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Abstract: This paper presents a new analytical approach to the embedding of delamination in the
layerwise theory, which can be applied to determine the stress–strain state in the cross-section of
laminated plates with internal delamination. The new approach is based on the layerwise theory,
which transfers considerations from the level of the laminated plate to the level of the lamina. The
paper presents a mathematical model and defines a calculation procedure for determining the state
of the stress and strain in a cross-section with an internal delamination that occurred during plate
production. The convergence and stability of the computational procedure, based on a new approach
to the embedding of delamination in layerwise theory, are proven. It is also proven that the existence
of internal delamination on the bond between layers of laminated plates significantly changes the
stress-strain state of the cross-section, in relation to a cross-section without delamination. In numerical
examples, the value of delamination in the plane (x, y) is determined and considered. The initial state
after a static load or “zero state” of stress and strain in a cross-section with delamination represent
the input for further and future nonlinear analyses that involve the growth, development, and
propagation of delamination.

Keywords: delamination; new approach; zero state; laminated composite plates; layerwise theory

1. Introduction

During the last decades, researchers have especially focused their attention on defin-
ing mathematical and calculation models for solving the problem of modern laminated
composite structures. It is generally known that these structures are manufactured by
stacking laminae made of modern materials, containing parallel continuous fibers carrying
load in one direction defined by the angle-ply orientation θ. Fibers can be made of one type
of material and incorporated into the matrix of another material.

In addition to more favorable characteristics related to weight reduction, higher
load-bearing capacity, and resistance, modern laminated composite structures also have
disadvantages, which, among others, include the occurrence of cracks and gaps at the
lamina connections. The heterogeneity of the anisotropic composition of the laminated
structure leads to the occurrence of a large number of irregularities at the plate level, at the
lamina level, as well as at the micro level of the fiber/matrix material. These irregularities
or imperfections can occur in different manufacture stages, in embedding, and during
exploitation of the laminated structure.

At the lamina level, composites often contain the concentration of stress near material
or geometric imperfections, leading to their increase and propagation. Imperfections at
the lamina connections greatly affect the load-bearing capacity of the laminated composite
structures, especially due to the significantly lower shear stiffness and load-bearing capacity
perpendicular to the plane of the laminae, in relation to the tensile load-bearing capacity.

A thin layer of binding material connects adjacent layers in the laminated structure.
This layer transfers influences, displacements, and forces from one lamina to another.
When this connection weakens or does not exist, imperfections in the form of separation
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of connected laminae, known as delamination, occur. Delamination, its increase, and
development during exploitation are some of the important parameters affecting the load-
bearing capacity and design working life of a laminated structure. Stress concentration and
local instability occur at the delamination points. After embedding, the influence of the
exploitation load leads to the redistribution of internal stresses, which causes delamination
to increase. The increase and further propagation of delamination can result in the loss
of the load-bearing capacity and the fracture of the laminated structure. Delamination
is known to be the most common type of imperfection in laminated structures, and it
limits their load-bearing capacity and affects their service life. These are the reasons why
structural engineers should include the occurrence of delamination, i.e., imperfections at
the laminae connections, in their calculations.

Depending on the position, there are two basic delamination types: internal delamina-
tion located deep within the cross-section, and delamination located close to the surface.
Delamination located near the surface of the laminated composite is a specific type of
damage, as its behavior is usually associated with the buckling of the surface laminae.
Therefore, to study this delamination type, it is necessary to consider the stability of the
lamina from the perspective of elastic stability theory. This is especially important for
components of structures loaded in the plane. Multiple “gaps” at laminae connections also
occur, which is why their influence on the overall load-bearing capacity and safety of the
laminated structure is of crucial importance.

Laminated structures, in which delamination has occurred, have reduced load-bearing
capacity and stiffness. For this reason, when analyzing laminated structures, involving
plates, it is necessary to adopt such calculation models that include the impact of delamina-
tion on the load-bearing capacity.

Every day, we witness the increasing application of modern composite materials in
various fields of industry. Therefore, it is of great importance to develop new, modern
theories that can encompass a number of problems, including the problems of occurrence
and development of delamination. Only a small part of the extensive literature dealing
with the behavior of laminated structures is given in the references [1–38]. Modern methods
of analysis are based on equivalent single-layer theories, zig-zag theories, and layerwise
theories, within which a large number of mathematical models and calculation procedures
have been developed.

Laminated composite plates belong to the group of laminated structures in which the
third dimension, height, is smaller than the other two dimensions, the width and length of
the plate. Unlike single-layer classical and shear theories of laminated plates, layerwise
theories transfer assumptions from the level of the laminated plate to the level of the
lamina, because of which it is possible to include local defects occurring at the lamina level
in mathematical models. Layerwise theories are recommended [1–11] for moderately thick
and thick laminated plates with anisotropic behavior, for which it is necessary to define
the real interlaminar stresses and deformation, as well as in cases when it is necessary to
include imperfections of geometry and materials in the calculation.

Based on mathematical models of laminated plate theories, a large number of calcu-
lation models, analytical and numerical procedures for defining the stress–strain state in
laminated plates without delamination have been developed. This article is based on the
layerwise theory developed by J. N. Reddy et al. and known as the generalized laminated
plate theory (GLPT) [6–10]. GLPT is a general layerwise theory that considers a layer by a
layer, by means of which it is possible to include delamination at laminae connections in
the calculation (variable kinematic model) [11].

In recent years the professional and scientific public is especially interested in defining
numerical models of discrete analysis, including the increase and propagation of delam-
ination within the cross-section. Imperfections of layered structures that occur during
production due to the lack of a matrix, inadequate hardening, trapped air, and other ele-
ments, which leads to the “emptiness” that causes the local separation of layers, are the
topic of this paper. During exploitation, due to a static or dynamic load, the separation
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between layers of a layered structure may also occur. These defects, regardless of how
they occur, significantly reduce the load-bearing capacity of the layered structure, which is
shown in this paper.

In order to understand the problem of delamination, a large number of researchers
have developed and proposed numerical and experimental procedures based on various
available and modified theories. From the extensive literature, the authors have relied
on a small part of the literature resources [39–49]. These literature resources consider
delamination with a determined geometry, and an analysis is carried out by varying certain
parameters based on the models of single-layer or layerwise theories. It is well known that
in numerical methods and programs (existing commercial software) based on numerical
models, discretization errors and interpolation errors occur, which leads to a series of
open questions that need to be resolved in the numerical calculation procedure. It is also
widely known that numerical solutions can be checked by comparing them with analytical
solutions; of course, if they exist and can be reached. Experimental research, as a significant
segment of the research into the problem of delamination, is limited to the conditions of
an experiment. Reaching comprehensive conclusions experimentally requires testing a
great number of samples with different input data. Numerical and experimental research
contributes to a better understanding of the problem of delamination, its occurrence,
growth, development, and propagation.

However, as far as the authors know, there is no analytical approach for including
delamination in a calculation based on layer theory. With this in mind, this article represents
a special contribution, because it offers a new approach to determining an analytical
solution to the problem of bending the plates, by applying the layerwise theory when the
cross-section contains a “gap” in the bond between two layers. The considered delamination
has a local character and occurs in the production process (for example, trapped air at a
certain point of the bond between two layers).

The new approach of the embedding of delamination is based on the calculation
procedure of the layer theory, which transfers considerations from the level of the laminated
plate to the level of the lamina. This calculation procedure determines the value of “sliding”
at the point where there is no bond between two layers, i.e., the value of the “separation”
or delamination in the plane (x, y) is determined. A mathematical model of the layer theory
has been constructed for situations where the elongation perpendicular to the middle
plane of the plate is zero, whereby equations of these theories are solved analytically, in a
closed form.

This new approach, of defining the zero stress and strain of the cross-section with inter-
nal delamination, can be further improved, expanded, or supplemented by including new
members related to the final geometry of the delamination in the mathematical model, in
cases where the gap is not local and/or involving nonlinear effects dealing with the growth,
development, and propagation of delamination. This will be the object of future research.

Given that the reported new calculation procedure involving internal local delamina-
tion is analytical and automated by the development of a program code, it can be used as a
comparable one for numerical methods and procedures.

2. Mathematical Model for Laminated Plates with Delamination
2.1. Theoretical Background

Mathematical models for the problems of the bending of laminated composite plates
can be constructed through differential or integral equations (strong form or weak form),
while satisfying the boundary conditions on the contour. Methods for solving the equa-
tions of problems can be analytical, numerical, or approximate, as well as mixed methods
obtained using a combination of those mentioned. An analytical solution, or a solution
in a closed form, predicts the state of stresses and deformation, in the form of a function
for the assumptions of the chosen theory, and this can be defined only for the simplest
problems, simple geometry of the laminated composite, and simple conditions of support.
For laminated plates, primary unknowns are assumed in the form of series of trigonometric
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functions. For bending problems of rectangular plates, Navier’s solution is used (solu-
tion by double trigonometric series) or Levy’s solution (solution by single trigonometric
series), depending on the boundary conditions that need to be met. The most frequently
used numerical methods for the calculation of laminated plates are the finite differences
method and the finite elements method, as well as other available methods based on the
discretization of the problem under consideration. Analytical results are usually used as a
benchmark for numerical and other solutions obtained by discretization of the considered
structure. Among the approximate methods, the most commonly used are the Ritz method,
Galerkin method, and Kantorović method.

The general deformation of laminated rectangular plates is often defined by compli-
cated connections between the axial deformation, bending, and shear, because of which, this
paper uses a combination of analytical and approximate methods for solving mathematical
equations of elasticity layerwise theory.

To define a new cross-sectional calculation procedure with delamination, a mathe-
matical model has been developed. It is based on Reddy’s partial layerwise plate theory
(PLPT), being a special case of GLPT. In this paper, equations of equilibrium, derived by
applying the principle of virtual displacements, are solved analytically, using a double
series and discretization of the cross-section with the nodes at laminae ends. The presented
calculation procedure is automated through drawing up the original Fortran program code,
which is an upgrade of the program designed for cross-sections of the laminated plates
without delamination [14,15].

2.2. Displacements, Strains, and Stresses

A simple supported laminated plate with thickness h and dimension a × b, containing
laminae whose fibers are arbitrarily oriented is considered, Figure 1. Considerations are
carried out in the rectangular Cartesian coordinate system, and for the cross-section without
delamination, the following assumptions are accepted:

• At the lamina level, the material is elastic and orthotropic. The consequence of this
assumption is a linear stress–strain relationship at the lamina level;

• Elongation perpendicular to the plane of the plate (x, y) is neglected εzz = 0. As a
consequence of this assumption, the strain tensor in the considered system (x, y, z) has
five members, while the deflection w is the function of the coordinates x and y;

• Discretization of the cross-section through thickness is performed using 1D elements,
with nodes at the laminae ends. As a consequence of this assumption, the primary
unknowns are the component displacements at points defined by the thickness of the
cross-section, being the function of the coordinates of these points;

• Delamination is located at the connection of two laminae. At the delamination point,
there is no connection between the two laminae.
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In accordance with the above-mentioned assumptions, for the case of a cross-section
without delamination, a displacement field in the considered layer theory is assumed in
the following form, Figure 2:
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u(x, y, z) = u(x, y) + U(x, y, z)
v(x, y, z) = v(x, y) + V(x, y, z)
w(x, y, z) = w(x, y)

(1)

where u(x,y), v(x,y) and w(x,y)—component displacements of the middle plane of the plate,
U(x,y,z) and V(x,y,z)—additional displacements through the thickness of the plate.
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Figure 2. Laminated plate without delamination: (a) cross-section of the laminated plate without
delamination [15]; (b) displacements for the cross-section without delamination [15].

Additional displacements are determined as the sum of the multiplications of the
unknown nodal displacements uJ(x,y) or vJ(x,y), and one dimensional linear interpolation
functions ψJ(z) are defined along two connected laminae:

U(x, y, z) =
n
∑

J=1
uJ(x, y)ψJ(z)

V(x, y, z) =
n
∑

J=1
vJ(x, y)ψJ(z)

(2)

n—the total number of nodes through the thickness for the cross-section without delamina-
tion, J—the mark for the node.

Based on the above, it can be concluded that, for a cross-section without delamination,
the total number of nodes through the thickness of the cross-section is greater for one than
the total number of laminae n = N + 1. N is the mark for the total number of laminae of the
laminated plate.

For a cross-section containing delamination, the displacement change through the
thickness of the cross-section is different from the displacement change given in Figure 2b.
A cross-section with a single internal delamination located between the laminae marked
as (j − 1) and (j) is shown in Figure 3a, while Figure 3b shows the assumed displacement
change through the thickness of the cross-section, for the x direction. The displacement
change through the thickness in the y direction is described in an equivalent way. At the
delamination point, there is a sudden increase, i.e., a sudden change in displacement.
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For a section with delamination, the number of nodes throughout the thickness de-
pends on the number of places with delamination. If the cross-section has md delami-
nations, the total number of nodes through the thickness of the cross-section, in which
the displacement values uJ(x,y) and vJ(x,y) are calculated, is determined by applying the
following equation:

nd = N + md + 1 (3)

In a case when md = 1, the total number of nodes through the thickness of the cross-
section, in which the basic unknowns are calculated, is nd = N + 2.

In the general case, if it is assumed that there is delamination between the laminae
marked as (j − 1) and (j), then the interpolation functions are adopted in the following form:

φJ(z) = ψ2
J (z) =

zJ+1−z
zJ+1−zJ

, zJ < z < zJ+1 J = 1, j + 1

φJ(z) =


ψ1

J−1(z) =
z−zJ−1
zJ−zJ−1

, zJ−1 < z < zJ

ψ2
J (z) =

zJ+1−z
zJ+1−zJ

, zJ < z < zJ+1

 J = 2, . . . j − 1, j + 2, . . . nd−1

φJ(z) = ψ1
J (z) =

z−zJ−1
zJ−zJ−1

, zJ−1 < z < zJ J = j, nd

(4)

where J is the mark for the node.
Figure 4 shows a laminated plate with five laminae and delamination between the

second and third laminae. At the delamination point, there is no physical connection
between the laminae (node marks 3 and 4), and this is why the interpolation functions
along the laminae marked as 2 and 3 are shown by two interpolation functions ψ3

1 and ψ4
2.
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In accordance with the assumptions, and based on relations (1) and (2), for the cross-
section with delamination, the displacements are determined as follows:
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u(x, y, z) = u(x, y) +
nd
∑

J=1
uJ(x, y)ψJ(z)

v(x, y, z) = v(x, y) +
nd
∑

J=1
vJ(x, y)ψJ(z)

w(x, y, z) = w(x, y)

(5)

In this case, the equations of the displacement and deformation relation can be shown
in the following form:


εxx
εyy
γxy
γyz
γxz

 =



∂u
∂x +

nd
∑

J=1

∂U J

∂x φJ

∂v
∂y +

nd
∑

J=1

∂V J

∂y φI

∂u
∂y + ∂v

∂x +
nd
∑

J=1

(
∂U J

∂y + ∂V J

∂x

)
φJ

nd
∑

J=1
V J ∂φJ

∂z

nd
∑

J=1
U J ∂φJ

∂z



(6)

Based on the previous equation and the first assumption, for every lamina j, the
connections between stress and displacement are shown by the relations:


σxx
σyy
σxy
σyz
σxz



(j)

=



Q11 Q12 Q16 0 0

Q12 Q22 Q16 0 0

Q16 Q26 Q66 0 0

0 0 0 Q44 Q45

0 0 0 Q45 Q55



(j)



∂u
∂x +

nd
∑

J=1

∂U J

∂x φJ

∂v
∂y +

nd
∑

J=1

∂V J

∂y φI

∂u
∂y + ∂v

∂x +
nd
∑

J=1

(
∂U J

∂y + ∂V J

∂x

)
φJ

nd
∑

J=1
V J ∂φJ

∂z

nd
∑

J=1
U J ∂φJ

∂z



(7)

In the previous relation Qij
(j) are the transformed stiffnesses of the j-th lamina. These

values depend on the material characteristics and the lamina orientation θ.

2.3. Equations of Bending and Solutions

Cross-section forces are calculated as stress integrals. By integrating relations (7) the
laminated plate forces with delamination are obtained:


Nx
Ny
Nxy
Qx
Qy

 =


A11 A12 A16 0 0
A12 A22 A16 0 0
A16 A26 A66 0 0
0 0 0 A44 A45
0 0 0 A45 A55

x



∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x
∂w
∂x
∂w
∂y


+

N

∑
J=1



BJ
11 BJ

12 BJ
16 0 0

BJ
12 BJ

22 BJ
26 0 0

BJ
16 BJ

16 BJ
66 0 0

0 0 0 BJ
44 BJ

45

0 0 0 BJ
45 BJ

55


x



∂U J

∂x
∂V J

∂y

∂U J

∂y + ∂V J

∂x

U J

V J


(8)
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

N J
x

N J
y

N J
xy

QJ
x

QJ
y


=



BJ
11 BJ

12 BJ
16 0 0

BJ
12 BJ

22 BJ
26 0 0

BJ
16 BJ

26 BJ
66 0 0

0 0 0 BJ
44 BJ

45

0 0 0 BJ
45 BJ

44


x



∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x
∂w
∂x
∂w
∂y


+

N

∑
I=1



D J I
11 D J I

12 D J I
16 0 0

D J I
12 D J I

22 D J I
26 0 0

D J I
16 D J I

16 D J I
66 0 0

0 0 0 D J I
44 D J I

45

0 0 0 D J I
45 D J I

55


x



∂U I

∂x
∂V I

∂y

∂U I

∂y + ∂V I

∂x

U I

V I


(9)

where

• Nx, Ny, Nxy, Qx, and Qy are forces in the middle plane of the plate;
• Nx

J, Ny
J, Nxy

J, Qx
J, and Qy

J are forces in the node J of the cross-section with delamination;
• Aij, Bij

J, and Dij
JI are the stiffness of the laminated plate with delamination.

By integrating the products of stiffness, interpolation functions, and derivatives of
interpolation functions along laminae 1, . . . , N, stiffness of the laminated plate, Aij, Bij

J,
and Dij

JI is obtained out of the following relations:

Aij =
N
∑

k=1

zk+1∫
zk

Q(k)
ij dz (i, j = 1, 2, 6, 4, 5)

BJ
ij =

N
∑

k=1

zk+1∫
zk

Q(k)
ij ψJdz (i, j = 1, 2, 6) BJ

ij =
N
∑

k=1

zk+1∫
zk

Q(k)
ij ψ,J

z dz (i, j = 4, 5)

D J I
ij =

N
∑

k=1

zk+1∫
zk

Q(k)
ij ψIψJdz (i, j = 1, 2, 6) D J I

ij =
N
∑

k=1

zk+1∫
zk

Q(k)
ij ψ,Iz ψ,J

z dz (i, j = 4, 5)

(10)

The occurrence of delamination at the laminae connections causes a change of stiffness
Aij, Bij

J, and Dij
JI of the laminated composite, when compared to the values calculated for

the same cross-section without delamination.
Based on the principle of stationary potential energy, the equations of equilibrium are

obtained. The most simplified form of these equations is obtained in case the laminae are cross-ply,
i.e., when the laminae are with the following angles of orientation: 0◦ and 90◦. In that case,
according to the relations (10) and stiffness A16 = A26 = A45 = B16

J = B26
J = B45

J = D16
JI = D26

JI

= D45
JI, they are equal to zero, which is why the equations of equilibrium are formulated

as follows:

A11 u,xx +A12 v,yx +A66
(
u,yy +v,xy

)
+

nd
∑

J=1

[
BJ

11 U,J
xx +BJ

12 V,J
yx +BJ

66

(
U,J

yy +V,J
xy

)]
= 0

A12u,xy +A22v,yy +A66
(
u,yx +v,xx

)
+

nd
∑

J=1

[
BJ

12U,J
xy +BJ

22V,J
yy +BJ

66

(
U,J

yx +V,J
xx

)]
= 0

A55w,xx +A44w,yy +
nd
∑

J=1

[
BJ

55U,J
x +BJ

44V,J
y

]
+ q = 0

BJ
11u,xx +BJ

12v,yx +BJ
66
(
u,yy +v,xy

)
− BJ

55w,x +
nd
∑

I=1

[
D J I

11U,Ixx +D J I
12V,Iyx +D J I

66

(
U,Iyy +V,Ixy

)
− D J I

55U I
]
= 0

BJ
11u,xy +BJ

21v,yy +BJ
66
(
u,yx +v,xx

)
− BJ

44w,y +
nd
∑

I=1

[
D J I

12U,Ixy +D J I
22V,Iyy +D J I

66

(
U,Iyx +V,Ixy

)
− D J I

44V I
]
= 0

(11)

where q is the transverse load.
System (3 + 2nd) of the differential Equation (11), i.e., 3 + 2(N + 2), in the case where there

is one delamination in the cross-section, with the same number of basic unknowns, makes a
complete system of equations, for which it is possible to find an unambiguous solution.

A solution to the system of Equation (11) can be obtained by using analytical and
numerical methods, while satisfying the boundary conditions.
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In this paper, solutions have been determined with the adopted discretization of
laminae through the cross-section, with 1D elements and nodes at laminae ends. Due to the
complexity of the procedure, the solutions to the equations of equilibrium of bending the
laminated plate with delamination, on the grounds of the hereby proposed new procedure
of calculating, have been determined for simply supported laminated plates with one
delamination through the cross-section. The procedure has been automated, and it is
possible to simply upgrade it, in case of having a greater number of delaminations.

On the basis of the foregoing considerations, the primary unknowns are assumed in
the form of double trigonometric functions:

u =
∞
∑

m,n
Xmncos mπx

a sin nπy
b , v =

∞
∑

m,n
Ymnsin mπx

a cos nπy
b

w =
∞
∑

m,n
Wmn

mπx
a sin nπy

b

U J =
∞
∑

m,n
RJ

mncos mπx
a sin nπy

b , V J =
∞
∑

m,n
SJ

mnsin mπx
a cos nπy

b

(12)

that satisfy the boundary conditions for simply supported plates:

v = w = V J = Nx = N J
x = 0 x = 0, a ; J = 1, nd

u = w = U J = Ny = N J
y = 0 y = 0, b ; J = 1, nd

(13)

Through determining the derivative of the functions of relations (12) and by putting it
into the system of Equation (11) the system of 3 + 2(N + 2) algebraic equations is obtained
as follows:

[
[K]

[
K j][

K j]T [
K ji]

] 

Xmn
Ymn
Wmn

RJ
mn

SJ
mn


=


0
0

Qmn
0
0

 (14)

with as many unknown coefficients Xmn, Ymn, Wmn, Rmn
J and Smn

J, where J = 1, . . . , nd.
Submatrices of the coefficients’ matrix of conditional equations [K], [Kj], and [Kji] have
been determined in accordance with the procedure outlined in the literature [14], with a
difference that relates to the change of the entire number of nodes and the change of the
interpolation cross-section with delamination.

The transverse load q is also assumed in the form of double trigonometric functions:

q(x, y) =
∞

∑
m,n

Qmnsin αx sin βy (15)

where Qmn are the coefficients depending on the type of load, and which are determined
by integration.

For the two types of loads being dealt with in this paper, the following is obtained
through integration:

q = const Qmn =


16q

nmπ2 n, m = 1, 3, 5, . . .

0 n, m = 2, 4, 6, . . .

Bi − Sinusoidal load Qmn =


1 n = 1 , m = 1

4q
π2

[
(−1)n1

(n−1) − (−1)n1−1

(n+1)

][
(−1)n1

(m−1) −
(−1)n1−1

(m+1)

]
n, m = 2, 4, 6, . . . n1 = 2, 3, 4, . . .

0 n, m = 3, 5, 7, . . .

(16)
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After determining the unknown coefficients Xmn, Ymn, Wmn, Rmn
J, and Smn

J for each
pair (m, n), and for each node J = 1, . . . , nd, by applying relations (12) and (5), the compo-
nents of displacement of arbitrary points with coordinates (x, y, z) are determined.

Deformations and stresses are calculated according to the Equations (6) and (7). Shear
stresses in the planes (x, z) and (y, z) are calculated by the specific calculation procedure
devised by the author of this paper and are presented in detail in the bibliographic refer-
ences [12] and adjusted to new boundary conditions at the place of delamination.

The previously shown new calculation procedure of displacement and stress for the
cross-section with one internal delamination is automated by creating its own program.

3. Numerical Examples and Results

Based on the above-mentioned new analytical approach to the embedding of delami-
nation, based on the layerwise theory, the program DELACOP (delaminations of laminated
composite plates) was written in the programming language Fortran.

The input file INP.dat for this program consists of five groups of data. The first group
contains the total number of laminae N, number of nodes in the plane (x, y) in which the
values of variables are to be calculated, the total number of nodes through the thickness of
the plate for the cross-section with delamination nd, as well as the length and the width of
the plate. The second group of data includes material characteristic for each of these laminae
j = 1, . . . , N, whereas the third group is composed of data at angles of the orientation of
laminae j = 1, . . . , N. The fourth group of input files refers to the load: intensity of load and
index of the deformation (the program calculates impacts from the uniformly distributed
load—index 1 or bi-sinusoidal load—index 2). The fifth group of input files contains a
number of members of the trigonometric series (n, m), coordinates of nodes through the
thickness of the plate J = 1, . . . , nd, as well as the coordinates of points in the plane of the
plate (x, y), in which the input variables are calculated.

The DELACOP program can be easily expanded by upgrading with a new subroutine.
For example, a new subroutine can be added that involves the concentrated load or the
load distributed on a specific area of the plate surface. This paper presents examples for
the influence of a uniformly distributed load and bi-sinusoidal load, for the reason of the
existence of results obtained by other methods and procedures used to compare the results.
We also emphasize that this program can also be upgraded by introducing nonlinear effects
of the growth, development, and propagation of delamination, which will be the topic of
future research conducted by the authors.

After starting the DELACOP program, the output file OUT.dat is automatically gener-
ated, in which the input variables, as well as the values of the component displacements u,
v, w in the given points of the laminated coordinate plate, are printed (x, y, z), along with
the stresses σ

j
xx, σ

j
yy, σ

j
xy, σ

j
xz, and σ

j
yz through each lamina j, j = 2, . . . , N.

In the examples presented in this paper, the primary and secondary output variables
are presented in dimensionless form, using the following relations:

w = 100E2b3

q0h3 w u = 100E2b3

q0h3 u v = 100E2b3

q0h3 v

σxx = b2

h2q σxx σyy = b2

h2q σyy σxy = b
hq σxy

(17)

In this paper, examples of laminated plate are considered with: N = 4 lamina 0◦/90◦/0◦/90◦

of anti-symmetrical lamina arrangement, N = 4 lamina 0◦/90◦/90◦/0◦ symmetrical ar-
rangement of laminae, and N = 0◦/90◦/0◦/90◦/0◦ symmetrical arrangement of laminae.
The heights and material characteristics of all laminae are the same: hj = h/N; E1/E2 = 25;
G12 = G13 = 0.5E2; G23 = 0.2E2; ν12 = ν13 = 0.25.

3.1. Convergence, Stability, and Comparison

The convergence and numerical stability of the output variable programs in DELACOP
were examined by checking the change of the dimensionless values of the output variables
w, u, σxx and σxy at the points with coordinates:
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w(
a
2

;
b
2
) u(0;

b
2

; 0) σxx(
a
2

;
b
2

; 0) σxy(a; b; h) (18)

Depending on the change in the number of members of the series (n, m), square
laminated plates a = b = 1, with the aspect ratio b/h = 4, were considered. Plates are
loaded with the uniformly distributed transverse load of intensity q. The influence of the
change in the number of members of the trigonometric series on the change of dimen-
sionless displacements and stresses, for a four-layer plate with an anti-symmetric lamina
arrangement (0◦/90◦/0◦/90◦) and a five-layer plate with a symmetric lamina arrangement
(0◦/90◦/0◦/90◦ /0◦), is given in Figures 5 and 6.
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Figure 5. The change of deflection and displacement, depending on the change in the number of the
members of the trigonometric series (n, m) for the plate ratios a/b = 1 and b/h = 4: (a) deflection w;
(b) displacement u.
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appropriate numerical values, using one of the existing software packages, for example 
ANSYS. However, one of the important obstacles is that software packages cannot pro-
vide the “zero state” of stress and strain, which is presented in this paper as a novelty, in 
situations where you have a “gap” that is local and given at a point without the previously 
defined dimensions of that gap. In other words, the dimension of delamination is the in-
put data for software programs that involve delamination, by introducing a contact finite 
element of the final dimensions with appropriate contact conditions. 

Table 1. Square plate 0°/90°/90°/0°, ratio a/b = 1, loaded with a bi-sinusoidal load. 
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Figure 6. The change of stresses, depending on the change in the number of the members of the
trigonometric series (n, m) for the plate ratios a/b = 1 and b/h = 4: (a) normal stress σxx; (b) shear
stress σxy.

It has been proven that, depending on the change in the number of members of the
trigonometric series, the component displacements and stresses converge very quickly
towards the exact solution, whereby a faster convergence of displacements, i.e., of primary
variables, is observed. For n = m = 50, equal values were obtained, as in the previous step,
for displacements and normal stresses, while the difference of the obtained values for shear
stresses σxy was of the 10−5 order.

The number of members of the trigonometric series is entered as input, depending on
the adopted accuracy. For the examples given in this paper, m = n = 35 was adopted, where
an error of the value of shear stresses occurs, which is in the range from 10−4 to 10−5. It
was noticed that there are divergence problems for very thin plates with a larger aspect
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ratio b/h, as well as for elongated plates with a higher a/b ratio, which will be the topic of
further research.

A comparison of the values of the output variables calculated using the calculation
procedure based on the new approach for the cross-section with delamination was per-
formed, in relation to the existing tabular data given in the literature [1,14,25,28,29,36,38]
for a cross-section without delamination (Table 1). To be able to make a comparison, in
the extensive literature, the authors did not find appropriate comparative data for cross-
sections with delamination that deal with delamination in the way given in this paper.
Future research may be directed towards verifying the accuracy of this procedure with
appropriate numerical values, using one of the existing software packages, for example AN-
SYS. However, one of the important obstacles is that software packages cannot provide the
“zero state” of stress and strain, which is presented in this paper as a novelty, in situations
where you have a “gap” that is local and given at a point without the previously defined
dimensions of that gap. In other words, the dimension of delamination is the input data for
software programs that involve delamination, by introducing a contact finite element of
the final dimensions with appropriate contact conditions.

Table 1. Square plate 0◦/90◦/90◦/0◦, ratio a/b = 1, loaded with a bi-sinusoidal load.

¯
w( a

2 ; b
2 ;0)

¯
σxx(

a
2 ; b

2 ;0)
¯
σyy(

a
2 ; b

2 ; h
4 )

¯
σxz(0; b

2 ; h
4 )

¯
σxy(0;0; h

2 )

b/h = 4
HSDT [1] 1.8937 0.6651 0.6322 0.2064 0.0440

Elasticity [36] 1.9540 0.7200 0.6660 0.2700 0.0467
Ferreira et al. (N = 21) [25] 1.8864 0.6659 0.6313 0.1352 0.0433

Ferreira (layerwise, 2005) (N = 21) [28] 1.9075 0.6432 0.6228 0.2166 0.0441
Ferreira et al. (layerwise) (N = 21) [28] 1.9091 0.6429 0.6265 0.2173 0.0443

Ferreira et al. (19 × 19 grid) [29] 1.8869 0.7148 0.6328 0.2142 0.0462
LW Rakocevic et al [14] 1.9059 0.6419 0.6257 0.2105 0.0666

User elements—(Elastic UEL) [38] 1.98 0.67 0.68 0.23 0.030
Presented LW- with delamination 2.2155 0.9492 0.9492 0.2774 0.0171

b/h = 10
HSDT [1] 0.7147 0.5456 0.3888 0.2640 0.0268

Elasticity [36] 0.7430 0.5590 0.4030 0.3010 0.0276
Ferreira et al. (N = 21) [25] 0.7153 0.5466 0.4383 0.3347 0.0267

Ferreira (layerwise, 2005) (N = 21) [28] 0.7309 0.5496 0.3956 0.2888 0.0273
Ferreira (layerwise) (N = 21) [28] 0.7303 0.5487 0.3966 0.2993 0.0273
Ferreira et al. (19 × 19 grid) [29] 0.7191 0.5612 0.3915 0.2843 0.0273

LW Rakocevic et al [14] 0.7297 0.5482 0.3963 0.2984 0.0401
Presented LW- with delamination 1.8068 1.0579 1.0579 0.2581 0.0324

b/h = 20
HSDT [1] 0.5060 0.5393 0.3043 0.2825 0.0228

Elasticity [36] 0.5170 0.5430 0.3280 0.3280 0.0230
Ferreira et al. (N = 21) [25] 0.5070 0.5405 0.3648 0.3818 0.0228

Ferreira (layerwise, 2005) (N = 21) [28] 0.5121 0.5417 0.3056 0.3248 0.0230
Ferreira (layerwise) (N = 21) [28] 0.5113 0.5408 0.3073 0.3256 0.0230

LW Rakocevic et al [14] 0.5109 0.5403 0.3076 0.3244 0.0317
Presented LW- with delamination 1.7455 1.0726 1.0726 0.2555 0.0316

For the different ratios b/h = 4, b/h = 10 and b/h = 20, Table 1 shows comparative
dimensionless values of deflection, and normal and shear stresses for a square simply
supported plate with a symmetric lamina arrangement (0◦/90◦/90◦/0◦), loaded with a
transverse bi-sinusoidal load. Delamination is located between the second and third lamina,
which leads to stress redistribution.

Based on the values obtained by the new calculation procedure, it has been noticed that
with an increasing b/h ratio, displacement values increase abruptly and begin to diverge
by values greater than 20, thus it can be concluded that the proposed new calculation
procedure for the cross-section with delamination can be applied for moderately thin,
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moderately thick, and thick plates. A detailed analysis of the influence of the change in
plate thickness on the values of component displacements and stresses, as well as the
application of the proposed calculation procedure in this paper, will be the subject of
further research.

On the grounds of the data given in Table 1, it has been concluded that, depending
on the plate thickness and the chosen theory or calculation procedure, for a cross-section
without delamination, larger dimensionless values of deflection and normal stresses up to
70% are obtained. For shear stresses in the plane (x, y), smaller values are obtained, with
the largest differences referring to the plates of the ratio b/h = 4. It is concluded that the
occurrence of delamination in the cross-section significantly changes the maximum values
of the component stresses.

In order to gain a broader insight, along with presenting a new calculation procedure
in this paper, it is necessary to perform a more detailed analysis of the influence of all input
variables on output parameters, component stresses, and component displacements. A
detailed analysis of the application and limits of application of the proposed calculation
procedure with delamination will be the subject of subsequent research.

3.2. Numerical Example

In the example that follows, the displacements and stresses through the cross-section of a
simply supported five-layer plate with a symmetric lamina arrangement (0◦/90◦/0◦/90◦/0◦),
and with delamination at the connections of the second and third lamina, are shown
in detail. The plate is transversely loaded with the uniformly distributed load q. The
dimensions of the plate are defined by the ratios a/b = 1 and b/h = 4 and the height of each
lamina h/5. Material characteristics of all laminae are the same and are listed above.

Figures 7–9 show the change of dimensionless displacements and stresses through the
thickness of the plate for the cross-section with and without delamination at the points,
with coordinates as follows:

u(a;
b
2

; z) v(
a
2

; b; z) σxx(
a
2

;
b
2

; z) σyy(
a
2

;
b
2

; z) σxy(a; b; z) σxz(a;
b
2

; z) (19)
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Figure 7. The change of displacements through the thickness of the plate for a cross-section with and
without delamination: (a) displacement u; (b) displacement v.

In a cross-section with delamination, delamination is at a point of the bond between
the second and third layers.

Figure 7 shows the change of displacement u and v through the thickness of the plate
with a symmetric lamina arrangement (0◦/90◦/0◦/90◦/0◦) for the cross-section with and
without delamination, where ∆u is the length and ∆v the width of delamination.
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Figure 8. The change of normal stresses through the thickness of the plate for a cross-section with
and without delamination: (a) normal stress σxx; (b) normal stress σyy.
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Figure 9. The change of shear stresses through the thickness of the plate for a cross-section with and
without delamination: (a) shear stress σxy; (b) shear stress σxz.

Figures 8 and 9 show the change of normal stresses and σxx and σyy and shear stresses
and σxy and σxz through the thickness of the plate with a symmetric lamina arrangement
(0◦/90◦/0◦/90◦/0◦) for a cross-section with and without delamination.

At the second and third lamina connection, delamination significantly changed the
internal stress–strain state. It was observed that the displacements and stresses were
of significantly higher values in the case of a cross-section with delamination. Due to
the above, it is important to include the effects of delamination in the calculation when
dimensioning a laminated composite plate, which would prolong the exploitation period
of the laminated construction.

For the same considered square five-layer laminated plate 0◦/90◦/0◦/90◦/0◦, with
a delamination that is located between the second and third lamina, Figure 10 shows the
change of dimensionless values of sliding ∆u, depending on the change of the coordinate x
that determines the variable position of the delamination at the point through the length
of the plate. It is emphasized that, in Figure 10, the delamination is given at one point
with coordinate (x; 0.5; 0.1), whereby the coordinate x changes the position of the point of
delamination throughout the length of the plate. It is shown that the change in the value of
the delamination ∆u, in the direction of the x-axis (depending on the position throughout
the length of the plate), is an asymmetric value for the considered plate.
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Figure 10. The change of the value of delamination, depending on the position of delamination
determined by the coordinate x for the plate ratios a/b = 1 and b/h = 4.

4. Conclusions

This paper presents a new approach to the embedding of delamination in the analytical
procedure of determining the stress–strain state in laminated composite plates with an inter-
nal delamination at the point of a coordinate (x, y, z), which occurred during the production
process. The new approach, with the new analytical calculation procedure shown in this
paper, is based on a mathematical model of the layerwise theory and has been applied to
define the stress–strain state of simply supported laminated composite plates strained to
bending. The authors of this paper have automated a calculation method by designing a
program code in the Fortran programming language, which can be easily upgraded.

The paper discusses a laminated plate that contains interlayer delamination, i.e., a
gap, at the bond of two adjacent laminae. Depending on the change in the number of
members of the trigonometric series, it has was proven that the dimensionless values of
the component displacements (primary output) and stresses (secondary output) calculated
by the new approach and the new analytical calculation procedure converge very quickly
towards the exact solution. It was concluded that the solutions are stable and converged for
thick, moderately thick, and moderately thin laminated plates. Unstable and/or divergent
solutions were obtained for thin and very thin plates. To be able to compare and determine
the accuracy of the reported procedure, in the extensive literature, the authors did not find
any appropriate comparative data for cross-sections containing an initial delamination at
a point of the bond between two laminae. For this reason, Table 1 presents a comparison
with the data from the literature for a cross-section that does not contain delamination. It
is shown that the existence of delamination causes a significant change in the maximum
values of displacements and stress. For this reason, the characteristic dimensionless values
of displacement and stress, obtained using the new method for cross-section containing
delamination, were compared with the corresponding values (available in the literature)
for a cross-section without delamination for a four-layer laminated plate 0◦/90◦/0◦/90◦.
It was proved that in a cross-section with delamination, significantly higher values of
displacement and stress are obtained.

This new approach to the embedding of delamination is based on the calculation
procedure of the layerwise theory, whereby the output data represent the value of “sliding”
at the point where there is no bond between two laminae, i.e., the value of the “separation”
or the value of the delamination in the plane (x, y) is determined. The new approach
of defining a “zero state”, and stress and strain state, for the cross-section with internal
delamination can be further used as a test solution for numerically or experimentally
obtained results. The procedure presented in the paper can be improved, expanded, or
supplemented by including new members in the mathematical model, related to new types
of loads, the initial geometry of delamination in situations when the gap is not local, as
well as with nonlinear effects dealing with the growth, development, and propagation of
delamination. These effects will be the object of future research.
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Nomenclature

a Length of the plate
b Width of the plate
h Thickness of the plate
hj Thickness of j-th lamina
N Total number of laminae
md Total number of delamination through the thickness
nd Total number of nodes through the thickness
E1/E2 Modulus ratio
G12, G13, G23 Shear modulus
ν12, ν13 Poisson’s ratios

Q̄(j)
ij Transformed stiffnesses of j-th orthotropic lamina

Aij, Bij
J, Dij

JI Stiffnesses of the plate, i,j = 1,2,4,5,6
u, v, w Components of displacement in the middle of the plate
UJ(x,y), VJ (x,y) Additional nodal displacements
Φ(z) 1D interpolation function through the thickness of the plate
εxx, εyy, εzz, εxy, εxz, εyz Components of strain
σxx, σyy, σxy, σxy, σxz, σyz Components of stress
Nx, Ny, Nxy, Qx, Qy Forces in the middle plane of the plate
N J

x , N J
y
, N J

xy
, QJ

x
, QJ Forces in node J through the thickness of the plate

(n, m) Number of elements of the trigonometric series
q Transverse load
Xmn, Ymn, Wmn, RJ

mn, SJ
mn Unknown coefficients

Qmn Furie’s coefficients
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