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Abstract: The paper’s main purpose is to find the unknown source function for the conformable
heat equation. In the case of (®,g) € £2(0,T) x £L2(Q), we give a modified Fractional Landweber
solution and explore the error between the approximate solution and the desired solution under a
priori and a posteriori parameter choice rules. The error between the regularized and exact solution
is then calculated in £9(D), with g # 2 under some reasonable Cauchy data assumptions.

Keywords: parabolic equations; conformable derivative; Fourier truncation method; inverse source
problem; inverse initial problem; regularization; Sobolev embeddings

1. Introduction

In this paper, we consider the initial value problem for the conformable heat equation
(or called parabolic equation with conformable operator):

;a;j(u —kAu) — Au(x,t) = ®(t) f(x), xeD, te(0,T), "
u(x, 1) =0, x €dD,t € (0,T).

Here, D ¢ RN (N > 1) is abounded domain with the smooth boundary 0D, and T > 0.
It is an obvious fact that a conformable operator has many practical applications, branches
of science and engineering; see for example [1-10]. The applications of conformable
derivative models in the harmonic oscillator include the damped oscillator, and the forced
oscillator (see [11]), electrical circuits (see [12]), chaotic systems in dynamics (see [13]), and
many more applications, (see [14-21]) .

Conformable derivative model: Let us take B as a Banach space, and f as a B-valued

function on [0, ). Let % be the conformable derivative of order 0 < B < 1 locally
defined by:
Pf) L furT ) )
ot 150 T ’
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for each t > 0. For more knowledge about the above definition, we refer the reader
to [22-24]. There are two interesting points regarding the relationship between conformable
and classical derivatives:

*  Letusassume that B =R, if f is a real function and s > 0, then f has a conformable

C
fractional derivative of order §, and % =sl7F % ;
e If Bis not R, for example B are Sobolev spaces. There are not many conformable
related results in Banach spaces, see [25].

The inverse source problem for (1) is described as follows. The final time condition
u(x, T) = g(x), together with the additional condition u(x,0) = 0, x € D. The inverse
source problem for (1) is understood as finding the function f when the input data g, ®
is given. As we know, the Problem (1) is ill-posed, and according to our experience and
understanding, the frequent infringement is the continuity of the solution according to data.
Therefore, to provide a good approximation, we need to regularize these problems. Before
going into adjustment, we would like to review a bit of the history of the Problem (1).

¢ Incase § =1, the above equation becomes the classical pseudo-parabolic equation;
this type of equation has received much attention from mathematicians, see [26-28];

e Incase § # 1, with Caputo derivative model, we find the following documents, see [4].
Luc and co-authors studied the existence and uniqueness of a class of mild solutions
of these equations. In [29], the authors considered the non-local Problem (1) for a
pseudo-parabolic equation with fractional time and space. In [30], Tuan and his group
considered a class of pseudoparabolic equations with the nonlocal condition in two
cases: the nonlinear source function ad linear source function. For the first case, by
using the Sobolev embeddings, they established the existence, the uniqueness, and
some regularity results for the mild solution of Problem (1). For the second case, using
the Banach fixed-point theorem, they proved the existence and the uniqueness of
the mild solution for (1). In [31], the authors considered two problems. For the first
problem with the source term satisfying the globally Lipschitz condition, we establish
the local well-posedness theory, and the further local existence theory related to the
finite time blow-up are also obtained for the problem with logarithmic nonlinearity.
For the second problem, they proved the global existence theorem.

e We have not seen any findings for this kind in case f # 1 with the conformable
derivative model, and the source function survey problem is much more sparse, thus
our study concentrates on this topic.

The regularization problem is a very interesting problem, with common regularization
methods such as the Tikhonov method [32], Quasi Boundary Value method [33], Fractional
Tikhonov method [34] and mollification method [35]. In [36], T. Wei with the Tikhonov
regularization method, in [37], Ting Wei and her group considered a time-dependent
source term by using a boundary element method combined with a generalized Tikhonov
regularization. However, in this article, we use a modified fractional Landweber method
to solve the unknown source Problem (1). Besides, there is a new point in this paper;
we evaluate the error of exact and normalized solutions in £9(D) space, with g # 2. In
this case, the equality Parseval was not used. One way to overcome this weakness is to
use the embedding between £7(D) and Hilbert scales spaces X"(D). The main analytical
technique in our paper is to use some embeddings and some analysis estimators related
to Holder inequality. To complete our proofs, we learn many interesting techniques from
N.H. Tuan [38]. For the reader’s convenience, we would like to outline the main results of
the paper.

*  We give the ill-posedness of Problem (1);
*  Showing the regularization of Problem (1), with the two subsections;

- Uncertainty of Problem (1) of determining the source function;
—  The conditional stability of Problem (1);
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*  Using the modified fractional Landweber method to solve the Problem (1). We obtain
the convergence rate as follows:

— InSection 4.1, under a priori parameter choice rule;
—  In Section 4.2, under a posteriori parameter choice rule.

* It gives the error estimate in £9 space, with q # 2.

This paper is organized as follows. Section 2 introduces some function spaces and
embeddings. In Section 4, we deal with the regularized solution for the inverse source prob-
lem for (1) by the Modified Fractional Landweber method under a priori and a posteriori
parameter choice rules. In Section 5, we solve the Problem (1) in the case of observed data
in L9 space. Finally, we present a numerical experiment.

2. Preliminary Results

Let us recall that the spectral problem:

Aey(x) = —Ayen(x), x €D,
en(x) =0, x € 9D,

admits the eigenvalues 0 < Ay < Ay < --- < A, < ... with A, = o0 asn — oo. The

corresponding eigenfunctions are ¢, € H} (Q).

Definition 1. (Hilbert scale space). We recall the Hilbert scale space, which is given as follows:
o0 2
X"(D) = {f e L2(D), ) /’\%’(/Df(x)en(x)dx> < oo},
n=1
for any r > 0. It is well-known that X" (D) is a Hilbert space corresponding to the norm,
- o\ 172
Il o) = ( YA ([ (i) ) , feX(D). @
n=1

Lemmal. Let @ : [0, T] — Rsuch that &y < ®(t) < &y where Py and Pq are positive numbers.
Then the following estimates are true:

1 T A sP—TB T ®
p—1 n_z - <1
1+k/\n/0 s exp(l_Hdn 5 )@(s)dsi B A 3)
and

D, A TR 1 /T fo1 An  sP—TP

1= — )| < .

A [l P ( 1+kA B )} ST+kAn Jo © P (1 TkA, B )cb(s)ds @
Proof. First of all, we have the estimate fOT sP~Lexp (5 Jf,?)\n sﬁBTﬁ )ds = exp (— lf‘ﬁ %&)
T
[sP~lexp (3 J:‘Ij/\n %)ds, putting z = 1 ;\I?A,, %, and through basic calculations, and applying

0
the inequality (1 —e™*) < x, for x > 0, since ®(t) < Py, we get:

-1 n < -1
1+k)»n/o ° eXp(1+kAn B Jo(s)ds < B Au ©)

Since ®(t) > &y > 0, we have:
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T T
1 An P —TFP An P —TFP
- - -1 n > / -1 n st — 1
1+k/\n0/5 exp<1+k/\n 3 )CID(s)dS_CIJOO s exp(1+kAn 5 )ds
0 Ao TP
= — 1 —_— _— — .
/\n[ eXp( 1+ kA ,Bﬂ ©)
Let us consider the following function: G(x) = H—ka' x > 0. The derivative of
1
which is equal to: G'(x) = Ari)? > 0. This implies that G is an increasing function on

(0, +00). Therefore, we get:
A(T4KA) "> A (T +kAq) L

It follows from (6) that:

’ L B TH B
1+lkAn0/SﬁleXp(14i\k)\ns ﬁT >q’(s)dszi[l_e"l°(_1ﬁilalz)}' @

The Lemma is proven. O
Lemma 2. Let Oy, Oq be positive constants such that &y < ®(t) < Py. By choosing

o€ (O, %), and B(®y, ®1) = D1 + %, we obtain

471@y < [®;(t)] < B(Po, P1)- (8)
Proof. Seein[39]. O

Lemma 3. (See [40]) The following statements are true:

N 2N
P H [ - — < >
N 2N ©
s P j < i <
X%(D) — LF(D), if 0_s<4, PSN_is
3. Regularization of Inverse Source Problem
We consider the mild solution in Fourier series, u(x,t) = Y un(t)eq(x), with
n=1
un(t) = [u(-,t)es(x)dx. Taking the inner product of the equations of Problem (1) with
D
ey gives:
o t kA o t A t = (F(.,t t 0,T
w(u(" )/el’l>+ nﬁ@’[(v )/el’l> - n<u(-/ )/3n> _< (-/ )/e}’l>/ e( ’ )/ (10)
(u(.,0),en) = (uo, en)

The first equation of (10) is a differential equation with a conformable derivative

as follows:
Cop An 1
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In view of the result in (Theorem 5, “[41], p. 318”) and (Theorem 3.3, “[42], p. 318"),
the solution of Problem (1) is:

B An P 1 fp Ay sP—1tP
u”(t)7exp(_1+k)\ng)u0’n+71+k/\n/o 5 exp(1+kAn7ﬁ )Pn(s)ds.

To find the formula of the mild solution to Problem (1), with u,(0) = 0 and
Fu(s) = ®(s)f(x). Letting t = T, we know that:

T
(/g(x)en(x)dx> = ﬁ(/f(x)en(x)dx) /sﬁ‘_1 exp (Hi\izMSﬁ_Tﬂ)cb(s)ds. (12)
D D 0

After a simple transformation, we get:

-1

T
/ flx)en(x)dx) = { / e (5 32A11$)¢(s)ds} (14 k) / g(x)en(x)dx). (13)
0 D

This leads to:

(o] T —
f) =% { [ texp (1 sz” 55;#)@(5)4 1(1+k)\n)( [ s@en(x)dx)entx). (1)

=115 D

3.1. Uncertainty of Source Problem
Theorem 1. The inverse source problem (1) is ill-posed.

Proof of Theorem 1. We defined a linear operator S : £2(D) — £2?(D) as follows.

T

S BT
Sf(x) = Ji(l +kAy) 7t [/sﬁl exp <1+/\k)\n [%T ><D(s)ds] :Zk(x,w)f(w)dw, (15)

n=1 0

n=1 ﬁ
Due to k(x,w) = k(w,x), S is a self-adjoint operator. We defined the finite rank
operators Sy and considered its compactness :

where k(x,w) = f(l + kAt [/Tsﬁ_1 exp (1 _:LZ/\H S~ Tﬁ)@(s)ds} en(x)en(w).
0

N ’ B_Th
_ Ap sP—=T
Snf(x n:1 (14+kAy) [O/sﬁ Lexp (1 n ZAn 3 ><I>(s)ds} (D/f(x)en(x)dx)en(x). (16)
From (16), through some basic calculations and using the Lemma 1, we have:
2 TP, +°°
Sxf—Sf < /f en(x)dx) . (17)
H HLZ(D) B L N+l /\2 n( )

From (17), we have:

B
ISF = 8y < (F52) iz, to 0 in L) L3D)) as N 0. (19

Additionally, S is a compact operator. The SVDs for the linear self-adjoint compact
operator S are:

i B_ TP
S=(1 —i—k/\n)*1 {/sﬁ*1 exp (1;\22\ s ,BT ><b(s)ds}, (19)
b n




Symmetry 2022, 14, 1490

6 of 20

and corresponding eigenvectors are e, is an orthonormal basis in £,(D). Therefore, the

inverse source Problem (1) can be formulated as an operator equation Sf(x) = g(x) where,

by g(x), and by Kirsch, it is ill-posed. Next, we show an example, with final time data
1

;= A, 2e¢; and ug = 0. By (14), the source term corresponding to g; is:
8 i y p gtog

Filx) = [/Tsﬁl exp (1:;% s _ﬁTﬁ)QJ(s)ds} B

0

L. (20)

The input final data g = 0 then the source term corresponding to g is f = 0. We have
error in £? norm between g; and g,

Nf—=

Jim g = 8ll2(py = Hm A; * =0. (21)
Then the error in £2 norm between f; and f
i~ Fllpzy = s 27— lim i fll g > o0 22)
i L2(D) = Tﬁcpl i i oo [ £2(p) = .

From (21) and (22), we deduce that the solution to Problem (1) is unstable in £2 (D). O
3.2. The Conditional Stability
Theorem 2. Assume that f € X'(D), g € L2(D), and ||f||xrpy < B then we have:

oy 23)

£l c2(py < C(m, B)||g

whereby C(r, B) = BT D (1 —exp (—M(1 +k/\1)*1%ﬁ)) "m.

Proof of Theorem 2. The proof of this theorem can be conducted similar to the articles [39].
We omit this here. [

4. A Modified Fractional Landweber Method and Convergent Rate

Based on a modified Fractional Landweber method, we show the error estimate
under the a priori regularization parameter choice rule and the a-posteriori regularization
parameter choice rule, respectively. Now, we use the modified Fractional Landweber
iterative method to obtain the regularization solution for Problem (1). We give the following
iterative form:

folx) =0, fe(x) = fe1(x) = E((S°)F frr(x) = (878) 7 §73(x)), T =1,23,..., (24)

where T is the iterative step number and the regularization parameter is 7~ !. The coefficient
& is called the relaxation factor and satisfies 0 < & < ||S||~(¢*1), by denoting an operator
R¢ : g — fsuch that

m—1

fu(x) =& Y (1-2(878) ) (5°8) 7 87¢(x), (25)

k=0
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with (19), it gives :

Yoo q _ —_1|at+lym
sl = Rgsta) = 15 - IR LN (g emin)ento. eo
D

n=1

whereby

T

Pu(k,B, T, ®;5) = (1+k}\n)—1[/sﬁ—1exp <1szn€’ﬁ_[aT/g>q>(s)ds]. 27)
0

a+1

a+1
M < 1, inwhich Q

Q
depends on Q = TP®{B~1. With how to choose & in above, by denoting z = & |QA4

Lemma 4. For 0 < a < 1, if we choose ¢ € (O,

) then 0 < C‘%

a+1
|""", we have

_ 1
(1-(1—2)")(2&~) =T < mariga, (28)
Proof of Lemma 4. A complete demonstration of this inequality can be found in [9]. O

4.1. A Priori Parameter Choice Rule

Before we go into proving the main theorem, we need the following lemmas:

Lemma 5. For 0 < a <1, then we get:
1

Q a+1 m 1 1 1 1 1 a+1
_ < « o
(1= 2™) wt <t s () 29)

Proof of Lemma 5. In here, we denote A,, = z, this implies that:
m
Gi(z) = (1-glQ*" 1z ) T,
Taking the derivative of the variable z and solving the G{(z9) = 0, we can find that:

20 = EF1Q[1 + m(a +1)] 77, (30)

maximuizes the function G(z). Hence, we get:

o ma+m \" 1 o
gl(z)égl(z@>_<ma+m+1> (éQ“"‘l(l—i—mzx—i—m)) : (31)
Finally, one has:
Gi(z) < Q L& @ mwh (4 1)@ (32)

O
Theorem 3. Let f € X'(D), for any g,8; € L*(D) such that ||gs — g||£2(D) < 6. The
reqularization parameter m is chosen

at

n=1(5) " (i

(33)

AR
—_
—
Nl—=
NS
[E—
~
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then we get:
; 1
||fm,(5_f||£2(,D) s Of order §2- (34)
whereby [m] denotes the largest integer less than or equal to m.

Proof of Theorem 3. We have:

[Z% _fH£2(D) < || fms _meLZ(D) + || fon —fHEZ(D)- (35)
Applying the inequality (a +b)> < 2(a® + b?), we estimate at | fins — me£2(D)
as follows:
Hfm,zS _mei:Z(D)
[ 1jat1ym)2 (Zj;g,s(x)en(x)dx)en(-) (fg (x)dx)en () ,
B n;l [1 - (1 - §|Q/\n ’ ) } ( Pﬂ(k/ﬁ/T/chs) - Pn(k/ﬁ/ T/q))
o2 (g (g5(x)—g(x))en(x)dx)en(-) 2
1)« m
s2p-a-don T ( P(kﬁT‘D(s) )
= 1ja+1 <fg dx)en( ) (fg (x)dx)en(x)
+2n§1[1—(1—‘:‘Q)\n ‘ ) ] ( Pn(k/,B,T,q)(S) - Pn(k,ﬁ,T,qD)
- o e - s@)ed)ad),
<23 [1- =g 1) lon | on | (L)
Hy
(fg (x)dx)en(-)  »
= _1jat+1ym]? Pn(k,ﬁ,T,q)5—
2L 1= (=gjoa "] ( Pn(k,[%,T,cI>5) Pulk, B, T, D) ) : (36)
Ha

We will divide the evaluation (36) into two steps as follows:
Step 1: By means of the Lemma 4, we have estimate of #; as follows:

S1E2 5 (Q M, T, @), (37)

- 2 .t AN
whereby ailﬁ(Q, A, T, @) =2Q% 1A @ 2 {1 — exp ( — 1;\—,{])‘1%)} )
Step 2: Next, Hp can be bounded as follows:

oo [1_ (1 — /\;1“+1m Pnk T d; — 2 2
2t 0 T g, w( T ([ e

2 0 . . 1ﬂc+1
<32Q“ Jzi[l (1 C|QA | /f en(x dx

QAT n=l QA1 »
32 /Q\atty, 2 .2 o
< — = o o
=92 (Al) " mE G| fl 2 ). (38)
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In here, we have:

R 4 et
|fng = fnll g2y < OmTEETEL (Q, A1, T, o) +;>C(M) Tom e 2
< omEEET [V 5(Q M, T, @0, )], (39)
whereby
4 i
Vup(QALT B0, 1) = V3,5 (Q AL T00) + 2 () T )

Next, we give the estimate of the approximation error || f,, — f| c2(p) as follows:

. e An(fg(x)en(x)dx)
| fn = fll 2y S:;[l_‘:’fn H} At 7>Dn(k,/3,:r,q>)
< f E —g‘% w A ( /f Jen (x)dx). 41)

From (41), using the Lemma 5, we can know that:
S S
1= Fll oy < Q& S 1 (a4 1) "5 |l (42)
Combining (36) to (42), we get:
s = Fll 2y < Sm™TETT [V g (Q A1, T, Po, f)]
1
+ Q7  m T T (¢ +1) "7y (43)

Let by choose m as follows:

m=(3) " () g )

This leads to

1
1fns = Fll gy < 82 B2 (a+1) 70T [ 1(Q A1, T, @, f)]
+63 (B &+ 1) Q) V| fllxi ) (45)

Nl—

O

4.2. A Posteriori Parameter Choice Rule

In this section, we look at the following regulatory parameter choices in Morozov’s dif-
ference principle. We construct the regular solution sequence gj, f,, s equals the Landweber
iteration method. Stop algorithm at the first occurrence of m = m(4).

H‘Sfm,é - 85H52(D) < 7é. (46)
where o > 1 be a fixed constant an ||g;|| > ¢ > 0.

Lemma 6. Let Y(m) = ||Sfyus — 85| c2(p)- Then we declare that:

a. Y(m)isa contmuousfunctzon.
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b. Y(m)—0asm — 0.
c. Y(m)— Hg(chz(D) as m — oo,
d.  Y(m) is a strictly increasing function, for any m € (0, +00).

The proof of the above lemma is simple and completely similar to that in [39].

Proof of Lemma 6. From (15) and (26), our proof starts with the observation that:

+o0
1
Yim) = || ¥ (1-gloagt " / ge@e@dx)en)|| @)
n=1 L2(D)
O
Lemma 7. Assume that (47) holds, the regularization parameter m satisfies
_ 147 w1 EN T
B 1+r (1) (210 _ i sl s
< (TP p!) Q=) : Je—1 7 (5) (48)
Proof of Lemma 7. From (26), we have:
too | _ (1 . C|QA;1|’X+1)m
ng(x) - = Pn(k 'B T,CD) (D/g(x)en(x)dx>en<x)r (49)
and
= —1ja+1l\m
[SRig — 8l 2y = || X (1 —ela M) ( [ s(en(x)dx) (50)
n=1 D l:z(D)
It is easy to see that (1 —ZloAgt |"‘+1) < 1, by using the (46), we get :
HSRmflg _g||£2(D) > ||8Rm7185 _g5HL‘2('D) - H(‘SRmfl - I)(g _85>||52(D)
> 00— ||(SRu—1 = D)|| p2ppy Z 06 =0 > (¢ —1)d. (51)
On the other hand, from the reviews above, add the Lemma 6, we receive:
SRy-19 — &l rapry = 1—§QA1“+”’1 Yen (x)dx
ISRu-ss =8l = | £ (1-elors! (st ) o
Jio 1*§|Q)\ 1}ﬂc+1m1)\—r7)(kﬁr1—vq>) <D )
= n n\,pFr -+, Pn(k ‘B T q>) LZ(p)
—+o0
C{Q/\Jl}aﬂ)mfl/\;l—‘r (Tﬁq>1ﬁ A ( f dx)
n= s £2(D)
< (TP p71)BQ™ (g2 (1 4 ) e~ o, (52)
whereby
(0—1)6 < (TP B~ 1) BQ (g it (1 4 r)aitm i, (53)
From (53), we conclude that:
atl
B p1) T o) (LY (g5 (Ey 1T
m < (TP ) B Qe (S )0 1) 1 () (54)
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Theorem 4. Let the condition ||gs — g|| py < dand f € X"(D) hold, and the parameter
reqularization m is found in the Formula (46), then it gives:

Hfm,(S _fHﬁz(D) < is Of order (5# (55)

Proof of Theorem 4. Using the triangle inequality, we have:

1fins = 1l e2py < I fms = Funll 2y + 1 fin = £l 2y (56)

The proof in the Formula (39) has given us:

s = Fnll g2y < EmMFTETT Vi s(Q, A0, T, o, f). (57)

Applying the Lemma 7, we get:

L
T+

| s — megZ <9 B’%C%(Tﬂ‘blﬁ hym

X(Qr+l((7_1)) 1+r(1_(:;':r>“+1 a,ﬁ(Qr/\lfT/q)O’f)' (58)

Now, using the Holder’s inequality and the Formula (46), and results obtained from
the Lemma 2, we get the estimate of error || f, — f|| £2(y @ follows:

+o0 1t m w% 1 w%l
ol < || & ([1- el ") T ( [ stenyix) o
X Jio ({15’(2/\ 1’“"'1 ) (/g x)en (x dx) "
n=1 ﬁZ(D)
£ (110 b fsioe)
= " | Pu(k, B, T, ®)| 2 ! £2(D)
oo 1
1 /\ 1 oc-i—l ) ( n )
| 5 (D-aon ") (fsmee) |
/\n(fgxenxdx> 1
+o m —r r+1
< 1_ A;l a+1 ) /\n _ D
- ,g([ clor | } | Pu(k, B, T, @) |Pulk,B,T,®)| ll2p)
Hs
+oo 7T
<X (=elem 1) ([ (et = gax) +gstx)en()ax) |, 59)
n=1 D LZ(D)

Hy
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From (59), we have estimate of 73 and H4 as follows:

1
400 T

Hi < Z([1—§|Q/\;1’a+1]m>w);;(b /f X)en(x dx)

j=1 L2(D)

| B o o]
L Pl p 7,00 " e
s ! A’(/f(x)e (x)dX) -
= "Do[l*ex}’(lfiﬁfq%ﬁ)w ' D 2o
1 A TP -7
SBr}rl @0[1—exp(1+llc/\l B )]’ 1. (60)

Next, H4 can be bounded.

—+o00
Hy < —gloa en(x)dx
o<| (I -cloas| Z )
+o0 =1
+ 1—&loA;! atlym (x)e,(x)dx
n;([ | . )(Zgé ) £2(D)
= i m i
Y ([-gloat )(/ (8(x) — ga(x))en(x)dx ) +
n=1 D L2(D)
<671 (14 0)7. (61)
Combining (59) to (61), it gives :
o1 A T = r
fns = fll 2y < 671 B @0[1—exp(1+lch1F)]‘ Tt (62)
From (58) and (62), we conclude that:
s = Fll 2y < 57TB7T (T2 + o), (63)
whereby
—~ A TA . |-+ T
Ji = ’%[1 _eXp(1+11</\1 ?)H ST,
1
%= g%ﬂ(Tﬁ@lﬁﬂ)%ﬂ(grﬂ((f—m)*l%(1;”)"‘“ Vap(QALT, @0, f).  (64)

O

In the next section, we provide the error estimation between the exact solution and the
regularized solution by the Fourier truncation method.

5. Regularization of Inverse Source in L7(D) Space

Theorem 5. Let us take (®g, gs) € L9(0,T) x L9(D) such that s > Py > 0forany0 < t < T
forany% <gq<2and

s = @] oo 7y + 185 = 8l o) < 0 (65)

Let us assume that &5 € X"7(D) forr > 0and 0 < ¢ < % Constructing a regularized
solution as follows:
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fs(x) =) {/Tsﬁl exp (1 —3’2/\” Sﬁ_‘BTﬁ>CD5(s)dS} - (1+ kAy) (/g(;(x)en(x)dx> en(x). (66)
0 D

An<Ns

Then the error estimate is bounded by:
Vo=l 2y S ING 7 fllcrsec) + PiNsdll fllngm) + Pa NG 2770 Ho (67)
L N4y (D)
here Ny satisfies that:

. 1 y+1+ X - _ . _
fim Ao = fim (D)5 T8) =0, i = e ©

Zg

N
4

R k1. IfN; = 57“2” 0r0 < e < 1. th —~0asd — 0.
emark 1. If , fi € en || fs — fHLsz%(D) as

Proof of Theorem 5. It is clear that:

1fs = Flsripy < Wf2s = Fllsrimy + 126 = Frollsenpy + 1o = follsoipy- - (69)

where we denote some following functions:

fst = % | /T o lexp (- ZAnSﬁ_gﬁ)%(”ds}l
0

An<N;
X (1+k)\n)(/g(x)en(x)dx)en(x), (70)
D
and
P A, P TP -1
X (1+kAy) (/g(x)en(x)dx>en(x). (71)
D

Now, we need to establish the upper bound of the expressions on the right of (13). For
convenience, we consider the following step.
Step 1: Estimate of || f2,5 — f||x, (p) let us recall the function f as (14). This expression

together with the Formula (71) gives us the claim of the following difference:

f(x) = fo,6(x)
T _
—AEN&[/ e fZA - ﬁTﬁ) B0 (1480 [ sentotz)ent

D

A >/\f5 / f e” ) 7
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Using the Parseval equality, the left hand side of (72) is calculated as follows:

||f25 f”xw(p 2 /\2’)’ /f En dx

“2r 2 +2r 2
Y A EALY /Df(x)en(x)dx> . (73)

An>Ns

It is obvious to see that A, 2" < |Ns| ™ if A, > N and m > 0. Therefore, we have:

fos = Fliey < WGl B A8 ([ pCdene)ix)” = [N ey 79

)\n> 3

which leads to
1£26 = fllser(py < N6l "I fllscrer () (75)

Step 2: Estimate of wa - quXW(D), we get

T
fsﬁ*l exp (HAI?/\H Sﬁ/’gTﬁ> (Ds(s) — P(s))ds (14 kAy) (fg(x)en(x)dx)en(x)
_ 0 D ' 76)

T T
nSNg - n - — n_ sP—TB
AnsN [b[sﬁ Lexp (1+Ak)»n . ﬁTﬁ)q)é(S)dS} [bfsﬂ texp <1ka" 5 )Q(S)ds}

From (76), we know that:

f2,6(x) — f1,5(x)

T
- L()fsﬁ*l exp (1+Al?/\n Sﬁ?%Tﬁ) (@s(s) — D(s))ds (ff dx)en(x) 77
A <N fSlB_l exp (1_‘:\]?)\” sﬁETﬁ)CD&(S)dS

0

By applying the Holder inequality, we receive:
2
1 f26 = frsll s m)

T
[Pl exp ( A o sﬁETﬁ) (@s(s) — D(s))ds r
A

0

i’r(/f(x)en(x)dx>2. (78)

T
[ _ p_1p
AN {S’g Texp (1+A1?Ans 5 )‘I’a(s)ds

T
Next, we have the estimate [ sf~!exp (1431?% sﬂETﬁ) (®s(s) — P(s))ds as follows:
0

[ Au  SB—TP
O/s exp(1+k)Ln 5 )(@5(5)—@(5))615

1
7

T 1 T . B 8
< </|<D5(s)—d>(s)]qu>q </sﬂ (B=1) exp (‘7*1312)%5 ﬁT )ds) , (79
0 0
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where g* = 1+ L1, this implies that:
T 1
q
([ 10509~ @) 'as) " = @5 = @] 1y ®
0
and through some basic calculations, we obtain:
T T
“ A, sP—TB .
7 (1) exp (" —20 < / 7 (6-1)
(/s ep 1+k)\n 3 )ds)_l s ds
0 0
q"(f-1)+1 —1 a1
_ L= (81)

*q*(ﬁ—1)+1 -~ Bg—1 '

An SﬁfTﬂ> <1

1+ kA, B
Combining three evaluations (79), (80) and (81), we derive that the following estimate:

whereby we note that g > % and we also have used the fact that exp (q*

T
_ Ay sP—TP
‘ /S‘B 1 exp (1 —|—k)\n T) (<I>5(s) — <I>(s))ds S ||(1)(5 — (DH,C”](O,T)' (82)
0

Next, applying the Lemma 1 and the Lemma 2, we have estimated

Ay sP—TP
p-1 n
P exp (1 T B )@5(5)0[5

Ot~

= %(HAI,:M) {1_8’(1’(_ 14?110\17;)]
> P Lo (- T )

From the two observation above, we assert that :

r B-1 An_ sP—TP
g’s exp (HM” 5 )(<I>5(s) —®(s))ds

<P [|[®s =@l oy @Y

T
_ Ay sP—TP
Ofsﬁ Lexp (Hk/\n s 3 )Cbg(s)ds

whereby P; depends on &y, A4, T, B,q and

P = (/;__ﬂ)TTﬁ_;[qZ)[l—exp(—13;{/\115”}1- (85)

Combining (78) to (84), it gives:

2

oo = Frolm) < PR €5 = @ aery X A7( [ fentidx)”  (s6)

An<Ns D

2
We assume that the finite sum Yy A2 ( J f(x)en (x)dx) is bounded by
)\;ZSN(S D

Wil A ( /f en(x)dx)” < NG f oo ®7)

/\n< J
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Therefore, we conclude that:

1 f26 = frollser(py < P1ONs fllxcr(p)- (88)

where P is defined in (85).
Step 3: Estimate of H fis—f ||X7(D), due to Formulas (14) and (70), so

fa £ = L[ s exp (2 T ]

AN 1+kAy B
< (L) ([ (85(0) = 8(0)en ) en(x). (89)
Using the Parseval’s equality, and taking the norm of both sides, we obtain that:
5 T . Ay sP—TP -2
fis—f = / sPlexp ——— | Py(s)ds
=l = L] 7 o (g 5 outons]
2
x (1+ k/\n)2</D (gs(x) — g(x))en(x)dx> . (90)
Because of the inequality (83), one has :
2
1 f5 = f||X7(D)
[P0 A TP\1] R 2429 ( [ (. 2
~[2h-ee (-] B ([ (s - s0)enwir)”s o

A <N

Continuing to deal with the finite series on the right above, we have:

L A () - g)enxar)

An<N;
24294 Ny Ne2N 2
= 2 Ay Tty A, (/ (gé(x)—g(x))en(x)dx)
/\nSNé D
N N Ng—2N P
WP T AT ([ (galx) — g(0)en()dx)
/\nﬁNé D
N_N
< (NGt 2||85—8|\2M ' (92)
X % (D)
Ng—2N

Since 1 < g < 2, we know that £7(Q)) — X % (D). Therefore, we get that:
2
lgs = 817 n-ox < C(N,4)|185 = &l pa(py < C(N, 9)6. (93)
X % (D)
Combining (91) to (93), one has:

N_N
fis = fllgr(py < Pa(NG)> 270720, (94)

-2

o
where P, = {40 [1 —exp ( - #\Ib\l?)H C(N, q). Finally, from Step 1 to Step3, we can

conclude that:

N
2

_ N_
1fs = Fllxrpy < INsI ™| Fllscrer ) + ProNs | fllsa ) + Pa(Ws) 70726, (95)
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By using the Lemma 3, since 0 < 7 < %, with Sobolev embedding X7(D) <

47
2N
LN (D), we have the results as in (67). O

6. Simulation

In this section, we present one numerical example. By choosing QO = (0,7), T =1,
B =05k=08 and « = 0.5, and r = 1 are shown in this section, respectively. In this
section, we consider the problem as follows:

Cof
E)E:ﬁ (u—kAu) — Au(x,t) = ®(t)f(x), (x,t) € (0,7) x (0,1), (96)
CB
where 5 is the conformable derivative is given by [23]. In this calculation, we chose

2 [2
~—u, we have chosen A, = n?, n=1,2,... and e,(x) = y/ = sin(nx),
dx 7

respectively. We have the function,

the operator Au =

g(x) = \/Z(sin@x) + sin(4x)), o(t) = 1. (97)

In general, the numerical procedure is summarized in the following steps:
Step 1: Finite difference to discretize the time and spatial variable for x € (0, 77) as
follows:

xp =kAx, 0<k<N, Ax:l.
N
Step 2: The input data g is noised by observation data gs such that:
1
=8+ ;(S(Zrand(-) -1). (98)

From (14), we have the exact solution,

f(x) ii {/Tsﬁ Lexp (1_;\;;\” Sﬁ;Tﬁ><b(s)ds}_l

0

s
(1 +k/\n /g sin(nx dx) sin(nx). (99)
0

From (26) and (27), by choosing the regularization parameter as in the number For-
mula (33), in the case of a priori parameter choice rule, and Formula (48), in the case of a
posteriori parameter choice rule, where N is a large enough truncation number, we have
the regularized solution with Modified Fractional Landweber as follows:

7T

(/g(g(x) sin(nx)dx) sin(nx). (100)

2N1_ 1_ A;1a+1m

Pu(k,B, T, D)

whereby

Pu(k,B, T, ®) = (1+kA,)~? {/Tsﬁl exp <1+AZAH il ;Tﬁ>d>(s)ds]. (101)
0

We choose N = 50 and é = 0.5, 6 = 0.25 and § = 0.125. Figure 1a shows the 2D graphs
of the source function with the exact solution and its approximation for the case for the a
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priori parameter choice rule. Figure 1b shows the error estimate between the exact solution
and regularized solution for the a posteriori parameter choice rule. Figure 2a—c shows the
2D graphs comparing the convergent rate between the exact solution and its approximation
under a priori and a posteriori parameter choice rules with noise levels § = 0.5, § = 0.25,
and 0 = 0.125. From the observations above, the comparison with the results developed
in theory (see evaluation (34) and (55)) shows that the convergence in these two cases is
almost equivalent, illustrating that the proposed method is effective.

A priori
T

A posteriori
T

f and its approximation
N
3
|

—¥— Exact

pproximation

40

—k— Exact

—a—05

—46—0.25
0.125

10

—%¥— Exact
—8— A priori
—<&— A posteriori

05

—%— Exact
—8— A priori

54— A posteriori | |

f and its approximation

—¥— Exact
—8— A priori
—&— A posteriori| |

Figure 2. A priori and a posteriori when (a) § = 0.5, (b) § = 0.25 and (c) § = 0.125, respectively.
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