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Abstract: The performance of the passing train and the structural state of the track bed are the
concerns regarding the safe operation of subways. Monitoring the vibration response of the track
bed structure and identifying abnormal signals within it will help address both of these concerns.
Given that it is difficult to collect abnormal samples that are symmetric to those of the normal state of
the structure in actual engineering, this paper proposes an unsupervised learning-based methodology
for identifying the abnormal signals of the track beds detected by the ultra-weak fiber optic Bragg
grating sensing array. For an actual subway tunnel monitoring system, an unsupervised learning
network was trained by using a sufficient amount of vibration signals of the track bed collected
when trains passed under normal conditions, which was used to quantify the deviations caused
by anomalies. An experiment to validate the proposed procedures was designed and implemented
according to the obtained normal and abnormal samples. The abnormal vibration samples of the
track beds in the experiment came from two parts and were defined as three levels. One part of it
stemmed from the vibration responses under the worn wheels of a train detected during system
operation. The remaining abnormal samples were simulated by superimposing perturbations in the
normal samples. The experimental results demonstrated that the established unsupervised learning
network and the selected metric for quantifying error sequences can serve the threshold selection
well based on the receiver operating characteristic curve. Moreover, the discussion results of the
comparative tests also illustrated that the average results of accuracy and F1-score of the proposed
network were at least 11% and 13% higher than those of the comparison networks, respectively.

Keywords: signal anomaly detection; subway track bed; distributed vibration; unsupervised learning
network; attention mechanism; ultra-weak fiber optic Bragg grating

1. Introduction

Generally speaking, in-service engineering structures are always in two symmetrical
operating states, normal and abnormal. Although the probability of occurrence of the
structural abnormal state is relatively low, tracking and monitoring the service status of
subway track beds before catastrophic accidents is of great significance to ensure the safe
operation of trains. The traditional inspection regime is usually labor-intensive and can
be significantly expensive for rail operation management [1]. Although various types of
rail inspection vehicles integrated with ultrasonic methods [2], eddy current [3], infrared
thermography [4], laser scanning [5], and other non-destructive testing equipment have im-
proved the efficiency of inspection, they still have difficulty meeting the frequent inspection
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needs of the entire subway line. The non-contact monitoring method based on machine
vision combined with diverse deep learning models has improved the intelligence of the
detection of track bed issues to a certain extent [6,7]. However, this approach needs to rely
on sufficient samples to perform supervised learning-based training. The performance
usually only meets the local detection, which is susceptible to the interior environment of
the subway tunnel.

By deploying the ultra-weak fiber optic Bragg grating (FBG) array cable along the track
bed in a subway tunnel, the structural vibration response caused by passing trains through
the monitoring area can be gleaned. Given the relationship between the vibration response
and the structural state, Li et al. [8] reported that the similarity of the vibration responses
detected by the ultra-weak FBG array cable can be utilized to evaluate the structural state of
the subway track bed. Gan et al. [9] presented that ground intrusion events above subway
lines can be located and identified based on distributed vibration responses of ultra-weak
FBG sensing arrays. Moreover, the research on train tracking and personnel intrusion
identification based on distributed vibration response also illustrated that the ultra-weak
FBG sensing array can effectively collect the vibration of the subway track bed [10]. Thus,
despite the asymmetry existing in the data amount collected for the abnormal and normal
states, it is possible to discover the security risks of the track bed or the passing train
by analyzing the abnormal vibration signal of the track bed structure monitored by the
ultra-weak FBG sensing array.

In the research area of abnormal signal detection, Tao et al. [11] completed the fault
detection of the wind turbine by using the gray correlation algorithm combined with
the support vector regression model. Qiu et al. [12] proposed that abnormal patterns of
vibration response of a real long-span cable-stayed bridge can be distinguished based
on statistical feature dimensionality reduction, forward difference data augmentation,
and random forest. Li et al. [13] designed a deep convolutional neural network to classify
and identify simulated damage signals for a scaled-down bridge model. Tang et al. [14]
proposed a data anomaly detection method based on a convolutional neural network
combined with a computer vision technique. Li et al. [15] discussed the degradation failure
detection for the mechanical equipment in a data-driven manner through deep neural
networks. Abid et al. [16] proposed a deep-SincNet-based learning network that was
able to automatically learn fault features from the motor current. However, the above-
mentioned studies primarily focus on the field of supervised learning, whose performance
depends heavily on the support of adequate and balanced samples with labels. Given the
complexity of accumulating a certain scale of anomalous signals with labels in practical
engineering, current supervised learning-based methods are often difficult to transplant
and apply directly, especially when the types of training samples are extremely asymmetric.

In the study of anomaly detection based on unsupervised learning, Hautamaki et al. [17]
employed the idea of the K-neighbor algorithm and used the average distance of each sample
to its K nearest sample points as a reference to discriminate abnormal samples. He et al. [18]
performed cluster-based anomaly detection with predefined outliers. Li et al. [19] conducted
anomaly detection for multivariate time series based on clustering through complex hy-
perparameter setting. Saari et al. [20] adopted the one-class support vector machine (SVM)
to model the density distribution of samples to determine whether the data was abnor-
mal. Zong et al. [21] completed the anomaly data detection based on a deep autoencoding
Gaussian mixture model (DAGMM), which was verified by four public benchmark datasets.
Purohit et al. [22] further extended the DAGMM method to anomaly detection in acoustic
signals. Pei et al. [23] proposed a method for network traffic anomaly detection through
self-coding of long short-term memory (LSTM) networks. Malhotra et al. [24] revealed that
the LSTM-based encode–decode can detect the abnormal data of the sensor. Although these
unsupervised learning-based methods have demonstrated their respective effectiveness in
specific scenarios, there are few research cases involving high-dimensional time series. Hence,
the existing methods reviewed may not be suitable for capturing the time dependence of
high-dimensional vibration signals of subway track beds.
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To address the previous research deficiencies, the motivation of this paper is to propose
a method for identifying abnormal vibration signals of track beds that does not rely on the
idea of supervised learning. During the implementation of the method, an unsupervised
learning network used to learn the features of normal vibration signals of subway track bed
structures in terms of the time-series correlation of vibration sequences was established.
Based on the designed network, it is possible to quantify the results of the predicted error
sequences due to abnormal input signals. Then, the identification of abnormal vibration
responses of track bed structures can be performed based on the appropriate threshold
derived from the quantification results. The experimental results of identifying abnormal
signals based on the proposed procedure in an actual subway were reported. The procedure
for identifying anomalous vibration sequences detected by the ultra-weak FBG array
makes up the second part of this paper, followed by the experimental details of the design
and arrangement used to validate the proposed method. Finally, the effectiveness of
identifying the target signals is assessed based on the accuracy and F1-score. Furthermore,
the performance superiority of the selected indicator used for quantifying prediction
error sequences and the proposed unsupervised learning network are discussed through
comparative tests.

2. Procedure for Abnormal Signal Identification

As shown in Figure 1, the proposed procedure for abnormal signal identification
primarily includes three steps: unsupervised learning network establishment based on
a training dataset of the normal state of the track bed, calculation quantification for predic-
tion errors, and the selection of a threshold for identifying anomalies. The premise of the
proposed procedure is that a large number of track bed vibration signals can be collected
when passing trains under normal conditions. Under this premise, an unsupervised learn-
ing network with satisfactory accuracy can be established for subsequent error calculation
and quantification. As well as that, it is easy to retain enough normal samples to participate
in setting the threshold for identifying anomalies.

Symmetry 2022, 14, x FOR PEER REVIEW 3 of 15 
 

 

dimensional time series. Hence, the existing methods reviewed may not be suitable for 
capturing the time dependence of high-dimensional vibration signals of subway track 
beds. 

To address the previous research deficiencies, the motivation of this paper is to pro-
pose a method for identifying abnormal vibration signals of track beds that does not rely 
on the idea of supervised learning. During the implementation of the method, an unsu-
pervised learning network used to learn the features of normal vibration signals of sub-
way track bed structures in terms of the time-series correlation of vibration sequences was 
established. Based on the designed network, it is possible to quantify the results of the 
predicted error sequences due to abnormal input signals. Then, the identification of ab-
normal vibration responses of track bed structures can be performed based on the appro-
priate threshold derived from the quantification results. The experimental results of iden-
tifying abnormal signals based on the proposed procedure in an actual subway were re-
ported. The procedure for identifying anomalous vibration sequences detected by the ul-
tra-weak FBG array makes up the second part of this paper, followed by the experimental 
details of the design and arrangement used to validate the proposed method. Finally, the 
effectiveness of identifying the target signals is assessed based on the accuracy and F1-
score. Furthermore, the performance superiority of the selected indicator used for quanti-
fying prediction error sequences and the proposed unsupervised learning network are 
discussed through comparative tests. 

2. Procedure for Abnormal Signal Identification 
As shown in Figure 1, the proposed procedure for abnormal signal identification pri-

marily includes three steps: unsupervised learning network establishment based on a 
training dataset of the normal state of the track bed, calculation quantification for predic-
tion errors, and the selection of a threshold for identifying anomalies. The premise of the 
proposed procedure is that a large number of track bed vibration signals can be collected 
when passing trains under normal conditions. Under this premise, an unsupervised learn-
ing network with satisfactory accuracy can be established for subsequent error calculation 
and quantification. As well as that, it is easy to retain enough normal samples to partici-
pate in setting the threshold for identifying anomalies. 

 
Figure 1. The proposed abnormal signal identification process. Figure 1. The proposed abnormal signal identification process.



Symmetry 2022, 14, 1100 4 of 16

Once the unsupervised learning network is established, the identification procedure
first requires data preprocessing on the retained normal dataset A and dataset B to be
evaluated. Each vibration sample X from dataset A or B will in turn undergo data aug-
mentation and normalization before being put into the unsupervised learning network.
Data augmentation is performed by directly dividing the original input signal into equal
subsequences. To eliminate the amplitude differences in the subsequences, each input from
data augmentation is normalized to a range of −1–1. In the first step, the predicted frame
x̃i+1 of the frame xi is obtained through the established unsupervised learning network,
where xi is a certain frame subsequence preprocessed by data augmentation and normaliza-
tion. Then, the prediction errori+1 for each sampling frame subsequence can be generated
by Equation (1) from the result of each sampling point of the subsequence.

errori+1 =

√√√√ n

∑
j=1

(xj
i+1 − x̃j

i+1)
2

(1)

where n represents the sampling length of the frame subsequence. Specifically, the pro-
cessing details of the subway track bed vibration signal with time series characteristics are
shown in Figure 2. For any input sequence, the main vibration characteristics caused by the
action of the train axle in each sample are retained and the sampling length of the vibration
response is set to match the multiple of the frame_length. Then the input sequence is divided
into subsequences of length frame_length. The first frame_length is taken as the initial input
sequence input_seq1. Next, a length of frame_length slides to construct a new input sequence
input_seq2. Here, input_seq2 is also regarded as the prediction target out_seq1 of input_seq1.
Based on Equation (1), the divergence between the prediction result out_seq1 of input_seq1
and input_seq2 is the prediction error of the current frame. By repeating the above process,
the error of each frame in any input sequence can be obtained.
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To quantify the predicted error sequence is the idea of the second step. Here, moving
average processing is first used to reduce the unstable interferences in the predicted error
sequence. Then the maximum is taken in the moving average result to represent the error
sequence. In the last step, the quantitative results of datasets A and B derived from the
second step participate in setting the threshold and then the threshold is utilized to judge
whether the sample in dataset B is abnormal. To ensure the credibility of the threshold-
based judgment, the receiver operating characteristic (ROC) curve is adopted to search the
candidate threshold. That is, the candidate threshold should satisfy the conditions that
make false positive rate (FPR) zero and true positive rate (TPR) maximum. The rationale
for determining a reasonable threshold from the ROC curve can be found in [25].
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3. Design and Arrangement of the Experiment
3.1. Vibration Signal Acquisition of Subway Track Bed

During the subway operation, there are many opportunities to obtain the track bed
vibration signal of the normal state. Instead, it is hard to capture anomaly vibration samples
caused by structural deterioration of the track bed or the failure of the train wheel, if there
are no suitable tracking ways. As shown in Figure 3, an ultra-weak FBG sensing cable
was fixed along the track bed in an actual subway tunnel to collect the structural vibration
response caused by passing trains. Three underground stations were covered along the
monitoring area of the subway line, with a total length of nearly three kilometers. According
to the spatial resolution of the probes in the sensing optic fiber, more than 500 consecutive
regions monitored along the track bed can feedback the structural vibration response based
on the interrogated address of the light interference [26]. When a train passed, the structural
vibration response triggered in each monitoring area was collected at a 1 kHz sampling
rate. The collected data was transmitted to the remote monitoring center for processing by
the demodulator and server.
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Figure 3. Field layout of ultra-weak FBG sensing array for acquiring vibration responses of track beds.

Based on the continuous running of the monitoring system described above, a train
with operation risk due to wheel wear was identified. Compared to the normal state, a set
of worn wheels in the first compartment resulted in changes in vibration signals of track
beds when the train passed. As shown in Figure 4, three monitoring regions are randomly
selected to depict the normal and abnormal vibration signals of the track beds. The left part
of Figure 4 shows the vibration responses of the track beds in the three selected monitoring
regions as the train without safety hazards passed through the subway line. The abnormal
vibration signals corresponding to the same three monitoring regions when subjected to
the action of the train with worn wheels are revealed in the right part of Figure 4. As can be
seen from Figure 4, there are similarities between the normal vibration signals in different
monitoring regions, which have been pointed out in [8]. As well as that, the abnormal
signals at different locations exhibit some common features. The occurrence position of
the abnormal signal in the overall response to the vibration of the track bed excited by the
train is closely related to the compartment where the worn wheels are located. In addition,
the duration of the abnormal disturbances is almost the same, accounting for about 20% of
the total length of the track bed vibration response sequence caused by the passing train
with worn wheels.
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worn wheels.

In addition to the above-mentioned abnormal vibration signals of the track bed struc-
ture caused by worn wheels, to obtain more abnormal signal samples, this paper considers
adding perturbation to the actual normal vibration signals to simulate abnormal signal
samples. The track bed vibration signals at the time of the ground intrusion event de-
tected by the ultra-weak FBG sensing array were chosen as the source signal for adding
perturbation. Specifically, the vibration response of the track bed structure under excava-
tor ground intrusion was adopted to complement the anomaly dataset for the following
experiment. The details of the vibration response of the selected real cases can be found
in [9]. In the specific implementation, as shown in Figure 5, the sub-sequences of the
adding perturbation are randomly selected from the source signal caused by the ground
intrusion. The extracted sub-sequences are then randomly superimposed somewhere in the
normal vibration samples in a certain proportion. Here, in addition to taking the proportion
of anomalous perturbations observed in Figure 4 as a reference, the simulated anomaly
proportion also takes into account fluctuations of 10% above and below 20%.
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3.2. Composition and Division of the Experimental Dataset

Based on the above vibration signal acquisition strategy, the composition and division
of the raw experimental dataset are shown in Figure 6. The dataset was derived from the
operation monitoring system and the previous field test results, both measured by the
ultra-weak FBG sensing array. The vibration signal samples of the track bed in normal and
abnormal states are 260 and 147, respectively. For the abnormal signal samples, anomalies
consist of three levels according to the proportion of superimposed disturbances. Here,
taking 147 normal vibration signals as benchmarks that are different from the normal
samples in Figure 6, simulated anomalies of different levels were constructed. Moreover,
maintaining the data balance among the three-level abnormal samples to reduce the effect
of the asymmetry of the sample size on the training effect was considered.

The raw normal vibration signals were divided into two parts to perform training
and tests based on the commonly used ratio [27] of 8:2. Here, the training set was used to
train the proposed unsupervised learning network, and the split test set of normal samples
was used to participate in identifying whether the no-label signals are abnormal, that is,
to assess the recognition effect of the proposed method on abnormal vibration signals.
Considering the signal sampling rate and the current configuration of the experimental
hardware environment that was composed of a graphics processing unit (GPU) core (GTX
1080 Ti) with 12 2.20 GHz processors (Intel Xeon E5-2650 v4), the frame_length was set to
500 to generate sub-sequences and to perform the model error prediction. Although the
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frame_length remains equal, there were duration differences in the raw vibration response of
each track bed area due to the effects of train speed and weight. Therefore, the three-level
anomaly dataset with the same original sample size in Figure 6 had different enhanced
scales after being divided according to the consistent frame_length. After data augmenta-
tion [28] by dividing the original sample into equal sub-sequences, the detailed scales of
the training set and test set are given in Table 1.
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Table 1. The division results of the experimental dataset after data augmentation.

Dataset Size of Normal Sample
Size of Abnormal Sample

Level A Level B Level C

Training set 6741 - - -
Test set 2194 1971 1962 1968

3.3. Establishment of the Unsupervised Learning Network

Based on the study in [29] and the current experimental hardware environment,
as shown in Figure 7, an unsupervised network based on CNN and LSTM and considering
the attention mechanism (CNN-LSTM-AM) was constructed to obtain the error sequence
result under step two in Figure 1. Here, the training set of 6741 normal samples as de-
fined in Table 1 was used to train the CNN-LSTM-AM network. The dimension of the
network input is determined by the length of the subsequence of frame_length 500 after
data augmentation and the batch size was set as 64. The goal of network training was to
ensure that the prediction error exhibited a rather weak fluctuation, that is, to ensure that
the difference between the predicted sequence and the input normal sample was small.
After repeated testing and parameter tuning based on grid searching [30], the established
network consisted of two one-dimensional convolutional layers, two LSTM layers, and one
attention mechanism layer, in which each convolutional layer contained 128 convolution
kernels, and each LSTM layer contained 500 unit cells. The CNN and LSTM layers were
used to obtain the local spatial features and time-series correlations of the vibration signals
of the track bed under normal conditions, respectively. The kernel size of each CNN layer
was 1 and a dilated convolution operation with a dilation factor of 10 was used to make the
first convolutional layer have a stronger receptive field of the input sequence. The attention
mechanism layer automatically learned the importance of each hidden layer. To meet the
training objective, RMSprop [31] was selected as the optimization algorithm of the network.
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4. Results and Discussion
4.1. Result Analysis

The error sequence results of the three-level anomaly samples in Table 1, after being
processed by the unsupervised network described in Figure 7, revealed that for about 80%
of the test samples, the average of the main peak of the error sequence of the samples
exceeded 6, while the rest was about 2. Figure 8 depicts two randomly selected samples
with anomalies and their corresponding predicted error sequences, where the red dotted
line represents the anomalous part. Although the main peak of the error sequence can
indicate the anomaly to some extent, pseudo main peaks are also observed in the error
sequence as shown in Figure 8b.
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To reduce the interference of the pseudo peak, calculation quantification was per-
formed for the predicted error sequence and the results are shown in Figure 9. The quan-
titative results in each subplot in Figure 9 are composed of 49 anomaly signal samples
and 70 retained normal signal samples. Here, the aforementioned retained normal sig-
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nal samples were used to participate in the subsequent threshold settings based on the
ROC curve.
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The quantitative results in Figure 9 were set to the tentative threshold in the order
from small to large to calculate the corresponding FPR and TPR. The results of FPR and
TPR were represented by the ROC curve shown in Figure 10. Then, the candidate threshold
used to distinguish the anomaly in Figure 9 can be determined. Here, the purpose of
using the quantified result in the maximum TPR state corresponding to the FPR of zero as
the candidate threshold was primarily to reduce the likelihood of normal samples being
identified as abnormal.
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Figure 10. ROC curve based on quantitative results of error sequences.

The accuracy and F1-score in Table 2 quantified the experimental results based on the
proposed method. The thresholds of the three levels set in Figure 10 can ensure that the
recognition accuracy of the three types of abnormal samples in the designed experiment
was no less than 0.84. With the increase in the proportion of anomalies, the accuracy of
identifying anomalies and the F1-score gradually increased, reaching the highest of 0.94
and 0.93, respectively. The result not only conforms to the understanding that the more
significant the anomaly is, the easier it is to identify, but also displays the capability for
identifying abnormal signals based on the proposed procedure. In terms of the efficiency,
under the hardware configuration and sample size described in this paper, the proposed
anomaly recognition algorithm took about 10 min and 0.24 s in stages of the training and
recognition, respectively.

Table 2. Quantitative evaluation of experimental results.

Anomaly Type Accuracy F1-Score

Level A 0.84 0.80
Level B 0.88 0.86
Level C 0.94 0.93
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4.2. Discussion Based on Comparative Testing

To further evaluate the effectiveness of the proposed method, both the quantification
metric of the error sequence and the established unsupervised learning network were in
turn compared with other approaches. Here, the allocation of datasets for the comparison
tests was consistent with that presented earlier in this paper. In addition to quantifying the
error sequence by choosing the maximum processed after the moving average, the effects
of identifying anomalous signals when representing the error sequence with the maximum,
mean, and root mean square (RMS) were also discussed. Figure 11 shows the ROC curves
derived from the four metrics of quantifying the error sequence. The results concerning the
area under the ROC curve (AUC) based on the different metrics in Figure 11 all display good
performance in terms of the aggregate measure represented by AUC. Although the method
of threshold selection based on comparative metrics was reasonable and competitive,
the proposed quantification indicator has the highest TPR when the FPR is zero. That is,
the results in Figure 11 mean that the threshold based on the quantitative processing
proposed in this paper can better identify abnormal samples, and the comparison results
based on the accuracy and F1-score shown in Figure 12 further confirm this inference.
For three levels of abnormal samples, the indicator adopted in this paper can guarantee
higher accuracy and F1-score than that of the other three metrics.
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Figure 12. Comparison results of (a) accuracy and (b) F1-score from four metrics for quantifying
error sequences.

Three typical unsupervised networks (one-class SVM, DAGMM, and LSTM encoder-
decoder (LSTM-ED)) which have been reported [20,21,24] to be suitable for anomaly recog-
nition were selected for performance comparison with the CNN-LSTM-AM network pro-
posed in this paper. To fully compete with the proposed network, the most appropriate key
candidate hyperparameters sets [22,32] for one-class SVM, DAGMM, and LSTM-ED were
derived through trial and error based on random searching [33]. The comparison results
shown in Figure 13 revealed that one-class SVM was the least effective. This phenomenon
may be related to the relatively lower algorithm complexity of one-class SVM compared
with other methods. Although the detection performance of the three comparison methods
improved in terms of accuracy and F1-score as the degree of anomaly increased, the pro-
posed network still outperformed the effect of the best DAGMM among the comparison
methods. Specifically, for three-level anomaly samples, the average results of accuracy and
F1-score of the CNN-LSTM-AM network were 11% and 13% higher than that of DAGMM,
respectively. Especially for abnormal samples at level A with the shortest anomaly du-
ration, the network established in this paper led by 24% and 29% in the accuracy and
F1-score, respectively.
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5. Conclusions

The present work indicates that when sufficient normal vibration samples are guaran-
teed for training the network and auxiliary detection, anomalous vibration signals in the
track bed response of subway tunnels detected by ultra-weak FBG sensing array can be
identified based on the idea of unsupervised learning. Due to the difficulty of obtaining
adequate abnormal samples, the pattern diversity of different levels of abnormal samples
based on found and simulated cases in this paper is not rich enough. Thus, the recognition
effect of this method on unknown samples with significant type differences collected at
the same period needs to be further tested and improved. However, given that the source
and location of the superimposed sub-sequence in each simulated abnormal sample are
based on random selection, there is reason to believe that the proposed method has strong
robustness in the actual engineering. Moreover, some other limitations are worth noting.
Although the recognition effects were verified experimentally, the established unsupervised
learning network architecture in the proposed method still needs to be further improved by
more unknown types and degrees of abnormal events in the future. Moreover, the results
of comparison experiments demonstrate that both the current quantification indicator for
the error sequences and the established networks have better performance, but whether
there is a more appropriate solution to quantify error sequences and the influence of the
normal sample size on the identification effect require further investigation. For the above
concerns, it is necessary to further investigate the performance of the method proposed in
this paper in future work when more typical anomaly samples can be obtained. Addition-
ally, the feasibility and effectiveness of the procedures reported in this paper need to be
validated in other areas with similar needs.
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