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Abstract: The traveling wave solutions of a generalized HD type equation are investigated in this
study. The traveling wave system is a singular system of the first class with given parameter con-
ditions. From the standpoint of dynamical systems, the bifurcations of traveling wave solutions in
parameter space are examined. It is demonstrated that solitary wave solutions, periodic peakons,
pseudo-peakons, and compacton solutions exist. All conceivable exact explicit parametric representa-
tions of various solutions are presented.
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1. Introduction

In 1993, Camassa and Holm found that CH-equation [1] mt + umx + 2uxm = 0,
m = u− uxx has a peakon solution u(x, t) = ce−|x−ct|, c ∈ R. In the past thirty years, for
the studies of peakon solutions in nonlinear wave equations, a lot of papers have been
published (see [2–4] and references therein). Peakon is a special traveling wave solution.
In [5], Li and Qiao defined a concept of pseudo-peakon. Li and Chen in [4,6] generally
considered a class of singular traveling systems. They demonstrated that periodic peakon
is a smooth classical solution of a solitary traveling system with two time-scales. Under
two classes of limit senses, a peakon is a limit solution of a family of periodic peakons or a
limit solution of a family of pseudo-peakons (see [7]). The compacton family is a singular
system solution family in which all solutions have finite sets of support, i.e., the defined
region of each solution with respect to the variable is finite and the wave function’s value
region is bounded. In [4,6,8], a categorization for different wave profiles of solutions was
offered, corresponding to different types of phase orbits.

In 2015, as a nonlinear generalization of the equation with pseudo-peakon solutions,
ref. [9] proposed a hierarchy of a generalized Harry Dym type (gHD type) equations
(see [10,11]). A typical member in the hierarchy reads

ut = 2(u−
1
2 )xxx + 2τ(u

3
2 )x, (1)

where τ ∈ R is a parameter. Equation (1) is reduced to the HD−equation when τ = 0.
The authors of [9] derived the Lax pair representation and bi-Hamilton structures of this
hierarchy. The authors of [9] found both implicit and explicit smooth solitons, peakon,
cuspon, periodic solutions, and (anti-) kink solutions of the extended Harry Dym type
equation using the travelling wave solution approach.

We noticed that the bifurcations and all conceivable exact solutions for the relevant
traveling wave systems of Equation (1) were not studied by these authors. In this study, we
look at these issues in terms of solving the relevant traveling wave systems of Equation (1)
based on system parameters.
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To study the traveling wave solutions of Equation (1), set u(x, t) = u(x − ct) ≡
(φ(ξ))−2, where ξ = x− ct and c is the wave speed. Substituting it into (1), integrating the
obtained equations once, we obtain

φ′′ =
µφ3 − cφ− 2τ

2φ3 (2)

The prime represents the derivative with regard to ξ, and µ is an integral constant. The
following planar dynamical system is equal to Equation (2):

dφ

dξ
= y,

dy
dξ

=
µφ3 − cφ− 2τ

2φ3 , (3)

which has the first integral as follows:

H(φ, y) = y2 − µφ3 + cφ + τ

φ2 = h. (4)

Clearly, on the straight lines, φ = 0 systems (3) are discontinuous. Such systems are
called the singular traveling wave systems of the first class defined by [4,6]. It is interesting
to find that the singular traveling systems have peakon, pseudo-peakon, periodic peakon,
and compacton solution families.

The above-mentioned theory of singular traveling wave systems (3) is employed in
this study to examine the wave profiles of the wave function φ(ξ) in the system’s solutions.
All potential exact explicit parametric representations for the traveling wave solutions of
the Equation (1) will be presented under different parameter circumstances by analyzing
the dynamics of the traveling wave solutions governed by the traveling wave system.

The main result of this paper is the following conclusion.

Theorem 1. (1) For a fixed parameter c 6= 0, in the (µ, τ)−parameter plane, system (3) has the
bifurcations of phase portraits shown in Figures 1 and 2.

Assume that µ < 0, τ < 0 in system (3). Then, we have
(2) System (3) has exact periodic wave solutions given by (7) and (11). When 0 < φb � 1, (7)

gives rise to a periodic peakon family.
(3) System (3) has exact solitary wave solutions given by (8) and (18). When |φM| � 1, (7)

gives rise to a pseudo-peakon family.
(4) System (3) has exact compacton solution families given by (9), (12), (13), (16), and (17).
(5) System (3) has exact bounded solutions given by (10), (14), (19), and (20).

The following is a breakdown of the paper’s structure. The bifurcations of phase
pictures of systems (3) based on parameter (µ, τ) change when c 6= 0 is fixed, as discussed
in Section 2. In Section 3, we look into the existence of solitary wave solutions, periodic
wave solutions, periodic peakons, pseudo-peakons, and compacton solutions, as well
as all of their exact explicit parametric representations. The solitary wave solutions of
Equation (1) are discussed in Section 4.
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(a) Parameter plane (b) (µ, τ) ∈ (I) (c) (µ, τ) ∈ L1 (d) (µ, τ) ∈ (I I)

(e) (µ, τ) ∈ (L2) (f) (µ, τ) ∈ (I I I) (g) (µ, τ) ∈ (L3) (h) (µ, τ) ∈ (IV)

Figure 1. Bifurcations of phase portraits of system (3) for c > 0, µ > 0.

(a) Parameter plane (b) (µ, τ) ∈ (I) (c) (µ, τ) ∈ L1 (d) (µ, τ) ∈ (I I)

(e) (µ, τ) ∈ (L2) (f) (µ, τ) ∈ (I I I) (g) (µ, τ) ∈ (L3) (h) (µ, τ) ∈ (IV)

Figure 2. Bifurcations of phase portraits of system (3) for c < 0, µ < 0.

2. Bifurcation of Phase Portraits

We begin by considering all conceivable system (3) phase portraits. It is known that this
system (3) has the same invariant curve solutions as the regular system it is connected with:

dφ

dζ
= 2yφ3,

dy
dζ

= µφ3 − cφ− 2τ, (5)

where dξ = 2φ3dζ, for φ 6= 0. We always assume that µ 6= 0.
To study the equilibrium points of system (5), we write that f (φ) = φ3 − c

µ φ −

2τ
µ , f ′(φ) = 3φ2 − c

µ . Obviously, if cµ > 0, then, when φ = ∓φ̃0 =
(

c
3µ

) 1
2 , f ′(∓φ̃0) = 0.

From f (∓φ̃0) = 0 follow that τ = ∓
√

3
9

√
c3

µ . Thus, when τ < |
√

3
9

√
c3

µ |, function f (φ)
has three real simple zeros φj, j = 1, 2, 3. Namely, on the φ−axis, system (5) has three
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equilibrium points E1(φj, 0), j = 1, 2, 3. When τ = |
√

3
9

√
c3

µ |, function f (φ) has a simple

real zero and a double real zeros. When τ > |
√

3
9

√
c3

µ |, function f (φ) has only one simple
real zero.

For a fixed c 6= 0, in (µ, τ)−parameter plane, there exist three parameter curves

(L1) : τ = −
√

3
9

√
c3

µ
, (L2) : τ = 0, (L3) : τ =

√
3

9

√
c3

µ
,

which partition (µ, τ)−parameter half-plane into four regions (I)− (IV) (see Figures 1a
and 2a below).

Let M(φj, 0) be the coefficient matrix of the linearized system of (5) at the equilibrium
point Ej(φj, 0). We have

J(φj, 0) = detM(φj, 0) = −2φ3
j (3µφ2

j − c).

According to the theory of planar dynamical systems (see [4]), if J < 0, then the
equilibrium point is a saddle point. If J > 0 and (TraceM)2 − 4J < 0 (> 0), then it is a
center point (a node point); if J = 0 and the Poincaré index of the equilibrium point is 0,
then this equilibrium point is a cusp.

We write that hj = H(φj, 0), where H is given by (4).
By the above discussion, for a fixed parameter pair c, we have the bifurcations of phase

portraits of system (3) shown in Figures 1 and 2
We have the bifurcations of phase portraits of system (3) depicted in Figures 1 and 2,

as a result of the above explanation, for a fixed parameter pair c,
It is easy to see that the phase portraits in Figures 1 and 2 are symmetrical with respect

to the y−axis. Therefore, we next only need to consider one case for Figure 1 or Figure 2.

3. Exact Pseudo-Peakons, Periodic Peakons and Compactons Determined by the Orbits
When c < 0, µ < 0

When c < 0, µ < 0, we see from (4) that y2 = τ+cφ+hφ2+µφ3

φ2 . By using the first equation
of (4), we obtain √

|µ|ξ =
∫ φ

φ0

|φ|dφ√
τ
|µ| +

c
|µ|φ + h

|µ|φ
2 − φ3

. (6)

By using (6), we can obtain the parametric representations of all orbits defined by system (3).

3.1. (µ, τ) ∈ (I), (L1): Exact Periodic Solution Family Defined by the Level Curves
H(φ, y) = h, h ∈ (h3, ∞)

In this case, (6) can be written as
√
|µ|ξ =

∫ φ
φb

φdφ√
(φa−φ)(φ−φb)(φ−φc)

, where φc < 0 <

φb < φ1 < φa. It gives rise to the following parametric representations of periodic family:

φ(χ) = φc +
φb−φc

dn2(χ,k)
,

ξ(χ) =
√

2
|µ|(φa−φc)

[
φcχ + (φb − φc)Π(arcsin(sn(χ, k)), φc

φb
, k)
]
,

(7)

where k2 = φa−φb
φa−φc

, dn(χ, k) is the Jacobian elliptic function, Π(·, ·, k) are elliptic integral of
the third kind (see [12]).

Notice that because system (3) has a singular straight line φ = 0, when φb � 1, (7)
give rise to a periodic peakon family (see Figure 3d, below).
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3.2. (µ, τ) ∈ (I I): Two Exact Periodic Solution Families Defined by the Level Curves
H(φ, y) = h, h ∈ (h2, h1), (h3, ∞), Respectively, and a Pseudo-Peakon or Solitary Wave Solution
Defined by H(φ, y) = h1

(i) For two families of periodic orbits defined by H(φ, y) = h, when h ∈ (h2, h1), we
have φc < φ1 < φb < φ2 < φa < 0. When h ∈ (h3, ∞), we have φc < 0 < φb < φ3 < φa.
They have the same parametric representations as (7).

(ii) For the homoclinic orbit to the equilibrium point E1(φ1, 0) encosing the equilibrium
point E2(φ2, 0), (6) can be written as

√
|µ|ξ =

∫ φM
φ

φdφ

(φ−φ1)
√

(φM−φ)
. It gives rise to the

following solitary wave solution:

φ(χ) = φM − (φM − φ1) tanh2
(

1
2
√

φM − φ1χ, k
)

,

ξ(χ) = 1√
|µ|

[
φ1χ± 2

√
φM − φ(χ)

]
, χ ∈ (−∞, 0), (0, ∞), respectively.

(8)

When |φM| � 1, (7) defined a family of periodic peakons (see Figure 3a). Equation (8)
defined a pseudo-peakon solution (see Figure 3b).

(a) Periodic peakon (b) Pseudo-peakon (c) Compactons (d) Periodic peakon

Figure 3. Profiles of periodic peakon, pseudo-peakon, and compactons.

3.3. (µ, τ) ∈ (L2), τ = 0: An Exact Compacton Solution Family Defined by
H(φ, y) = h, h ∈ (−∞, h1] and a Periodic Solution Family Defined by the Level Curves
H(φ, y) = h, h ∈ (h3, ∞)

(i) Corresponding to the open level curves passing though the point (φb, 0), φ1 < φb <

0, defined by H(φ, y) = h, h ∈ (−∞, h1), (6) can be written as
√
|µ|ξ =

∫ φ
φb

−φdφ√
−φ(φ−φb)(φ−φc)

.

Thus, we obtain the following parametric representation of the compacton solution family
(see Figure 3c):

φ(χ) = φc +
φb−φc

dn2(χ,k)
, χ ∈ (−χ01 , χ01),

ξ(χ) =
√

2
|µ|(−φc)

[
φcχ + (φb − φc)Π(arcsin(sn(χ, k)), φc

φb
, k)
]
,

(9)

where k2 = φb
φc

, χ01 = dn−1
(√

−φc
φb−φc

, k
)

.
(ii) Corresponding to the right stable and unstable manifolds of the saddle point

E1(φ1, 0) defined by H(φ, y) = h1, (6) can be written as
√
|µ|ξ = ±

∫ 0
φ

−φdφ
(φ−φ1)

√−φ
. It follows

the parametric representations of two bounded solutions (see Figure 4a,b):

φ(χ) = φ1 tanh2
(

1
2
√−φ1χ

)
, χ ∈ (−∞, 0), (0, ∞), respectively,

ξ(χ) = 1√
|µ|

[
−φ1χ± 2

√
−φ(χ)

]
.

(10)

Notice that if we take together the above two bounded solutions, then, we get a
“cuspon solution” (see Figure 4c), which is not a correct solution. It consists of two solutions.
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(a) Unstable manifold (b) Stable manifold (c) So-called cuspon

Figure 4. Profiles of two bounded solutions and so-called cuspon solution.

(iii) Corresponding to the closed level curve family, enclosing the point E3(φ3, 0),
defined by H(φ, y) = h, h ∈ (h3, ∞), (6) becomes that

√
|µ|ξ =

∫ φ
φb

φdφ√
(φa−φ)(φ−φb)φ

. Hence,

we have the following parametric representation of periodic solution family:

φ(χ) = φb
dn2(χ,k)

,

ξ(χ) =
√

2
|µ|φa

[φbF(arcsin(sn(χ, k)), k)],
(11)

where k2 = 1− φb
φa

, F(·, k) is the normal elliptic integral of the first kind.

3.4. (µ, τ) ∈ (I I I): Two Exact Compacton Solution Families Defined by
H(φ, y) = h, h ∈ (−∞, h1] and a Periodic Solution Family Defined by the Level Curves
H(φ, y) = h, h ∈ (h3, h2), et al.

When (µ, τ) ∈ (I I I), in Figure 2f, the changes of level curves defined by H(φ, y) = h
are shown in Figure 5a–f.

(a) −∞ < h < h1 (b) h = h1 (c) h1 < h < h3

(d) h3 < h < h2 (e) h = h2 (f) h2 < h < ∞

Figure 5. Changes of level curves defined by H(φ, y) = h when (µ, τ) ∈ (I I I).

(i) Corresponding to the two open level curve families passing though the point
(φa, 0) and (φb, 0), φc < φ1 < φb < 0 < φa < φ2, defined by H(φ, y) = h, h ∈ (−∞, h1)
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(see Figure 5a), (6) can be written as
√
|µ|ξ =

∫ φ
φb

−φdφ√
(φa−φ)(φ−φb)(φ−φc)

and
√
|µ|ξ =∫ φa

φ
φdφ√

(φa−φ)(φ−φb)(φ−φc)
.

As a result, we get the parametric representations of the two compacton solution
families as follows:

φ(χ) = φc +
φb−φc

dn2(χ,k)
, χ ∈ (−χ01 , χ01),

ξ(χ) =
√

2
|µ|(φa−φc)

[
φcχ + (φb − φc)Π(arcsin(sn(χ, k)), φc

φb
, k)
]
,

(12)

where k2 = φa−φb
φa−φc

, χ01 = dn−1
(√

−φc
φb−φc

, k
)

. And

φ(χ) = φa − (φa − φb)sn2(χ, k), χ ∈ (−χ02 , χ02),

ξ(χ) =
√

2
|µ|(φa−φc)

[φcχ + (φa − φc)E(arcsin(sn(χ, k)), k)],
(13)

where k2 = φa−φb
φa−φc

, χ02 = sn−1
(√

φa
φa−φb

, k
)

.
(ii) Corresponding to the right stable and unstable manifolds of the saddle point

E1(φ1, 0) and a open curve passing through the point((φa, 0), 0 < φa < φ2, defined by
H(φ, y) = h1 (see Figure 5b), (6) can be written as

√
|µ|ξ = ±

∫ 0
φ

−φdφ
(φ−φ1)

√
φa−φ

and
√
|µ|ξ =

±
∫ φa

φ
φdφ

(φ−φ1)
√

φa−φ
.

It follows the parametric representations of two bounded solutions (similar to
Figure 4a,b):

φ(χ) = φa − (φa − φ1) tanh2
(

1
2
√

φa − φ1χ
)

, χ ∈ (−∞,−χ03), (χ03 , ∞), respectively,

ξ(χ) = 1√
|µ|

[
−φ1χ± 2

√
φa − φ(χ)± ξ01

]
.

(14)

where χ03 = 2√
φa−φ1

tanh−1
√

φa
φa−φ1

, ξ01 = 2
√

φa − 2φ1√
φa−φ1

tanh−1
√

φa
φa−φ1

. We have a
compactom solution as follows:

φ(χ) = φa − (φa − φ1) tanh2
(

1
2
√

φa − φ1χ
)

, χ ∈ (−χ03 , 0), (0, χ03), respectively,

ξ(χ) = 1√
|µ|

[
φ1χ∓ 2

√
φa − φ(χ)

]
.

(15)

(iii) Corresponding to the open curve family passing though the point (φa, 0), 0 <
φa < φ2 or φ2 < φM < φa, defined by H(φ, y) = h, h ∈ (h3, h2) or h ∈ (h2, ∞) (see
Figure 5c,f), (6) can be written as

√
|µ|ξ =

∫ φa
φ

φdφ√
(φa−φ)[(φ−b1)2+a2

1]
. It gives rise to the

following parametric representation of a compacton solution family (see Figure 6d):

φ(χ) = A1 + φa − 2A1
1+cn(χ,k) , χ ∈ (−χ04 , 0), (0, χ04), respectively,

ξ(χ) = 1√
A1|µ|

[
(φa + A1)F(arcsin(sn(χ, k), k)∓ 2− 2A1

∫ χ
0

dχ
1+cn(χ,k)

]
.

(16)

where A2
1 = (b1 − φa)2 + a2

1, k2 = A1−b1+φa
2A1

, χ04 = cn−1
√

A1−φa
A1+φa

.
(iv) Corresponding to the open curve family passing though the point (φc, 0), 0 <

φc < φ2 < φb < φ3 < φa, and the closed curve family enclosing the equilibrium point
E3(φ3, 0), defined by H(φ, y) = h, h ∈ (h3, h2) (see Figure 5d), (6) can be written as√
|µ|ξ =

∫ φc
φ

φdφ√
(φa−φ)(φb−φ)(φc−φ)

and
√
|µ|ξ =

∫ φ
φb

φdφ√
(φa−φ)(φ−φb)(φ−φc)

. Hence, we obtain

the following compacton solution family (see Figure 6a):

φ(χ) = φb −
φb−φc

cn2(χ,k) , χ ∈ (−χ05 , χ05),

ξ(χ) =
√

2
|µ|(φa−φc)

[
φcχ− (φb+φc)

1−k2 dn(χ, k)tn(χ, k) + (φb−φc)
1−k2 E(arcsin(sn(χ, k)), k)

]
,

(17)
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where k2 = φa−φb
φa−φc

, χ05 = cn−1
(√

1− φc
φb

, k
)

.
The periodic family has the same parametric representation as (7) (see Figure 6b).
(v) Corresponding to the homoclinic orbit to the equilibrium point E2(φ2, 0),

passing though the point (φM, 0), defined by H(φ, y) = h2, (6) becomes that√
|µ|ξ =

∫ φM
φ

φdφ
(φ−φ2)

√
φM−φ

. Thus, we have the following solitary wave solution (see
Figure 6c):

φ(χ) = φM − (φM − φ2) tanh2
(

1
2
√

φM − φ2χ, k
)

,

ξ(χ) = 1√
|µ|

[
φ2χ∓ 2

√
φM − φ(χ)

]
, χ ∈ (−∞, 0), (0, ∞), respectively.

(18)

(a) Compactons (b) periodic wave (c) Solitary wave (d) Compactons

Figure 6. Profiles of solitary wave, periodic wave, and compactons.

3.5. (µ, τ) ∈ (L3): Exact Compacton Solution Families Defined by
H(φ, y) = h, h ∈ (−∞, h1), (h1, h2), (h2, ∞), and Two Bounded Solutions Defined by the Level
Curves H(φ, y) = h2

(i) In this parameter condition, all compacton families have the same parametric
representations as the above cases.

(ii) Correspoding to the stable and unstable manifolds to the double equilibrium point
E2(φ2, 0) defined by H(φ, y) = h2, now, (6) has the form that ±

√
|µ|ξ =

∫ φ
0

φdφ

(φ2−φ)
3
2

. Thus,

the unstable manifold has the parametric representation:

φ(ξ) =
1
8

2φ2 −
(

4
√

φ2 −
√
|µ|ξ

)2
+

(
4
√

φ2 −
√
|µ|ξ

)√(
4
√

φ2 −
√
|µ|ξ

)2
− 16φ2

. (19)

The stable manifold has the parametric representation:

φ(ξ) =
1
8

2φ2 −
(

4
√

φ2 +
√
|µ|ξ

)2
+

(
4
√

φ2 +
√
|µ|ξ

)√(
4
√

φ2 +
√
|µ|ξ

)2
− 16φ2

. (20)

Notice that if we take together the above two bounded solutions, then we get a “anti-
cuspon solution” (see Figure 7c), which is not a correct solution. It consists of two solutions.
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(a) Unstable manifold (b) Stable manifold (c) So-called anti-cuspon

Figure 7. Profiles of two bounded solutions and so-called anti-cuspon solution.

4. Exact Solitary Wave Solutions Determined by the Orbits When c < 0, µ < 0

In this section, we consider the exact solutions for Equation (1). Because we use the
transformation u(x, t) = 1

φ2(x−ct) , such that Equation (1) becomes Equation (2), in order to
study all solutions depending on parameters of system. Therefore, if a solution φ(ξ) of
system (3) can take some values which are near zero, then, u(x− ct) becomes a unbounded
solution. We do not like to consider the unbounded solution of Equation (1). By using the
results of section 3 we have the following conclusion.

Theorem 2. For a fixed c < 0 and µ < 0, we have
(1) When (µ, τ) ∈ (I I) in Figure 2a, Equation (1) has an exact solitary wave solution

u(χ) =
(

φM − (φM − φ1) tanh2
(

1
2
√

φM − φ1χ, k
))−2

,

ξ(χ) = 1√
|µ|

[
φ1χ± 2

√
φM − φ(χ)

]
, χ ∈ (−∞, 0), (0, ∞), respectively.

(21)

(2) When (µ, τ) ∈ (I I I) in Figure 2a, Equation (1) has an exact solitary wave solution

u(χ) =
(

φM − (φM − φ2) tanh2
(

1
2
√

φM − φ2χ, k
))−2

,

ξ(χ) = 1√
|µ|

[
φ2χ∓ 2

√
φM − φ(χ)

]
, χ ∈ (−∞, 0), (0, ∞), respectively.

(22)

For the periodic wave solutions of Equation (1), we can give similar results as Theorem 2.
We omit them.
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