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1. Introduction

The subject of continued fractions and its applications to both continuous and dis-
crete systems have a long history and continue to impact research in various stability
contexts [1–9]. The discovery of interesting relationships between continued fraction expan-
sions and Schur polynomials, i.e., polynomials having their zeros inside the unit circle [1],
led to several investigations into the stability of polynomials via continued fractions.

In a recent work [10], the symmetric properties between Routh–Hurwitz and Schur–
Cohn stability types were highlighted. In [10], the test functions of each of these stability
types were expanded in continued fraction forms satisfying specific conditions.

In the Routh–Hurwitz case; Theorem 3 of [10], the coefficients of the continued fraction
expansion of the test function associated with the characteristic polynomial of the system are
relatively easy to obtain using sequential long division. In the Schur–Cohn case; Theorem 4
of [10], generating such coefficients is far from trivial. The aim of this paper is to develop a
systematic procedure for generating the coefficients of the continued fraction expansion in
the Schur case and to illustrate the procedure through an engineering application to the
stability of two-dimensional digital filters.

It should be noted that assessing the stability of 2-D digital filters requires one to check
the location of the zeros of complex polynomials [11]. Hence, all polynomials considered in
this paper have complex coefficients.

In Section 2, we lay out some definitions, notations, and the required results from [10].
In Section 3, we provide a systematic procedure to generate the coefficients of the contin-
ued fraction expansion associated with a Schur stable polynomial. The feasibility of the
procedure is illustrated in Section 4. An application to the stability of 2-D digital filters is
advanced in Section 5 to verify the proposed method.

2. Definitions and Notations

A reminder of the required definitions and results established in [10].

Definition 1. A linear discrete-time system of difference equations is stable if and only if all its
eigenvalues lie inside the unit disc. If

g(z) = a0 + a1z + a2z2 + · · ·+ an−1zn−1 + anzn (1)
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is the characteristic polynomial of the system, then the system is stable if all zeros of g(z) lie inside
the unit disc. Such polynomials are said to be Schur stable.

Definition 2. The reciprocal of g is defined by gτ(z) = zng(1/z). Then, Then, gτ can be written
as gτ(z) = an + an−1z + an−2z2 + · · ·+ a0zn where ak denotes the complex conjugate of ak for
k = 0, 1, . . . , n.

Definition 3. The test function of the given discrete-time system is defined by

Ψ(z) =
g(z)− gτ(z)
g(z) + gτ(z)

(2)

Theorem 1 ([10] Theorem 4). The linear discrete-time system of difference equations characterized
by (1) is stable if and only if the test function Ψ(z) defined by (2) can be written in the continued
fraction expansion

Ψ(z) = h0
z− 1
z + 1

+ k0 +
1

h1
z−1
z+1 + k1+

...
+ 1

hn
z−1
z+1+kn

(3)

where h0 ≥ 0, h1 > 0, . . . , hn > 0 and kjare imaginary or zero for 0 ≤ j ≤ n. This expansion in
z−1
z+1 is known as the bilinear transformation.

3. A Procedure to Generate the Coefficients of Ψ(z)

Motivated by [12], we would like to substitute the variable z−1
z+1 in (3) by s−1

s . Solving
z−1
z+1 = s−1

s for z leads to z = 2s− 1.
Therefore, we define the function T (s) in the following way:

T(s) = Ψ(2s− 1).

T(s) can now be written as

T(s) = h0
s− 1

s
+ k0 +

1
h1

s−1
s + k1+

...
+ 1

hn
s−1

s +kn

This expansion in s−1
s is known as the backward difference transform. We begin by

breaking up the above form of T(s) in the following way. Define

T(s) = T0(s) = h0
s− 1

s
+ k0 +

1
T1(s)

,

T1(s) = h1
s− 1

s
+ k1 +

1
T2(s)

.

In general, define

Tj(s) = hj
s− 1

s
+ k j +

1
Tj+1(s)

for 0 ≤ j ≤ n− 1 (4)

Finally,

Tn(s) = hn
s− 1

s
+ kn.
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Since each Tj(s) is a rational function, write it in the form :

Tj(s) =
∑

n−j
l=0 aj,j+lsl

∑
n−j
l=1 bj,j+lsl

(5)

The following theorem determines the values of the coefficients hj of (3).

Theorem 2.
hj = −

aj,j

bj,j+1
f or 0 ≤ j ≤ n.

Proof.
Multiply Tj(s) of (5) by

s
s− 1

.

Tj(s)· s
s−1 =

∑
n−j
l=0 aj,j+l sl

∑
n−j
l=1 bj,j+l sl

· s
s−1

=
∑

n−j
l=0 aj,j+l sl+1

∑
n−j
l=1 bj,j+l sl ·(s−1)

=
∑

n−j
l=0 aj,j+l sl+1

∑
n−j
l=1 bj,j+l sl+1−∑

n−j
l=1 bj,j+l sl

.

By changing the indices, the last form can be written as:

Tj(s)·
s

s− 1
=

∑
n−j
l=0 aj,j+lsl+1

−bj,j+1s + ∑
n−j−1
l=1 (bj,j+l − bj,j+l+1)sl+1 + bj,nsn−j+1

.

By a simple application of L’Hopital rule, we get:

lim
s→0

[
Tj(s)·

s
s− 1

]
= −

aj,j

bj,j+1
.

Going back to the expression of Tj(s) in (4), Tj(s) = hj
s−1

s + k j +
1

Tj+1(s)

Multiply both sides by
s

s− 1
to get

Tj(s)· s
s−1 = hj

s−1
s ·

s
s−1 + k j· s

s−1 + 1
Tj+1(s)

· s
s−1

= hj + k j· s
s−1 + 1

Tj+1(s)
· s

s−1 .

Hence,

lim
s→0

[
Tj(s)·

s
s− 1

]
= lim

s→0

[
hj + k j·

s
s− 1

+
1

Tj+1(s)
· s
s− 1

]
= hj.

That leads to the desired conclusion:

hj = −
aj,j

bj,j+1
for 0 ≤ j ≤ n. �

The next theorem determines the values of the coefficients k j of (3) in addition to some
important relations which will prove useful in generating the required coefficients.

Theorem 3.

k j =
aj,j+1 − hj

(
bj,j+1 − bj,j+2

)
bj,j+1

f or 0 ≤ j ≤ n,
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where hjas determined in Theorem 2.

In addition, the following two relations hold:

aj+1,j+l = bj,j+l for 0 ≤ j ≤ n and 1 ≤ l ≤ n− j,

and

bj+1,j+l = aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
− k jbj,j+l for 0 ≤ j ≤ n and 2 ≤ l ≤ n− j.

Proof. Consider the expression of Tj(s) as in (5) from which we subtract hj· s−1
s ,

Tj(s)− hj· s−1
s =

∑
n−j
l=0 aj,j+l sl

∑
n−j
l=1 bj,j+lsl

− hj· s−1
s

=
∑

n−j
l=0 aj,j+lsl+1−hj(s−1)(∑

n−j
l=1 bj,j+l sl)

∑
n−j
l=1 bj,j+lsl+1

=
∑

n−j
l=0 aj,j+lsl+1+hj(∑

n−j
l=1 bj,j+l sl)−hj(∑

n−j
l=1 bj,j+lsl+1)

∑
n−j
l=1 bj,j+lsl+1

Isolate the first term in the first two summations in the numerator of the last expression,

Tj(s)− hj· s−1
s

=
(aj,j+hj ·bj,j+1)s+∑

n−j
l=1 aj,j+lsl+1+hj(∑

n−j
l=2 bj,j+l sl)−hj(∑

n−j
l=1 bj,j+l sl+1)

∑
n−j
l=1 bj,j+lsl+1

By Theorem 1, hj = −
aj,j

bj,j+1
. That leads to aj,j + hj·bj,j+1 = 0. Therefore,

Tj(s)− hj·
s− 1

s
=

∑
n−j
l=1 aj,j+lsl+1 + hj(∑

n−j
l=2 bj,j+lsl)− hj(∑

n−j
l=1 bj,j+lsl+1)

∑
n−j
l=1 bj,j+lsl+1

By changing indices in the second summation in the numerator, we get

Tj(s)− hj·
s− 1

s
=

∑
n−j
l=1 aj,j+lsl+1 + hj(∑

n−j−1
l=1 bj,j+l+1sl+1)− hj(∑

n−j
l=1 bj,j+lsl+1)

∑
n−j
l=1 bj,j+lsl+1

Combining like terms leads to

Tj(s)− hj·
s− 1

s
=

∑
n−j−1
l=1 [aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
]sl+1 +

(
aj,n−hjbj,n

)
sn−j+1

∑
n−j
l=1 bj,j+lsl+1

Taking s2 as a common factor in both the numerator and denominator leads to:

Tj(s)− hj· s−1
s =

s2
{

∑
n−j−1
l=1 [aj,j+l−hj(bj,j+l−bj,j+l+1)]sl−1+(aj,n−hjbj,n)sn−j−1

}
s2
[
∑

n−j
l=1 bj,j+lsl−1

]
=

∑
n−j−1
l=1 [aj,j+l−hj(bj,j+l−bj,j+l+1)]sl−1+(aj,n−hjbj,n)sn−j−1

∑
n−j
l=1 bj,j+lsl−1

.

Therefore,

Tj(s)− hj·
s− 1

s
=

∑
n−j−1
l=1 [aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
]sl−1 +

(
aj,n−hjbj,n

)
sn−j−1

∑
n−j
l=1 bj,j+lsl−1

(6)
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On the other hand, returning to the expression of Tj(s) as in (4),

Tj(s) = hj
s− 1

s
+ k j +

1
Tj+1(s)

,

We get,
1

Tj+1(s)
= Tj(s)− hj

s− 1
s
− k j (7)

In addition, using the expression of Tj(s) in (5), we can write Tj+1(s) in the form

Tj+1(s) =
∑

n−j−1
l=0 aj+1,j+l+1sl

∑
n−j−1
l=1 bj+1,j+l+1sl

which is inverted to,
1

Tj+1(s)
=

∑
n−j−1
l=1 bj+1,j+l+1sl

∑
n−j−1
l=0 aj+1,j+l+1sl

(8)

By comparing the two forms of 1
Tj+1(s)

(7) and (8), we get

Tj(s)− hj
s− 1

s
− k j =

∑
n−j−1
l=1 bj+1,j+l+1sl

∑
n−j−1
l=0 aj+1,j+l+1sl

.

We already proved relation (6), which is

Tj(s)− hj·
s− 1

s
=

∑
n−j−1
l=1 [aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
]sl−1 +

(
aj,n−hjbj,n

)
sn−j−1

∑
n−j
l=1 bj,j+lsl−1

hence,

∑
n−j−1
l=1 [aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
]sl−1 +

(
aj,n−hjbj,n

)
sn−j−1

∑
n−j
l=1 bj,j+lsl−1

− k j =
∑

n−j−1
l=1 bj+1,j+l+1sl

∑
n−j−1
l=0 aj+1,j+l+1sl

.

Therefore,

∑
n−j−1
l=1 [aj,j+l−hj(bj,j+l−bj,j+l+1)]sl−1+(aj,n−hjbj,n)sn−j−1−kj ∑

n−j
l=1 bj,j+lsl−1

∑
n−j
l=1 bj,j+lsl−1

=
∑

n−j−1
l=1 bj+1,j+l+1sl

∑
n−j−1
l=0 aj+1,j+l+1sl

.

We write it as

∑
n−j−1
l=1 [aj,j+l−hj(bj,j+l−bj,j+l+1)−kjbj,j+l ]sl−1+[ (aj,n−hjbj,n)−kjbj,n ]sn−j−1

∑
n−j
l=1 bj,j+l sl−1

.

=
∑

n−j−1
l=1 bj+1,j+l+1sl

∑
n−j−1
l=0 aj+1,j+l+1sl

.

By changing indices in the numerator and denominator of the right-hand side, we get

∑
n−j−1
l=1 [aj,j+l−hj(bj,j+l−bj,j+l+1)−kjbj,j+l ]sl−1+[ (aj,n−hjbj,n)−kjbj,n ]sn−j−1

∑
n−j
l=1 bj,j+lsl−1

=
∑

n−j
l=2 bj+1,j+lsl−1

∑
n−j
l=1 aj+1,j+l sl−1

.

The above equation leads to the following three conclusions:
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1. aj,j+1 − hj
(
bj,j+1 − bj,j+2

)
− k jbj,j+1 = 0.

Hence,

k j =
aj,j+1 − hj

(
bj,j+1 − bj,j+2

)
bj,j+1

for 0 ≤ j ≤ n, as desired.

In addition,
2. aj+1,j+l = bj,j+l for 0 ≤ j ≤ n and 1 ≤ l ≤ n− j, and

3. bj+1,j+l = aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
− k jbj,j+l for 0 ≤ j ≤ n and 2 ≤ l ≤ n− j.�

4. Feasibility of the Procedure

We shall illustrate the feasibility of the above procedure by applying it to a 3rd degree
Schur polynomial.

We reconsider the same example we addressed in Example 2 of [10], but instead of the
trial-and-error approach we used there, we shall apply the above systematic procedure to
obtain the coefficients of the continued fraction expansion.

Consider the Schur polynomial

g(z) = 4z3 − 6z2 + 4z− 1

whose zeros are
1
2

,
1
2
+

1
2

i,
1
2
− 1

2
i

all lying inside the unit disc.
The reciprocal of g is

gτ(z) = zng(1/z) = −z3 + 4z2 − 6z + 4

Therefore, the test function can be written as

Ψ(z) =
g(z)− gτ(z)
g(z) + gτ(z)

=
5z3 − 10z2 + 10z− 5

3z3 − 2z2 − 2z + 3

Apply the transformation
T(s) = Ψ(2s− 1).

Then,

T(s) = Ψ(2s− 1) =
5(2s− 1)3 − 10(2s− 1)2 + 10(2s− 1)− 5

3(2s− 1)3 − 2(2s− 1)2 − 2(2s− 1) + 3
.

T(s) can now be written as

T(s) =
20s3 − 50s2 + 45s− 15

12s3 − 22s2 + 11s
.

We would like to expand T(s) in the form

T(s) = h0
s− 1

s
+ k0 +

1
h1

s−1
s + k1 +

1
h2

s−1
s +k2

We seek the values of h0, k0, h1, k1, h2, k2 using the above procedure.

By (5), we have Tj(s) =
∑

n−j
l=0 aj,j+lsl

∑
n−j
l=1 bj,j+l sl

.

By (4), T(s) = T0(s), so

T(s) = T0(s) =
∑3

l=0 a0,lsl

∑3
l=1 b0,lsl

=
a0,0 + a0,1s + a0,2s2 + a0,3s3

b0,1s + b0,2s2 + b0,3s3 ,
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which compared with T(s) = 20s3−50s2+45s−15
12s3−22s2+11s leads to

a0,0 = −15, a0,1 = 45, a0,2 = −50, a0,3 = 20,

b0,1 = 11, b0,2 = −22, b0,3 = 12.

Calculation of h0 and k0 :
By Theorem 1, h0 = − a0,0

b0,1
= 15

11 .

By Theorem 2, k0 =
a0,1−h0(b0,1−b0,2)

b0,1
=

45− 15
11 (11+22)

b0,1
= 0.

Calculation of h1 and k1 :
Again by Theorem 1, h1 = − a1,1

b1,2
.

By the formulas of Theorem 3, namely

aj+1,j+l = bj,j+l ,

and
bj+1,j+l = aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
− k jbj,j+l ,

We get, a1,1 = b0,1 = 11.

b1,2 = a0,2 − h0(b0,2 − b0,3)− k0b0,2 = −50− 15
11

(−22− 12)− 0 = −40
11

.

Then,

h1 = − a1,1

b1,2
= − 11
− 40

11
=

121
40

.

In addition, by Theorem 2, k1 =
a1,2−h1(b1,2−b1,3)

b1,2
. b1,2 = − 40

11 , already calculated.

aj+1,j+l = bj,j+l leads to a1,2 = b0,2 = −22

bj+1,j+l = aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
− k jbj,j+l leads to b1,3

= a0,3 − h0(b0,3 − b0,4)− k0b0,3

b1,3 = 20− 15
11

(12− 0)− 0·b0,3 =
40
11

.

Therefore, k1 =
−22− 121

40 (−
40
11−

40
11 )

b1,2
= 0.

Calculation of h2 and k2 :
Now, h2 = − a2,2

b2,3
, where

a2,2 = b1,2 = −40
11

.

bj+1,j+l = aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
− k jbj,j+l leads to b2,3 = a1,3− h1(b1,3 − b1,4)− k1b1,3

a1,3 = b0,3 = 12.

b1,3 =
40
11

already calculated.

bj+1,j+l = aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
− k jbj,j+l implies b1,4

= a0,4 − h0(b0,4 − b0,5)− 0·b1,3

b1,4 = a0,4 − h0(b0,4 − b0,5)− 0·b1,3 = 0− 15
11

(0− 0) = 0.

Then, b2,3 = 12− 121
40 ·

40
11 = 1.



Symmetry 2022, 14, 1226 8 of 10

Therefore, h2 = − a2,2
b2,3

= −−
40
11

1 = 40
11 .

k2 =
a2,3 − h2(b2,3 − b2,4)

b2,3
.

We know that, b2,3 = 1.

a2,3 = b1,3 =
40
11

was already calculated.

bj+1,j+l = aj,j+l − hj

(
bj,j+l − bj,j+l+1

)
− k jbj,j+l implies b2,4

= a1,4 − h1(b1,4 − b1,5)− k1b1,4 = 0.

k2 =
a2,3 − h2(b2,3 − b2,4)

b2,3
=

40
11 −

40
11 (1− 0)

1
= 0.

Therefore,

T(s) =
15
11

s− 1
s

+ 0 +
1

121
40

s−1
s + 0 + 1

40
11

s−1
s +0

or

Ψ(z) =
15
11

(
z− 1
z + 1

)
+

1
121
40

(
z−1
z+1

)
+ 1

40
11 (

z−1
z+1 )

It is no surprise that the ks are all zeros since by Theorem 1 they are either 0 or pure
imaginary. So, they must be zero because the given polynomial is of real coefficients.
We wanted to show via calculations that the k’s are zero to match the application with
the theory.

5. Application of the Procedure

In this section, we present an application of the above results to test the bounded input
bounded output (BIBO) stability of two-dimensional digital filters. Specifically, we shall
prove the relationship between BIBO stability and the procedure introduced in Section 3.

BIBO stability has been characterized in several equivalent ways of which we shall
mention the following two.

Theorem 4 [13]. The general two-dimensional complex digital filter F(z1, z2) =
m
∑

j=0

n
∑

k=0
ajkzj

1zk
2

is BIBO stable if and only if F(z1, z2) 6= 0 f or all {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1}.

Based on the work of Ansell [14], Huang [15] proved an equivalent result to that of
Justice and Shanks which states the following:

Theorem 5 [15]. The digital f ilter F(z1, z2) is BIBO stable i f and only i f the following two
conditions hold:

F(z1, 0) 6= 0 for |z1| ≤ 1, (9)

and
F(z1, z2) 6= 0 for |z1| = 1, and |z2| ≤ 1. (10)

Other equivalent conditions for BIBO stability can also be found in Strintzis [16] and
DeCarlo et al. [17].

In this section, we shall follow the conditions of Huang [15] to assess BIBO stability.
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Consider the two-dimensional digital filter characterized by

F(z1, z2) =
m

∑
j=0

n

∑
k=0

ajkzj
1zk

2, where b00 = 4, b10 = −6, b20 = 4, b30 = −1. (11)

Theorem 6. The system F(z1, z2) =
m
∑

j=0

n
∑

k=0
ajkzj

1zk
2 where b00 = 4, b10 = −6, b20 = 4,

b30 = −1 satis f ies condition (9).

Proof. Note that F(z1, 0) = b00 + b10z1 + b20z2
1 + b30z3

1 = 4− 6z1 + 4z2
1 − z3

1.
It can be verified that the zeros of F(z1, 0) are 1− i, 1 + i and 2 which all lie outside

the closed unit disc.
Therefore, F(z1, 0) 6= 0 for |z1| ≤ 1, and condition (9) is verified. �
The following theorem illustrates the relationship between condition (9) of BIBO

stability, and the procedure introduced in Section 3.

Theorem 7. Condition (9) of BIBO stability of the system

F(z1, z2) =
m

∑
j=0

n

∑
k=0

ajkzj
1zk

2 where b00 = 4, b10 = −6, b20 = 4, b30 = −1,

is satisfied if and only if the test function associated with the function F(z1, 0) can be expanded in
the continued fraction form

Ψ(z) =
15
11

(
z− 1
z + 1

)
+

1
121
40

(
z−1
z+1

)
+ 1

40
11 (

z−1
z+1 )

.

Proof. We need to realize that the function F(z1, 0) is the reciprocal of the polynomial

g(z1) = 4z3
1 − 6z2

1 + 4z1 − 1

introduced in Section 4.

Following the steps in the procedure of Section 4, the theorem is established. �

Theorem 8. F(z1, z2) as de f ined in (11) has no zeros f or |z1| = 1, and |z2| ≤ 1 i f and only i f
the test f unction Ψ(z) defined in (2) is a complex discrete reactance function.

Proof. We apply the procedure used by Reddy and Rajan [11]. On top of page 1691 in [11], the
functions B∗o

(
eiθ1 , z2

)
and B∗e

(
eiθ1 , z2

)
which Reddy and Rajan call the para-odd and para-

even parts are exactly the numerator and denominator, respectively, of our test function (2)

defined in Section 2, and therefore their function, Fo
(
eiθ1 , z2

)
=

B∗e(eiθ1 ,z2)
B∗o(eiθ1 ,z2)

is exactly our test

function Ψ(z).
Since Ψ(z) is already a complex discrete reactance function, condition (10) is thus

satisfied, and that proves the theorem. �

Now, system (11) satisfies both conditions (9) and (10) and is therefore BIBO stable.
The author thanks the referees for their suggestions, which certainly improved the

quality of the paper.
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