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Abstract: In recent decades, the hesitant fuzzy set theory has been used as a main tool to describe the
hesitant fuzzy phenomenon, which usually exists in multiple attributes of decision making. However,
in the general case concerning numerous decision-making problems, values of attributes are real
numbers, and some decision makers are hesitant about these values. Consequently, the possibility
of taking a number contains several possible values in the real number interval [0, 1]. As a result,
the hesitant possibility of hesitant fuzzy events cannot be inferred from the given hesitant fuzzy set
which only presents the hesitant membership degree with respect to an element belonging to this
one. To address this problem, this paper explores the axiomatic system of the hesitant possibility
measure from which the hesitant fuzzy theory is constructed. Firstly, a hesitant possibility measure
from the pattern space to the power set of [0, 1] is defined, and some properties of this measure
are discussed. Secondly, a hesitant fuzzy variable, which is a symmetric set-valued function on
the hesitant possibility measure space, is proposed, and the distribution of this variable and one
of its functions are studied. Finally, two examples are shown in order to explain the practical
applications of the hesitant fuzzy variable in the hesitant fuzzy graph model and decision-making
considering hesitant fuzzy attributes. The relevant research results of this paper provide an important
mathematical tool for hesitant fuzzy information processing from another new angle different from
the theory of hesitant fuzzy sets, and can be utilized to solve decision problems in light of the hesitant
fuzzy value of multiple attributes.

Keywords: hesitant possibility measure; hesitant fuzzy variable; hesitant possibility distribution;
hesitant fuzzy graph; hesitant credibility graph

1. Introduction

The hesitant fuzzy set, which is an extended version of the fuzzy set [1], is charac-
terized by hesitant membership grades that contain several possible real numbers in an
interval [0, 1] [2], and is illustrated by decomposition theorems and extension principles
concerning this concept [3]. In the 2010s, the theory and application in respect to the
hesitant fuzzy set were investigated for making a group decision. For one thing, Xia et al.
introduced some operators with respect to hesitant fuzzy sets and utilized these operators
to deal with hesitant fuzzy information [4]. For another thing, on the basis of the assump-
tion that elements of a hesitant fuzzy set are increasingly arranged and the length of two
elements is the same, Xia et al. proposed some distance measures of hesitant fuzzy sets [5].
Consequently, they considered connections of these measures and presented several kinds
of similarity measures for hesitant fuzzy sets [6]. After that, Xia et al. extended the pref-
erence relation to the hesitant fuzzy case and introduced some relevant properties [7].
Zhang et al. developed the normalization extension and group extension concerning the
hesitant fuzzy preference relation for describing the consensus process in terms of hesitant
fuzzy information [8,9]. Zhu et al. defined a consensus index for measuring the agreement
between the group and arbitrary individual hesitant fuzzy preference relation considering
hesitant fuzzy attributes [10]. Xu et al. introduced a consensus model with respect to the
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hesitant fuzzy preference relation and presented feedback mechanisms [11]. Zhang et al.
established some consistency models in order to obtain missing elements for incomplete
hesitant fuzzy preference relations. In addition, some aggregation operators have been
introduced to fuse hesitant fuzzy sets in decision making [12–16]. These operators are able
to provide powerful guarantees for decision makers to handle complex situations. In order
to determine better group decisions, some methods based on hesitant fuzzy sets or the
extended hesitant fuzzy sets have been introduced, for instance, the hesitant fuzzy TOP-
SIS [17], m-polar hesitant fuzzy TOPSIS approach [18], hesitant fuzzy PROMETHEE [19],
hesitant fuzzy ELECTRE [20], hesitant fuzzy VIKOR [21], hesitant fuzzy TODIM [22],
hesitant fuzzy QUALIFLEX [23], hesitant N-soft sets decision method [24], necessary and
possible hesitant fuzzy sets method [25], dual extended hesitant fuzzy sets method [26],
hesitant fuzzy N-soft sets method [27] and hesitant fuzzy LINMAP [28].

In recent years, the hesitant fuzzy set theory has been used as a main mathematical
tool to describe the hesitant fuzzy phenomenon in the research of multiple attributes of
decision making. However, a hesitant fuzzy set only presents several possible values on
the unit interval [0, 1], which defines the hesitant membership of an element belonging
to this hesitant fuzzy set, and the hesitant possibility of hesitant fuzzy events cannot be
inferred from the given hesitant fuzzy sets [2]. Because it is the general case that the value
of an attribute is a real number in multiple attributes of group decision making problems,
decision makers are hesitant about this real number corresponding to the attribute, that is,
the possibility of taking this real number contains several possible values in the interval
[0, 1]. In this situation, the hesitant fuzzy model is more appropriate to describe hesitant
fuzzy events. On the one hand, probability measures can explain the probability of the
occurrence of random events and a random variable is essentially a measurable function
from the probability measure space to the real value line [29]. On the other hand, as a pair of
dual measures, the possibility measure and necessity measure can show the possibility and
necessity of fuzzy events, and the basic concept of fuzzy theory is a fuzzy variable, which
is a measurable function from measure space to the real set. Similarly, a credibility measure
is the self-dual fuzzy measure, which can measure the credibility of fuzzy events [30–32].
Therefore, the axiomatic system with respect to the hesitant possibility of hesitant fuzzy
events has important theoretical significance in the study of the hesitant fuzzy phenomenon;
this axiomatic framework is based on the hesitant fuzzy variable, which is a symmetric
set-valued function with respect to the union operation of the hesitant fuzzy variable, and
can provide theoretical support for hesitant fuzzy information processing.

In this paper, the main contributions include several points: (1) Proposing a hesitant
possibility measure, a hesitant necessary measure and a hesitant credibility measure and
studying some properties with respect to these three set-valued measures. (2) Defining a
hesitant fuzzy variable on the hesitant possibility measure space, and discussing the distri-
bution of this variable and one of its functions and listing several common hesitant fuzzy
variables, including triangle, trapezoid, normal and exponential types. (3) Introducing the
concept of the hesitant fuzzy graph based on the proposed hesitant fuzzy variable. The rest
of this paper is structured as follows: In Section 2, preliminaries are illustrated. Section 3
presents the axiomatic system with respect to the hesitant possibility of hesitant fuzzy
events. Two applications are showed in Section 4. Some conclusions and future works are
stated in the final section.

2. Preliminaries

Definition 1 [33]. If Γ is a domain of discourse and I is any index set, an ample field A is a
collection of subsets of Γ with the following conditions:

(1) Γ ∈ A;
(2) A ∈ A ⇒ Γ\A ∈ A ;
(3) Bk ∈ A,k ∈ I⇒ ∪

k∈I
Bk ∈ A .
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(Γ,A) is called an ample space. Evidently, (Γ,P(Γ)) is a special ample space in which P(Γ) is the
power set of Γ.

Definition 2 [34]. Let (Γ,A) be an ample space. A fuzzy measure on an ample field A is defined
by a function µ from A to [0, ∞] with two conditions:

(1) µ(φ) = 0;
(2) B1 ∈ A, B2 ∈ A, B1 ⊂ B2⇒ µ(B1) ≤ µ(B2) .

Particularly, µ : A → [0, ∞] is called the lower semicontinuous when:

Bn ∈ A, n = 1, 2, · · · , B1 ⊂ B2 ⊂ · · ·⇒ lim
n→∞

µ(Bn) = µ(∪∞
n=1Bn).

µ : A → [0, ∞] is called upper semicontinuous when:

Bn ∈ A, n = 1, 2, · · · , B1 ⊃ B2 ⊃ · · ·⇒ lim
n→∞

µ(Bn) = µ(∩∞
n=1Bn).

Definition 3 [35]. Let (Γ,A) be an ample space Γ and I be an arbitrary index set. A set function
Pos :A → [0, 1] is called the possibility measure on A when the following conditions hold:

(1) Pos(φ) = 0, Pos(Γ) = 1;
(2) Bk ∈ A, k ∈ I⇒ Pos(∪k∈I Bk) = sup

k∈I
Pos(Bk) .

The triple (Γ,A, Pos) is defined as a possibility measure space. Set functions Nec :A → [0, 1]
and Cr :A → [0, 1] are, respectively, called the necessity measure and credibility measure
on A if the following formulas hold for the arbitrary set B ∈ A.

Nec(B) = 1− Pos(Bc)

Cr(B) =
1
2
(Pos(B) + Nec(B))

Definition 4 [36]. The T norm is a binary operation T from [0, 1]× [0, 1] to [0, 1], and it satisfies
the following formulas for three real numbers t1, t2 and t3 on [0, 1].

(1) T(t1, t2) = T(t2, t1);
(2) T(t1, T(t2, t3)) = T(T(t1, t2), t3);
(3) t2 ≤ t3 ⇒ T(t1, t2) ≤ T(t1, t3) ;
(4) T(t1, 1) = t1, T(t1, 0) = 0.

Similarly, S : [0, 1]× [0, 1]→ [0, 1] is called the S norm if several conditions are satisfied for
arbitrary t1, t2, t3 ∈ [0, 1].

(1) S(t1, t2) = S(t2, t1);
(2) S(t1, S(t2, t3)) = S(S(t1, t2), t3);
(3) t2 ≤ t3 ⇒ S(t1, t2) ≤ S(t1, t3) ;
(4) S(t1, 1) = 1, S(t1, 0) = t1.

3. Hesitant Fuzzy Variable and Its Distribution

In this section, the order relation “ ≤ ” on P([0, 1]) is introduced. Let A, B ∈ P([0, 1]),
so A ≤ B means that:

(1) For x0 ∈ A, y0 ∈ B exists with x0 ≤ y0;
(2) For y0 ∈ B, x0 ∈ A exists with x0 ≤ y0.

When A, B ∈ Γ, operations A + B and A× B are presented in the following formulas.

A + B =
{

S(t1, t2)|t1 ∈ A, t2 ∈ B
}

(1)

A× B =
{

T(t1, t2)|t1 ∈ A, t2 ∈ B
}

(2)
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3.1. Hesitant Possibility Measure Space

Definition 5. Let (Γ,A) be an ample space, P([0, 1]) be the power set of [0, 1] and I an index set.
If the following conditions are satisfied, a set-valued set function PosH :A → P([0, 1]) is called
the hesitant possibility measure on A.

(1) PosH(φ) = {0}, PosH(Γ) = {1};

(2) Bk ∈ A, k ∈ I⇒ PosH(∪k∈I Bk) =

{
sup
k∈I
{tk | tk ∈ PosH(Bk)}

}
.

Any Bk ∈ A is a hesitant fuzzy event, and the triple (Γ,A, PosH) is a hesitant possibility
measure space. In this paper, the finite real values of [0, 1] are discussed with respect to
the hesitant possibility measure PosH , which is a symmetric mapping with respect to the
union operation of subsets in an ample A. Particularly,

(1) For two sets B1 ∈ A and B2 ∈ A, the following formulation holds, where B1 and B2
are mutually independent:

PosH(B1 ∩ B2) =

{
t1 ∧ t2

∣∣∣∣ t1 ∈ PosH(B1)
t2 ∈ PosH(B2)

}
(2) A hesitant necessity measure NecH from A to P([0, 1]) is presented for arbitrary

B ∈ A:
NecH(B) =

{
1− t|t ∈ PosH(Bc)

}
(3) A hesitant credibility measure CrH from A to P([0, 1]) is defined for arbitrary B ∈ A:

CrH(B) =
{

1
2
(t1 + t2)

∣∣∣∣t1 ∈ PosH(B), t2 ∈ NecH(B)
}

The triple (Γ,A, CrH) is a hesitant credibility measure space. By Definition 5, some
properties of hesitant possibility measure were discussed on the basis of a theorem.

Theorem 6. A hesitant possibility measure PosH on an ample space (Γ,A) had the following properties:

(1) Monotonicity:

B1 ∈ A, B2 ∈ AB1 ⊂ B2⇒ PosH(B1) ≤ PosH(B2).

(2) Boundedness:
B ∈ A⇒ {0} ≤ PosH(B) ≤ {1}.

(3) Lower semicontinuity on a closed interval set sequence{PosH(Bn)}:

Bn ∈ A, n = 1, 2, · · · , B1 ⊂ B2 ⊂ · · · ,⇒ lim
n→∞

PosH(Bn) = PosH(∪∞
n=1Bn).

(4) Strong subadditivity:

B1 ∈ A, B2 ∈ A⇒ PosH(B1 ∪ B2) + PosH(B1 ∩ B2) ≤ PosH(B1) + PosH(B2).

Proof.

(1) Monotonicity.

PosH(B1) = {t1 | t1 ∈ PosH(B1)} ≤
{

t1 ∨ t2

∣∣∣∣ t1 ∈ PosH(B1)
t2 ∈ PosH(B2 − B1)

}
= PosH(B1 ∪ (B2 − B1)) = PosH(B2).

(2) Boundedness. According to (1), it was evident that the boundedness held.
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(3) Lower semicontinuity. The following topology was introduced:

lim
n→∞

supPosH(Bn) =
∞
∩

n=1

∞
∪

k=n
PosH(Bk) =

{
t ∈ [0, 1]

∣∣∣∣∣ t = lim
k→∞

(tnk )

tnk ∈ PosH(Bk)

}

lim
n→∞

infPosH(Bn) =
∞
∪

n=1

∞
∩

k=n
PosH(Bk) =

{
t ∈ [0, 1]

∣∣∣∣∣ t = lim
n→∞

(tn)

tn ∈ PosH(Bn)

}
Evidently,

lim
n→∞

infPosH(Bn) =
∞
∪

n=1

∞
∩

k=n
PosH(Bk)⊂

∞
∩

n=1

∞
∪

k=n
PosH(Bk) = lim

n→∞
supPosH(Bn) (3)

Therefore, the following aspects were discussed:

(a)
∞
∪

n=1

∞
∩

k=n
PosH(Bk) ≤ PosH

(
∞
∪

k=1
Bk

)
.

By relation Bn ∈ A, n = 1, 2, · · · , B1 ⊂ B2 ⊂ · · · , we had lim
n→∞

(Bn) =
∞
∪

k=1
Bk, and

according to the monotonicity of PosH(Bk), the following relation was true.

PosH(B1) ≤ PosH(B2) ≤ · · · ≤ PosH(Bk) ≤ · · ·

Therefore, for any k ∈ N, the inequation PosH(Bk) ≤ PosH

(
∞
∪

k=1
Bk

)
held. Thus,

∞
∩

k=n
PosH(Bk) ≤ PosH

(
∞
∪

k=1
Bk

)
,

∞
∪

n=1

∞
∩

k=n
PosH(Bk) ≤ PosH

(
∞
∪

k=1
Bk

) (4)

(b) PosH

(
∞
∪

k=1
Bk

)
≤

∞
∩

n=1

∞
∪

k=n
PosH(Bk).

By the monotonicity of PosH and the condition

PosH

(
∞
∪

k=1
Bk

)
=

{
sup

k
{tk | tk ∈ PosH(Bk)}

}

we obtained ynk ∈ PosH(Bnk ) with relation yn1 ≤ yn2 ≤ · · · ≤ ynk · · · , and tk ≤ ynk for

k ≤ nk. Thus, sup
k
{tk | tk ∈ PosH(Bk)} ≤ lim

k→∞
ynk . In other words, when ∀t0 ∈ PosH

(
∞
∪

k=1
Bk

)
,

y0 ∈
∞
∩

n=1

∞
∪

k=n
PosH(Bk) had to exist with t0 ≤ y0. Similarly, when ∀y0 ∈

∞
∩

n=1

∞
∪

k=n
PosH(Bk),

t0 ∈ PosH

(
∞
∪

k=1
Bk

)
had to exist with t0 ≤ y0. Therefore

PosH

(
∞
∪

k=1
Bk

)
≤

∞
∩

n=1

∞
∪

k=n
PosH(Bk) (5)

(c)
∞
∪

n=1

∞
∩

k=n
PosH(Bk) =

∞
∩

n=1

∞
∪

k=n
PosH(Bk).

According to Equation (1), we needed to prove
∞
∪

n=1

∞
∩

k=n
PosH(Bk) ⊃

∞
∩

n=1

∞
∪

k=n
PosH(Bk).

Let t ∈
∞
∩

n=1

∞
∪

k=n
PosH(Bk), that is t = lim

k→∞
tnk , tnk ∈ PosH(Bnk ), k ≥ 1. The constructive proof

was used for t ∈
∞
∪

n=1

∞
∩

k=n
PosH(Bk) in the following steps, that is, we chose tn ∈ PosH(Bn) in

order to obtain t = lim
n→∞

tn.
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Supposing
∣∣tnk − t

∣∣ < ε for k ≥ k0, when n < nk0 , we selected an arbitrary tn ∈ PosH(Bn).
When n ≥ nk0 , k ≥ k0; therefore we consider the two cases. For one thing, when tnk ≤ tnk+1 ,
tnk , tnk+1, tnk+2, · · · , tnk+1 was complemented by tnk and the following method.

tnk+1 = inf
y

{
tnk ∨ y

∣∣y ∈ PosH(Bnk+1)
}

;

tnk+2 = inf
y

{
tnk+1 ∨ y

∣∣y ∈ PosH(Bnk+2)
}

;

tnk+3 = inf
y

{
tnk+2 ∨ y

∣∣y ∈ PosH(Bnk+3)
}

;

...

...
tnk+1 = inf

y

{
tnk+1−1 ∨ y

∣∣y ∈ PosH(Bnk+1)
}

.

Based on the conditions,

Bnk ⊂ Bnk+1, PosH(Bnk+1) = PosH(Bnk ∪ Bnk+1) =

{
t ∨ y

∣∣∣∣ t ∈ PosH(Bnk )
y ∈ PosH(Bnk+1)

}
.

The above process was possible. For another thing, when tnk > tnk+1 , we could obtain
ynk ∈ PosH(Bnk ) with ynk ≤ tnk+1 based on PosH(Bnk ) ≤ PosH(Bnk+1); therefore, we let
tnk = ynk and repeated the completion of the first case such that tnk , tnk+1, tnk+2, · · · , tnk+1 .
From the above process of constructing {tn}, we had |tn − t| < ε when n ≥ nk0 , that is,

t = lim
k→∞

tnk = lim
n→∞

tn ∈
∞
∩

n=1

∞
∪

k=n
PosH(Bk)

Thus,
∞
∪

n=1

∞
∩

k=n
PosH(Bk) =

∞
∩

n=1

∞
∪

k=n
PosH(Bk). According to the above, the lower semicon-

tinuity was true based on Equations (3)–(5).

(4) Strong subadditivity.

We let u ∈ PosH(B1 ∪ B2),z ∈ PosH(B1 ∩ B2), and from the definition of the hesitant
possibility measure, we had x1, x2 ∈ PosH(B1), y1, y2 ∈ PosH(B2) with u = x1 ∨ y1,
z = x2 ∧ y2. By the order relation on the operation of Formula (1) and the definition of the
S norm, the following result could be obtained.

S(u, z) = S(x1 ∨ y1, x2 ∧ y2) =

{
S(x1, x2 ∧ y2) ≤ S(x1, y2)
S(y1, x2 ∧ y2) ≤ S(y1, x2) = S(x2, y1)

Thus, PosH(B1 ∪ B2) + PosH(B1 ∩ B2) ≤ PosH(B1) + PosH(B2) and the strong subad-
ditivity were proved. �

Theorem 7. A hesitant necessity measure NecH on an ample space (Γ,A) has the following properties.

(1) Monotonicity:

B1 ∈ A, B2 ∈ A B1 ⊂ B2⇒ NecH(B1) ≤ NecH(B2).

(2) Boundedness:
B ∈ A⇒ {0} ≤ NecH(B) ≤ {1}.

(3) Upper semicontinuity:

Bn ∈ A, n = 1, 2, · · · , B1 ⊃ B2 ⊃ · · · ,⇒ lim
n→∞

NecH(Bn) = NecH(∩∞
n=1Bn).

(4) Weak superadditivity:

B1 ∈ A, B2 ∈ A⇒ NecH(B1 ∪ B2) + NecH(B1 ∩ B2) ≥ NecH(B1) + NecH(B2)
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Proof.

(1) Monotonicity.

We let B1 ∈ A, B2 ∈ A and B1 ⊂ B2, which gave us

NecH(B1) =
{

1− t | t ∈ PosH(Bc
1)
}
=
{

1− t | t ∈ PosH(Bc
2 ∪ (Bc

1 − Bc
2))
}

=

{
1− (t1 ∨ t2)

∣∣∣∣ t1 ∈ PosH(Bc
2)

t2 ∈ PosH(Bc
1 − Bc

2)

}
≤
{

1− t1
∣∣t1 ∈ PosH(Bc

2)
}
= NecH(B2)

(2) Boundedness.

From the above (1), boundedness was easily proved.

(3) Upper semicontinuity.

According to Bn ∈ A, n = 1, 2, · · · , B1 ⊃ B2 ⊃ · · · , we had {Bc
n} ⊂ Γ, Bc

1 ⊃ Bc
2 ⊃ · · · .

Since the hesitant possibility measure PosH satisfied the lower semicontinuity, we had

lim
n→∞

PosH(Bc
n) = PosH(∪∞

n=1Bc
n) = PosH

(
(∩∞

n=1Bn)
c)

Thus,

lim
n→∞

NecH(Bn) = lim
n→∞
{1− t|t ∈ PosH(Bc

n)} =
{

1− t
∣∣∣t ∈ lim

n→∞
PosH(Bc

n)
}

=
{

1− t
∣∣∣t ∈ PosH

((
∩∞

n=1Bn
)c
)}

= NecH(∩∞
n=1Bn)

(4) Weak superadditivity.

We let u ∈ NecH(B1 ∪ B2), z ∈ NecH(B1 ∩ B2), and by the definition of the hesitant
necessity measure, u1 ∈ PosH(Bc

1 ∩ Bc
2), x2 ∈ PosH(Bc

1) and y2 ∈ PosH(Bc
2) existed, such

that u = 1− u1, z = x2 ∧ y2. On the basis of the monotonicity hesitant possibility measure
PosH , we obtained PosH(Bc

1 ∩ Bc
2) ≤ PosH(Bc

1) and PosH(Bc
1 ∩ Bc

2) ≤ PosH(Bc
2); therefore,

x1 ∈ PosH(Bc
1) and y1 ∈ PosH(Bc

2) existed with u1 ≤ x1, u1 ≤ y1 and u1 ≤ x1 ∧ y1. From
the order relation on P([0, 1]), Formula (1) and the definition of S norm, hawse had the
following result.

S(u, z) = S(1− u1, 1− x2 ∨ y2) ≥ S(1− x1 ∧ y1, 1− x2 ∨ y2)

=

{
S(1− x1 ∧ y1, 1− x2) ≥ S(1− y1, 1− x2) = S(1− x2, 1− y1)
S(1− x1 ∧ y1, 1− y2) ≥ S(1− x1, 1− y2)

Thus, NecH(B1 ∪ B2) + NecH(B1 ∩ B2) ≥ NecH(B1) + NecH(B2). �

Theorem 8. If (Γ,A, NecH) is a hesitant credibility measure space, the following results hold.

(1) CrH(φ) = {0}, CrH(Γ) = {1}.
(2) Monotonicity: B1 ∈ A,B2 ∈ A B1 ⊂ B2⇒ CrH(B1) ≤ CrH(B2) .
(3) Boundedness: B ∈ A⇒ {0} ≤ CrH(B) ≤ {1} .
(4) Weak duality: B ∈ A⇒ CrH(B1) + CrH(Bc

1) ≤ {1} .
(5) B1 ∈ A, B2 ∈ A⇒ CrH(B1 ∪ B2) ≥ CrH(B1)× CrH(B2) .

Proof.

(1) According to the definition of the hesitant credibility measure CrH , we could easily
obtain CrH(φ) = {0}, CrH(Γ) = {1}.

(2) Monotonicity.

We assumed that B1 ∈ A, B2 ∈ A, B1 ⊂ B2 and x0 ∈ CrH(B1), by the definition of
CrH(B1), t1 ∈ PosH(B1), t2 ∈ NecH(B1) existed, such that x0 = 1

2 (t1 + t2). According to the
monotonicity of PosH and NecH , u ∈ PosH(B2) and v ∈ NecH(B2) existed with t1 ≤ u and
t2 ≤ v. Thus, x0 = 1

2 (t1 + t2) ≤ 1
2 (u + v) ∈ CrH(B2) and we let y0 = 1

2 (u + v). Therefore,
if x0 ∈ CrH(B1), y0 ∈ CrH(B2) existed, such that x0 ≤ y0. Similarly, if y0 ∈ CrH(B2),
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x0 ∈ CrH(B1) existed, such that x0 ≤ y0. As a result, CrH(B1) ≤ CrH(B2) by the order
relation “ ≤ ” on power set P([0, 1]).

(3) Boundedness.

According to the above (2), boundedness could be easily proved.

(4) Weak duality.

According to Formula (1), CrH(B)+CrH(Bc) = {S(t1, t2) | t1 ∈ CrH(B), t2 ∈ CrH(Bc)}.
Therefore, for any x0 ∈ CrH(B) + CrH(Bc), t1 ∈ CrH(B)t2 ∈ CrH(Bc) existed with
x0 = S(t1, t2). Moreover, from the definition of the hesitant credibility measure CrH ,
x ∈ PosH(B), y ∈ NecH(B), u ∈ PosH(Bc) and v ∈ NecH(Bc) existed, such that t1 =
1
2 (x + y) and t2 = 1

2 (u + v).
Thus, x0 = S(t1, t2) = S( 1

2 (x + y), 1
2 (u + v)) ≤ S( 1

2 (x + y), 1) = 1.
Therefore, CrH(B) + CrH(Bc) ≤ {1}.

(4) We proved the fifth property.

According to B1 ∈ A, B2 ∈ A, CrH(B1 ∪ B2) and PosH(B1 ∪ B2), we had

CrH(B1 ∪ B2) =

{
1
2 (uB1∪B2 + vB1∪B2)

∣∣∣ uB1∪B2 ∈ PosH(B1 ∪ B2)
vB1∪B2 ∈ NecH(B1 ∪ B2)

}
,

PosH(B1 ∪ B2) =

{
uA ∨ uB

∣∣∣∣ uA ∈ PosH(B1)
uB ∈ PosH(B2)

}
.

From the monotonicity of the hesitant necessary measure NecH , we obtained

vB1 ∈ NecH(B1) and vB ∈ NecH(B2),

such that vB1 ≤ vB1∪B2 and vB2 ≤ vB1∪B2 . Thus,

1
2 (uB1∪B2 + vB1∪B2) = 1

2
(
(uB1 ∨ uB2) + vB1∪B2

)
= 1

2
(
uB1 + vB1∪B2

)
∨ 1

2
(
uB2 + vB1∪B2

)
≥ 1

2
(
uB1 + vB1

)
∨ 1

2
(
uB2 + vB2

)
≥ 1

2
(
uB1 + vB1

)
∧ 1

2
(
uB2 + vB2

)
≥ T

(
1
2
(
uB1 + vB1

)
, 1

2
(
uB2 + vB2

))
= CrH(B1)× CrH(B2).

Therefore, the proof of property (5) was completed. �

Example 1. Let Γ = {1, 2, 3}, B1 = {1}, B2 = {2}, B3 = {3}, B4 = {1, 2}, B5 = {1, 3}, B6 =
{2, 3}, A = P(Γ)= {φ, B1, B2, B3, B4, B5, B6, Γ}, PosH(φ) = {0}, PosH(B1) = PosH(B4) =
{0.6, 0.7} and PosH(B3) = PosH(B5) = PosH(B6) = PosH(Γ) = {1}, PosH(B2) = {0.3, 0.4}.
It is evident that this is a hesitant possibility measure, and has the following formulas.

PosH(B4 ∩ B5) = PosH(B1) = {0.6, 0.7} =
{

x ∧ y
∣∣∣∣ x ∈ PosH(B4)

y ∈ PosH(B5)

}
;

PosH(B4 ∩ B6) = PosH(B2) = {0.3, 0.4} 6=
{

x ∧ y
∣∣∣∣ x ∈ PosH(B4)

y ∈ PosH(B6)

}
= {0.6, 0.7};

PosH(B5 ∩ B6) = PosH(B3) = {1} =
{

x ∧ y
∣∣∣∣ x ∈ PosH(B5)

y ∈ PosH(B6)

}
.

From the definition of independence among hesitant fuzzy events, B4, B5 is mutually
independent, and B5, B6 is the same as B4, B5. However, B4, B6 is not mutually independent.
In addition, from the definition of the hesitant necessity measure and hesitant credibility
measure, we could have the following formulas:
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NecH(Γ) = {1}, NecH(B3) = NecH(B6) = {0.3, 0.4};
NecH(B1) = NecH(B2) = NecH(B4) = NecH(φ) = {0}, NecH(B5) = {0.6, 0.7}, CrH(φ) = {0};
CrH(Γ) = {1}, CrH(B2) = {0.15, 0.2}, CrH(B1) = CrH(B4) = {0.3, 0.35};
CrH(B3) = CrH(B6) = {0.65, 0.7}, CrH(B5) = {0.8, 0.85}.

3.2. Hesitant Fuzzy Variable

Definition 9. Suppose that (Γ,A, PosH) is a hesitant possibility measure space, R is the real
number set and P(R) is the power set of R. A real-valued function ξ : Γ→ R is a hesitant fuzzy
variable if, and only if, {γ|ξ(γ) ≤ t} ∈ A for any t ∈ R. Especially, for any B ∈ P(R), a
set-valued mapping is defined as follows:

PosHξ(B) = PosH{γ ∈ Γ|ξ(γ) ∈ B} (6)

Therefore, we had the following theorem:

Theorem 10. The set-valued mapping based on Equation (6) is a hesitant possibility measure on
P(R).

This result was proved if PosHξ(B) satisfied the conditions of the hesitant possibil-
ity measure.

Proof.

(1) The following formulas evidently held.

PosHξ(φ) = PosH{γ ∈ Γ|ξ(γ) ∈ φ} = {0},
PosHξ(R) = PosH{γ ∈ Γ|ξ(γ) ∈ R} = {1}.

(2) For arbitrary Bi ∈ P(R), i ∈ I, we could obtain

PosHξ(∪i∈I Bi) = PosH{γ ∈ Γ|ξ(γ) ∈ ∪i∈I Bi }
= PosH(∪i∈I{γ ∈ Γ|ξ(γ) ∈ Bi })

=

{
sup
i∈I
{xi | xi ∈ {γ ∈ Γ|ξ(γ) ∈ Bi }}

}

=

{
sup
i∈I

{
xi
∣∣xi ∈ PosHξ Bi

}}

Therefore, PosHξ : P(R)→ P([0, 1]) is a hesitant possibility measure onP(R). When
t ∈ R, we defined the following function on the basis of the hesitant fuzzy variable
ξ : Γ→ R with respect to the hesitant possibility measure space (Γ,A, PosH).

µξ(t) = PosH{γ ∈ Γ|ξ(γ) = t} (7)

Thus, a hesitant possibility measure PosHξ on P(R) was determined by Equation (7)
with the following formula:

PosHξ(B) =

{
sup
t∈B

{
xt | xt ∈ µξ(t)

}}
∀B ∈ P(R).

Therefore, from an original hesitant possibility measure space (Γ,A, PosH), a new
hesitant possibility measure space (R,P(R), PosHξ) was induced by using the hesitant
fuzzy variable ξ on the space (Γ,A, PosH). Moreover, the hesitant fuzzy variable could be
studied according to the induced hesitant possibility measure space (R,P(R), PosHξ). As
a result, we had the definition of the hesitant possibility distribution. �



Symmetry 2022, 14, 1184 10 of 17

Definition 11. The set-valued function µξ(t), t ∈ R defined by Equation (7) is called the hesitant
possibility distribution of the hesitant fuzzy variable ξ.

If
∑x∈µξ (t)

x

#µξ (t)
is a continuous real-valued function, a hesitant fuzzy variable ξ is continu-

ous, where #µξ(t) on behalf of the number of elements in µξ(t), and
∑x∈µξ (t)

x

#µξ (t)
is symmetric

with respect to elements x in µξ(t) when t real variables are determined. For instance,

let µξ(t) = {xt1, xt2, · · · , xtn}(t ∈ R) and
{

xt(1), xt(2), · · · , xt(n)

}
be a permutation of

{xs1, xs2, · · · , xsn}; then, one would have the following formula.

∑x∈µξ (t) x

#µξ(t)
=

xt1 + xt2 + · · ·+ xtn

#µξ(t)
=

xt(1) + xt(2) + · · ·+ xt(n)

#µξ(t)

ξ is discrete if X = {t0, t1, t2 · · · } is the set of all values of the hesitant fuzzy variable ξ
on the space (Γ,A, PosH), and let µi = PosH{ξ = ti}(i = 0, 1, 2, · · · ).Thus, the hesitant
possibility of hesitant fuzzy events related to a discrete hesitant fuzzy variable can directly
be determined by the hesitant possibility, such as

PosHξ{a < ξ ≤ b} =

 sup
i∈{j|a<tj≤b}

{xi | xi ∈ µi}

,

PosHξ{ξ > a} =

 sup
i∈{j|tj>a}

{xi | xi ∈ µi}

.

Similarly, for a continuous hesitant fuzzy variable ξ, we could obtain the same results
by the hesitant possibility distribution µξ , for instance

PosHξ{ξ ≥ a} =
{

sup
u≥a

{
xu | xu ∈ µξ(u)

}}
,

NecHξ{ξ ≥ a} =
{

1− x
∣∣x ∈ PosHξ{ξ < a}

}
=

{
1− sup

u<a

{
xu | xu ∈ µξ(u)

}}
,

CrHξ{ξ ≥ a} =


1
2 (x + y)

∣∣∣∣∣∣∣∣∣
x ∈

{
sup
u≥a

{
xu | xu ∈ µξ(u)

}}
y ∈

{
1− sup

u<a

{
xu | xu ∈ µξ(u)

}}
.

where PosHξ{ξ ≥ a}, NecHξ{ξ ≥ a} and CrHξ{ξ ≥ a} are, respectively, called the hesitant
possibility, hesitant necessity and hesitant credibility of the hesitant fuzzy event ξ ≥ a.

3.3. Several Common Continuous Hesitant Fuzzy Variables and Their Distribution

Example 2. The hesitant possibility distribution µξ(t) of triangle hesitant fuzzy variable ξ.

∑x∈µξ (t) x

#µξ(t)
=


t−t1
t2−t1

t1 ≤ t < t2
t3−t
t3−t2

t2 ≤ t < t3

0 else

where t1 < t2 < t3, and is shorthand for (t1, t2, t3)H . For instance, the hesitant possibility
distribution of (2, 6, 8)H is showed in Figure 1.
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Figure 1. Hesitant possibility distribution map of (2, 6, 8)H .

Example 3. The hesitant possibility distribution µξ(t) of the trapezoidal hesitant fuzzy variable ξ.

∑x∈µξ (t) x

#µξ(t)
=


t−t1
t2−t1

t1 ≤ t < t2

1 t2 ≤ t < t3
t4−t
t4−t3

t3 ≤ t < t4

0 else

where t1 < t2 < t3 < t4, and is shorthand for(t1, t2, t3, t4)H . For instance, the hesitant possibility
distribution of (2, 4, 6, 8)H is showed in Figure 2.
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Example 4. The hesitant possibility distribution µξ(t) of the normal hesitant fuzzy variable ξ.

∑x∈µξ (t) x

#µξ(t)
= e{−

(t−α)2

σ2 }
= exp

{
−(t− α)2/σ2

}
t ∈ R

where α ∈ R, σ > 0, and is shorthand for
(
α, σ2). For instance, the hesitant possibility distribution

of
(
5, 32) is showed in Figure 3.
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Figure 3. Hesitant possibility distribution map of
(
5, 32).

Example 5. The hesitant possibility distribution µξ(t) of the exponential hesitant fuzzy variable ξ.

∑x∈µξ (t) x

#µξ(t)
= e−λt = exp{−λt} t ∈ R+

where λ > 0, and is shorthand for λ. For instance, the hesitant possibility distribution of λ = 2 is
showed in Figure 4.

Symmetry 2022, 14, x FOR PEER REVIEW 14 of 19 
 

 

 
Figure 4. Hesitant possibility distribution map of 2λ = . 

3.4. The Distribution of Functions of Hesitant Fuzzy Variable and the Distribution of Sum of 
Hesitant Fuzzy Variables 

Theorem 12. Provided that ( , , )HPosΓ  is a hesitant possibility measure space, ξ  is a hesi-
tant fuzzy variable, and g  is a real-valued function; then, ( )g ξ  is also a hesitant fuzzy variable, 
and its hesitant possibility distribution is presented as follows. 

1

1
( )

( )
( ) sup { } ( ), ( )g u u

u g x
x x x u u g xξ ξμ μ

−

−

∈

 
= ∈ ∈ 
 

 

Proof. From the above conditions, we had 

( ) :g ξ Γ →  , and { } 1 ( )
( ) = { }

u g x
g x uξ ξ−∈

= = ⊂  . 

Therefore, ( )g ξ  was a hesitant fuzzy variable; thus, 

{ } { }1( ) ( )
( ) ( ) { }g H H u g x
x Pos g x Pos uξμ ξ ξ−∈

= = = =  

1

1

( )
sup { } { }, ( )u u H

u g x
x x Pos U u g xξ

−

−

∈

 
= ∈ = ∈ 
 

 

1

1

( )
sup { } ( ), ( )u u

u g x
x x u u g xξμ

−

−

∈

 
= ∈ ∈ 
 

 

□ 

Theorem 13. Supposing that ( , , )HPosΓ  is a hesitant possibility measure space, ξ  and η  
are mutually independent hesitant fuzzy variables, then ξ η+  is also a hesitant fuzzy variable, 
and its hesitant possibility distribution is presented as follows. 

1
1 2

2

( )
( ) sup{ }

( )x

u x
z u u u u

u z x
ξ

ξ η
η

μ
μ

μ+

  ∈   = ∈ ∧  ∈ −    
 

Proof. According to conditions, we obtained :ξ η+ Γ →   and  

{ } { }{ } { } { }=
x

z z z xξ η ξ η ξ η ξ + = + = Γ = + = = 
 

  { },
x

x zξ ξ η= = + = ⊂  . 

Therefore, ξ η+  is a hesitant fuzzy variable; thus, 

Figure 4. Hesitant possibility distribution map of λ = 2.

3.4. The Distribution of Functions of Hesitant Fuzzy Variable and the Distribution of Sum of
Hesitant Fuzzy Variables

Theorem 12. Provided that(Γ,A, PosH)is a hesitant possibility measure space,ξ is a hesitant fuzzy
variable, and g is a real-valued function; then, g(ξ) is also a hesitant fuzzy variable, and its hesitant
possibility distribution is presented as follows.

µg(ξ)(x) =

{
sup

u∈g−1(x)
{xu}

∣∣∣xu ∈ µξ(u), u ∈ g−1(x)

}

Proof. From the above conditions, we had

g(ξ) : Γ→ R , and {g(ξ) = x} = ∪u∈g−1(x){ξ = u
}
⊂ A.



Symmetry 2022, 14, 1184 13 of 17

Therefore, g(ξ) was a hesitant fuzzy variable; thus,

µg(ξ)(x) = PosH{g(ξ) = x} = PosH

{
∪u∈g−1(x){ξ = u

}}
=

{
sup

u∈g−1(x)
{xu}

∣∣xu ∈ PosH{ξ = U}, u ∈ g−1(x)

}

=

{
sup

u∈g−1(x)
{xu}

∣∣xu ∈ µξ(u), u ∈ g−1(x)

}

�

Theorem 13. Supposing that (Γ,A, PosH) is a hesitant possibility measure space, ξ and η are
mutually independent hesitant fuzzy variables, then ξ + η is also a hesitant fuzzy variable, and its
hesitant possibility distribution is presented as follows.

µξ+η(z) =
{

sup
x
{u}

∣∣∣∣u ∈ {u1 ∧ u2

∣∣∣∣ u1 ∈ µξ(x)
u2 ∈ µη(z− x)

}}
Proof. According to conditions, we obtained ξ + η : Γ→ R and

{ξ + η = z} = {{ξ + η = z} ∩ Γ} =
{
{ξ + η = z} ∩ ∪

x
{ξ = x}

}
= ∪

x
{ξ = x, ξ + η = z} ⊂ A.

Therefore, ξ + η is a hesitant fuzzy variable; thus,

PosH{ξ + η = z} = PosH{{ξ + η = z} ∩ Γ} = PosH

{
{ξ + η = z} ∩ ∪

x
{ξ = x}

}
= PosH

{
∪
x
{ξ = x, ξ + η = z}

}
= PosH

{
∪
x
{ξ = x, η = z− ξ}

}
=

{
sup

x
{u}|u ∈ PosH{ξ = x, η = z− ξ}

}
=

{
sup

x
{u}

∣∣∣∣u ∈ {u1 ∧ u2

∣∣∣∣ u1 ∈ PosH{ξ = x}
u2 ∈ PosH{η = z− ξ}

}}
=

{
sup

x
{u}

∣∣∣∣u ∈ {u1 ∧ u2

∣∣∣∣ u1 ∈ µξ(x)
u2 ∈ µη(z− x)

}}
�

4. Application of Hesitant Fuzzy Variables

In this section, we introduced two examples to show how hesitant fuzziness can be
used to model for hesitant fuzzy graph and hesitant fuzzy group decision making.

4.1. Hesitant Fuzzy Graph Based on Hesitant Fuzzy Variable

The complexity of thinking and the cognitive differences among people have deter-
mined that it is difficult for people to reach an agreement on the same issue, they often
have different views and, finally, they show a hesitant state. How can we more objectively
reflect people’s different preferences and hesitations, and how close can we come to the
real thinking mode of human beings. References [37–40] utilize the hesitant fuzzy set to
describe the degree of hesitation in the human thinking process, while this paper, from
another perspective, shows people’s hesitation more flexibly. This section mainly discussed
the application of the hesitant fuzzy variable in simulating human subjective thinking and
proposed a hesitant fuzzy graph according to the hesitant fuzzy variable.

Definition 14. Suppose that G = (V, E) is a graph, V = {v1, v2, · · · , vn} is a vertex set of the
graph G, E =

{
eij
}

is an edge collection, (V ×V,P(V ×V), PosH) is the hesitant possibility
measure space and ξij is a hesitant fuzzy variable on (V ×V,P(V ×V), PosH). If edges eij of the
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graph G = (V, E) are presented by ξij, G = (V, E)is called the hesitant fuzzy graph, which is
shorthand for G =

(
V, Eξ , PosH

)
.

From the above definition, the hesitant fuzzy variables show the existence and the
hesitant fuzzy degree of vertexes and, in this sense, it can more objectively simulate the
hesitant fuzzy degree in people’s thinking process. When ξij = 1, it explains that there is an
edge eij and its hesitant possibility is PosH

{
ξij = 1

}
∈ P([0, 1]); when ξij = 0, it explains

that there is no edge eij, and its hesitant possibility is PosH
{

ξij = 0
}
∈ P([0, 1]).

Therefore, a hesitant fuzzy graph consists of two components, the first one being the
topological structure of the graph and the other one being the distribution table of the
hesitant fuzzy variables corresponding to edges. For instance, Figure 5 shows the topology
of a hesitant fuzzy graph, and Table 1 shows the distribution table of the related hesitation
possibility and hesitation credibility.
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Table 1. The possibility and credibility distribution table of hesitant fuzzy graph.

Hesitant Fuzzy Distribution Value ξ12 ξ13 ξ24 ξ34

Hesitant possibility distribution 1 {0.8,0.9} {0.2,0.3} {1} {0.6,0.7}
0 {1} {1} {0.3,0.4,0.45} {1}

Hesitant credibility distribution 1 {0.4,0.45} {0.1,0.15} {0.7,0.8,0.85} {0.3,0.35}
0 {0.55,0.6} {0.85,0.9} {0.15,0.2,0.225} {0.5,0.7}

4.2. Group Decision Making Based on Hesitant Fuzzy Variable

It could be potentially significant to describe a subjective opinion with hesitation by
using hesitant fuzzy modelling. One of the most general situations is that a clear opinion
of an individual is not necessarily on a practical question, but their hesitant feeling is
stronger than others. In this sense, an individual’s hesitant judgement about an issue may
be characterized by a hesitant fuzzy variable. As an example, a company manager may
want to determine a collective opinion of his subordinates in regards to the quantity of
allocated money, which applies to research and development activities. Let ξi = {number
of money the subordinate i should be put into research and development activities}. The
hesitant possible distributions of ξi(i = 1, 2, 3, 4, 5, 6) might be as follows.

µξ1(x) =



{0.05, 0.1} x ≤ 200, 000
{0.1, 0.2} 200, 000 < x ≤ 400, 000
{0.2, 0.3, 0.4, } 400, 000 < x ≤ 550, 000
{0.8, 0.9, 1.0} 550, 000 < x ≤ 700, 000
{0.3, 0.4} 700, 000 < x ≤ 900, 000
{0.0, 0.05} 900, 000 < x
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µξ2(x) =



{0.02, 0.05} x ≤ 150, 000
{0.2, 0.3} 150, 000 < x ≤ 350, 000
{0.3, 0.4, 0.5, } 350, 000 < x ≤ 500, 000
{0.7, 0.9, 1.0} 500, 000 < x ≤ 650, 000
{0.2, 0.4, 0.5} 650, 000 < x ≤ 850, 000
{0.0, 0.02} 850, 000 < x

µξ3(x) =



{0.0, 0.05} x ≤ 100, 000
{0.1, 0.3} 100, 000 < x ≤ 200, 000
{0.3, 0.5, } 200, 000 < x ≤ 400, 000
{0.8, 1.0} 400, 000 < x ≤ 700, 000
{0.1, 0.2, 0.4} 700, 000 < x ≤ 800, 000
{0.0} 800, 000 < x

µξ4(x) =



{0.05, 0.15} x ≤ 250, 000
{0.1, 0.3} 250, 000 < x ≤ 350, 000
{0.2, 0.4, 0.5, } 350, 000 < x ≤ 550, 000
{0.7, 0.8, 1.0} 550, 000 < x ≤ 750, 000
{0.4, 0.5} 750, 000 < x ≤ 850, 000
{0.02} 850, 000 < x

µξ5(x) =



{0.05} x ≤ 100, 000
{0.2, 0.3} 100, 000 < x ≤ 250, 000
{0.3, 0.4} 250, 000 < x ≤ 450, 000
{0.7, 0.9} 450, 000 < x ≤ 650, 000
{0.2, 0.3, 0.5} 650, 000 < x ≤ 800, 000
{0.0, 0.02} 800, 000 < x

µξ6(x) =



{0.05} x ≤ 160, 000
{0.2, 0.3} 160, 000 < x ≤ 280, 000
{0.3, 0.4} 280, 000 < x ≤ 480, 000
{0.7, 0.9} 480, 000 < x ≤ 680, 000
{0.2, 0.3, 0.5} 680, 000 < x ≤ 880, 000
{0.0, 0.02} 880, 000 < x

Now, suppose that a manager obtained the hesitant possible distribution describing
the opinion of each subordinate, which is represented by a hesitant fuzzy variable. The
question we deal with is the following: is there a way of making an inference for the hesitant
possible distribution of a hesitant fuzzy variable associated with the group opinion from
the hesitant possible distributions of hesitant fuzzy variables corresponding to the issues of
each subordinate? Where the group opinion is only modeled except for an interactive group
decision, we could assume that there are six constants α1, α2, α3, α4, α5, α6 with ∑6

i=1 αi = 1,
and αi represent the importance of the ith subordinate’s opinion about the group opinion.
For instance, when α1 = 0.15 and α2 = 0.45, the opinion of the second subordinate is
three times more important than the first. We present that the hesitant fuzzy variable
η = ∑6

i=1 αiξi is a reasonable explanation of the group opinion. As a result, the hesitant
possible distribution of η would be inferred by the following steps based on the hesitant
possible distributions of (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6).

(1) Calculate the hesitant possible distribution of α1ξ1, denoted as µα1ξ1(x).
(2) Compute the hesitant possible distribution of α1ξ1 + α2ξ2 by the given operation in

Theorem 13.
(3) Sequentially perform the operation in the second step for the hesitant possible distri-

bution of α1ξ1 + α2ξ2 + α3ξ3 + α4ξ4 + α5ξ5 + α6ξ6.
(4) According to the above, Theorem 4.1 and from the hesitant possible distribution

of η, the hesitant possibility of {r1 < η ≤ r2} can be easily inferred for any −∞ <
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r1 < +∞,−∞ < r2 < +∞. where {r1 < η ≤ r2} may represent the final opinion of
a manager.

Although the introduced example is only a rough description of an application of
the hesitant fuzzy variable in a group decision-making framework, it showed that the
hesitant fuzzy variable concept appears to be convenient for modelling hesitant fuzzy
decision-making problems.

5. Conclusions

This paper introduced the hesitant possibility measure, hesitant necessity measure
and hesitant credibility measure on an ample space (Γ,A), and discussed some properties
concerning these three set-valued measures, which, respectively, corresponded to the hesi-
tant possibility measure space, hesitant necessity measure space and hesitant credibility
measure space. On the hesitant fuzzy possibility measure space, a hesitant fuzzy variable
was defined. Consequently, the distribution of this variable and one of its functions were
introduced, including several common hesitant fuzzy variables such as the triangle hesi-
tant fuzzy variable, trapezoid hesitant fuzzy variable, normal hesitant fuzzy variable and
exponential hesitant fuzzy variable. As a result, the axiomatic system with regard to the
hesitant possibility of hesitant fuzzy events was constructed. This axiomatic framework
was based on the hesitant fuzzy variable and could provide theoretical support for hesitant
fuzzy information processing, which was illustrated by two practical applications in the
fourth section of this paper. In the future, according to obtained results of the hesitant fuzzy
variable, the hesitant fuzzy theory could be enriched in digital numerical characteristics
of the hesitant fuzzy variable such as the mathematical expectation, variance, correlation
coefficient, covariance and all sorts of moments. Besides these notions, the multidimen-
sional hesitant fuzzy variable and its distribution are also directions of further research in
the future.
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