. Strain and Temperature Sensing Characterization

(1) Strain sensing

Figure 13a shows the test results for three loading cycles. The GFRP-FBG sensor
had a strain sensitivity of 1.28 pm/µε and showed good linearity with R2 equal to 0.999.
The strain sensitivity of the GFRP-FBG sensor was close to that of the bare FBG, which
was usually 1.2 pm/µε. The repeatability and linearity of the GFRP-FBG were all less
than 0.4%. Figure 13b shows the hysteresis performance and measurement range of the
GFRP-FBG sensor by loading–unloading cycles from 0 µε to the maximum strain. The
GFRP-FBG had a small hysteresis error of less than 0.3% and a strain measurement range
of more than 5000 µε.
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Figure 14 shows the measured Brillouin frequency shifts of the GFRP-DOF sensor
as a function of the applied strains. The R2 value for the linear regression line was
close to 1.0, indicating a good correlation. The strain sensitivity of the GFRP-DOF sen-
sor varied from 22.66 µε/MHz to 22.96 µε/MHz, with an average value of 22.7 µε/MHz
(i.e., 0.044 MHz/µε). This value is about 89.8% that of the Corning SMF28 bare optical
fiber (~0.049 MHz/µε) [41], which could be attributed to the strain transfer loss caused
by the GFRP packaging layer. It is evident from the plot that the GFRP-DOF response to
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strain was highly reproducible, resulting in only slight variations in strain sensitivity. This
highlights the excellent linearity and repeatability of the GFRP-DOF sensor.

Symmetry 2022, 14, x FOR PEER REVIEW 12 of 21 
 

 

  
(a) (b) 

Figure 13. Results of strain sensing test of GFRP-FBG: (a) sensitivity and (b) loading and unloading. 

Figure 14 shows the measured Brillouin frequency shifts of the GFRP-DOF sensor as 
a function of the applied strains. The R2 value for the linear regression line was close to 
1.0, indicating a good correlation. The strain sensitivity of the GFRP-DOF sensor varied 
from 22.66 με/MHz to 22.96 με/MHz, with an average value of 22.7 με/MHz (i.e., 0.044 
MHz/με). This value is about 89.8% that of the Corning SMF28 bare optical fiber (~0.049 
MHz/με)[41], which could be attributed to the strain transfer loss caused by the GFRP 
packaging layer. It is evident from the plot that the GFRP-DOF response to strain was 
highly reproducible, resulting in only slight variations in strain sensitivity. This highlights 
the excellent linearity and repeatability of the GFRP-DOF sensor. 

 
Figure 14. Results of strain sensing test of GFRP-DOF sensor. 

(2) Temperature sensing 
Figure 15 shows the measured center wavelength changes of the GFRP-FBG sensor 

with temperature changes. The temperature sensitivity of the GFRP-FBG was 17.22 
pm/°C, 1.84 times larger than that of the bare FBG sensor (~9.35 pm/°C). The GFRP-FBG 
enhanced the temperature sensitivity because the coefficient of thermal expansion of 
GFRP was more significant than the bare FBG. Figure 16 shows the test results for the 
GFRP-OF in temperature sensing. It had a temperature sensitivity of 0.82 °C/MHz (i.e., 
1.22MHz/°C), which was 1.23 times larger than that of the bare Conning SMF28 optical 
fiber (~0.99 MHz/°C) [41]. 

Figure 14. Results of strain sensing test of GFRP-DOF sensor.

(2) Temperature sensing

Figure 15 shows the measured center wavelength changes of the GFRP-FBG sensor
with temperature changes. The temperature sensitivity of the GFRP-FBG was 17.22 pm/◦C,
1.84 times larger than that of the bare FBG sensor (~9.35 pm/◦C). The GFRP-FBG enhanced
the temperature sensitivity because the coefficient of thermal expansion of GFRP was more
significant than the bare FBG. Figure 16 shows the test results for the GFRP-OF in tempera-
ture sensing. It had a temperature sensitivity of 0.82 ◦C/MHz (i.e., 1.22 MHz/◦C), which
was 1.23 times larger than that of the bare Conning SMF28 optical fiber (~0.99 MHz/◦C) [41].
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Figure 15. Results of temperature sensing test of GFRP-FBG.

3.3. Fatigue Property Characterization

Table 4 summarizes the test results for all of the specimens. The results were analyzed
from the following aspects.

3.3.1. Variation in the Center Wavelength with Fatigue Cycles

Figure 17 shows the example fatigue time–history curves for the F6-1 specimen. As
the fatigue cycles increased, the center wavelength curve did not show any obvious shift,
and it showed excellent consistency throughout the whole fatigue cycle. Table 4 shows
that the center wavelength variation values for all specimens were within 11 pm, which
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would cause an error of about 10 µε. The error was very small relative to the applied strain
amplitude. Therefore, it can be concluded that the GFRP-FBG has good stability.
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Table 4. Test results under different test conditions.

Test Conditions Strain Amplitude (µε) Specimen Number Fatigue Cycle Number
(10,000 Times)

Wavelength Variation (pm)
Mean Value Standard Deviation

Fatigue tests with
higher cyclic

strain

0~10,000
F10-1 1.9301 11 0.041
F10-2 4.3422 9 0.038
F10-3 2.2398 9 0.029

0~8000
F8-1 33.5210 7 0.017
F8-2 28.1386 10 0.033
F8-3 38.0440 8 0.031

0~7000
F7-1 78.9963 8 0.034
F7-2 95.4139 9 0.029
F7-3 128.1010 6 0.027

0~6000
F6-1 372.9284 8 0.027
F6-2 427.0311 3 0.009
F6-3 348.0035 7 0.019

Fatigue tests with
lower cyclic strain 0~2000

F2-1 800 5 0.013
F2-2 800 4 0.008
F2-3 800 7 0.022

3.3.2. Variation of Sensitivity, Repeatability, and Linearity with the Fatigue Cycles

After a certain number of fatigue cycles, tensile tests were performed to obtain the
strain-center wavelength curves for all GFRP-FBG specimens. Then, the sensitivity coeffi-
cient, repeatability error, nonlinear error, and other property indexes after different fatigue
cycles could be obtained to evaluate the fatigue performance of GFRP-FBG. Figure 18
plots the strain-center wavelength curves for the F8-1 specimen after 0, 100,000, 200,000,
and 300,000 cycles, respectively. It shows that the strain sensitivity of the GFRP-FBG,
varying from 0.985 to 1.009, was stable with minor changes after experiencing large num-
bers of fatigue cycles. The average sensitivity coefficients for each test condition after a
different number of fatigue cycles are plotted in Figure 19. It can be seen that the strain
sensitivity coefficients for all test conditions maintained good stability throughout the
fatigue cycles, with absolute fluctuations within 0.02 pm/µε and relative changes of less
than 2%. Figure 20 shows the variation curves for repeatability error with the number
of fatigue cycles, where the repeatability error under all test conditions did not exceed
0.5%. It indicates that long-term fatigue loading has a negligible effect on the repeatability
of the GFRP-FBG. The linearity was represented by the nonlinear error. Due to space
limitations, Figure 21 only shows the nonlinear errors of the F6-1 specimen after different
fatigue cycles. The results show that the nonlinear error only fluctuated slightly with the
increase in the number of cycles, and all nonlinear errors were less than 2%. In conclusion,
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the sensing property indexes such as sensitivity, repeatability, and linearity of GFRP-FBG
were less affected by long-term fatigue loading. This indicates that the GFRP-FBG has
excellent fatigue resistance characteristics and meets the long-term monitoring needs of
practical engineering.
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3.3.3. Prediction of Fatigue Life

Based on the data obtained from the tests, the strain-fatigue life curve (ε-N) of GFRP-
FBG was characterized by the power exponential cycle law, as shown in Figure 22. Ac-
cording to the fatigue life curve, the failure time of GFRP-FBG under different working
conditions could be predicted. It can be concluded that the fatigue life can reach more
than 4 million cycles when the cyclic strain amplitude is 6000 µε, and the expected fatigue
life will be longer when the cyclic strain is less than 6000 µε. The results indicate that the
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GFRP-FBG has excellent fatigue resistance and can fully meet the long-term monitoring
requirements for structures.
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3.4. Corrosion Durability Characterization

Figure 23 shows the results of the corrosion test. The metal-packaged FBG sensors
corroded significantly, while the GFRP-FBG still showed good performance after 1 year in the
corrosive environment. This indicates that the GFRP-FBG sensor has good corrosion resistance.
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4. Case Study

To test the effectiveness of the GFRP-FBG sensor for practical applications, a case
study was performed on the Aizhai bridge, Jishou city, Hunan province, China. The Aizhai
Bridge is a super long suspension bridge with separated towers and beams and a span
arrangement of 242 m + 1176 m + 116 m, as shown in Figure 24. A structural health
monitoring system was established to obtain readings for strain, temperature, acceleration,
deflection, wind velocity, cable force, and humidity. In this SHM system, four GFRP-FBG
sensors were used for strain and temperature measurements on the main beam and main
tower. Table 5 lists the technical parameters of the applied GFRP-FBG sensors. The data
acquired and processed by the FBG demodulator were transferred to the data receiving
server, in which the data could be retained, managed, and arithmetically processed. The
GFRP-FBG installed on the Aizhai bridge has been working well since October 2013, and
the strain measurements of one of the GFRP-FBGs are demonstrated in Figure 25. This case
study highlights that the GFRP-FBG is robust enough for practical application.
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Table 5. Monitoring items and technical parameters of GFRP-FBG sensors used in case study.

Object Monitoring Items GFRP-FBG Sensors
Frequency Accuracy Scale Numbers

Main-beam Steel strain 20 Hz 1 µε ±1000 µε 40
Main-beam Steel temperature 1 time/h 0.5 ◦C −20 ◦C~70 ◦C 15
Main-tower Concrete strain 20 Hz 1 µε ±1000 µε 8
Main-tower Concrete temperature 1 time/h 0.5 ◦C −20 ◦C~70 ◦C 8
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5. Conclusions

This study introduced a fabrication method for GFRP-OF sensors and proposed
a geometric dimensions determination method for GFRP-OF sensors based on strain
transfer theory. A series of tests were carried out to investigate the properties of the
GFRP-OF sensors, including their ruggedness, strain, temperature sensing properties,
fatigue resistance, and corrosion resistance. The following conclusions were obtained from
the study:

(a) The fabrication method for engineering-suitable GFRP-OF sensors was introduced in
detail, and the sensor was examined through SEM. According to the SEM images, the
interface between bare fiber and GFRP was well combined.
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(b) The strain transfer error of the GFRP-OF sensor is determined by the longitudinal shear
modulus and radius of the GFRP: a higher GFRP longitudinal shear modulus yields
minor strain transfer error, resulting in more accurate measurement, and a smaller
GFRP packaging radius introduces minor strain transfer error. Because the shear
strength and diameter will affect the robustness of the GFRP-OF, the determination
of diameter should seek a balance between strain transfer efficiency and robustness.
The strain transfer error is less than 5% for a GFRP-OF sensor with longitudinal shear
modulus in the range of 3–9 GPa and diameter in the range of 1–10 mm.

(c) After packaging, the high-strength GFRP dramatically enhanced the robustness of the
OF sensors; the shear bearing capacity of GFRP-OF sensors was more than 120 times
larger than that of the other three coated OF sensors. The GFRP-FBG and GFRP-DOF
had good strain and temperature sensing performance with high linearity, repeatability,
and less hysteresis. The GFRP-FBG also exhibited excellent fatigue resistance, with
absolute fluctuations of strain sensitivity coefficients within 0.02 pm/µε throughout
the fatigue cycles, repeatability error that did not exceed 0.5%, and nonlinear errors of
less than 2%, as well as good corrosion resistance.
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