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Abstract: Relativistic magnetohydrodynamics (RMHD) provides an extremely useful description
of the low-energy long-wavelength phenomena in a variety of physical systems from quark–gluon
plasma in heavy-ion collisions to matters in supernova, compact stars, and early universe. We review
the recent theoretical progresses of RMHD, such as a formulation of RMHD from the perspective
of magnetic flux conservation using the entropy–current analysis, the nonequilibrium statistical
operator approach applied to quantum electrodynamics, and the relativistic kinetic theory. We
discuss how the transport coefficients in RMHD are computed in kinetic theory and perturbative
quantum field theories. We also explore the collective modes and instabilities in RMHD with a special
emphasis on the role of chirality in a parity-odd plasma. We also give some future prospects of
RMHD, including the interaction with spin hydrodynamics and the new kinetic framework with
magnetic flux conservation.

Keywords: relativistic magnetohydrodynamics; magnetic-flux conservation; nonequilibrium statisti-
cal operator; chiral magnetohydrodynamics; anisotropic transport coefficients

1. Introduction

Relativistic hydrodynamics provide an incredibly successful description of the macro-
scopic dynamics of interacting many-body systems in a relativistic arena since its birth [1–5].
Its applicability ranges from very small systems such as the quark–gluon plasma (QGP)
created in high-energy heavy-ion collisions to very large systems like the expanding uni-
verse and the explosive supernovas [6,7]. From a theoretical point of view, relativistic
hydrodynamics is a typical example of effective field theories which is valid at low-energy
and long-wavelength limit. The dynamical variables in relativistic hydrodynamics are the
coarse-grained conserved quantities stemmed from the underlying symmetries. As such,
there exist a variety of ways to systematically construct relativistic hydrodynamics when
an appropriate derivative expansion is employed.

Strong magnetic fields exist and play critical roles in a number of systems where the
relativistic hydrodynamics can be applied. Examples range from high-energy heavy-ion
collisions to supernovas, neutron stars, and the early universe. In heavy-ion collisions,
the colliding nuclei induce very strong transient magnetic fields exerting on the produced
QGP [8–15]. The peak strength of such magnetic fields can reach 1019 Gauss in Au + Au
collisions in a Relativistic Heavy Ion Collider (RHIC) and 1020 Gauss in Pb + Pb collisions
in a Large Hadron Collider (LHC). Given that the QGP is also an electromagnetic (EM)
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plasma, such magnetic fields can strongly influence the dynamics of QGP and induce
novel transport phenomena in QGP such as the chiral magnetic effect which provides a
valuable machinery to access the quantum chromodynamics (QCD) topological sector in
an experimentally feasible way [16,17]. (For reviews of strong magnetic-field effects in
heavy-ion collisions, see Refs. [18–22].)

In compact stellar objects such as the neutron stars, the surface magnetic fields can
reach the order of 1012–1013 Gauss [23], with a subclass of neutron stars (called magnetars)
having surface magnetic fields of the order of 1014–1015 Gauss [24] (Even stronger tran-
sient magnetic fields may be created in binary neutron star mergers [25,26]). The internal
magnetic fields could be orders of magnitude stronger than the surface magnetic fields.
Although the origin of magnetar magnetic fields is not fully understood, one widely ac-
cepted theory is that they result from the magnetohydrodynamic dynamo processes in the
interior fluids of some newly born neutron stars [27]. Observationally, soft gamma ray re-
peaters (SGRs) and anomalous X-ray pulsars (AXPs) are commonly identified as magnetars.
The strong magnetic fields are crucial for understanding the phenomenology of neutron
stars, particularly magnetars, such as radio emission, cooling properties, equations of state,
shape deformation and gravitational-wave emission, merging processes, and post-merger
evolution of binary neutron stars, among other things. (See Refs. [28–34] for reviews.)

Although conclusive evidence for primordial magnetic fields in the early universe
is still lacking, astrophysical studies of the large-scale intergalactic magnetic fields in the
current universe strongly support their existence. The origin of the primordial magnetic
fields has been pursued over the last three decades with possible scenarios stemming from
the big-bang era [35–37] and cosmic phase transitions like the QCD phase transition and
the electroweak phase transition [38–43]. In addition, the strong primordial magnetic fields
may have played an important role in understanding the cosmological structure formation,
the thermal spectrum, and polarization anisotropies of the cosmic microwave background,
the big-bang nucleosynthesis and baryogenesis, and so on. (For reviews of the primordial
magnetic fields, see Refs. [44–46].)

The relativistic magnetohydrodynamics (relativistic MHD or RMHD) is often used
as a standard tool to analyze the physical processes in the systems mentioned above. It
provides a macroscopic framework to self-consistently describe the evolution of the mat-
ter coupled with either dynamical electromagnetic (EM) fields or in external EM fields.
There is a long history of astrophysical and cosmological applications of RMHD (typ-
ically in the presence of gravity), and there are already a number of excellent reviews
and textbooks (see, for example, Refs. [47–51]). Over the last decade, due to the realiza-
tion of strong magnetic fields in heavy ion collisions, various aspects and applications
of RMHD in the context of heavy ion collisions have been extensively investigated, in-
cluding the study of evolution of magnetic fields in the QGP [52,53], the computation of
RMHD transport coefficients in QCD matter using perturbative field theory [54–58], kinetic
theories [59–66], and holographic models [67–70], the anisotropic evolution of the QGP
coupled with magnetic fields [71–81], the simulation of chiral magnetic effect and other
anomalous transport phenomena [82–91], among other things. In particular, the presence
of the axial charge induced by a topological nature of the system motivated people to
extend RMHD to the chiral magnetohydrodynamics (chiral MHD) [92], which gives a
potential theoretical tool to investigate the dynamical origin of the primordial large-scale
magnetic field [93–98] (see also Refs. [99–104] for earlier approaches to this problem based
on RMHD).

Instead of exploring into the details of RMHD applications in many subfields of
physics, the goal of this article is to present a two-fold overview of the theoretical aspects
of the special relativistic MHD: one based on the recent formulation of RMHD motivated
by the generalized symmetry viewpoint, and the other with the conventional approach in
which the matter components and the EM fields are separated. We will present our view to
relate these two formulations with each other.
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As a branch of relativistic hydrodynamics, the RMHD can also be considered as
an effective theory of low-energy long-wavelength modes of the system. Such modes
are usually the conserved modes like the energy and momentum modes. When the
EM fields are dynamical, it has been suggested recently that the Bianchi identity for
EM fields can be regarded as a conservation law (associated with a one-form magnetic
U(1) symmetry) [92,105–109], allowing a formulation of RMHD based solely on symmetry
argument and derivative expansions of conserved quantities (in this case, called hydro-
dynamic variables). (See also Refs. [110–115] for several applications of higher-form (and
higher-group) symmetry to hydrodynamics.) We will give detailed discussion about the
construction of RMHD in this manner in Section 2 using a phenomenological method based
on entropy–current analysis and in Section 3 using a nonequilibrium statistical operator
method. A crucial observation of such a construction is that the magnetic field, like tem-
perature and fluid velocity, persists at thermal equilibrium and can thus be assigned as a
leading-order variable in derivative expansion. This is known as a strong magnetic field
and is the scenario that we are concerned with. (We will not discuss the scenario with
weak magnetic fields at sub-leading orders in derivative expansion because the results
are less novel, though it is also very useful in practical applications.) As a result, the
constitutive relations exhibit anisotropies at both the ideal and dissipative levels, which is a
distinguished feature of RMHD (also non-relativistic MHD, in fact) [116–120].

We will then examine how this new formulation is connected to the conventional
approach in Section 4, and proceed with the evaluations of transport coefficients in kinetic
theory and in perturbative quantum field theories (QED, as an example) in Sections 5 and 6,
respectively. More novel features can appear in RMHD when the system allows parity
violation, leading to the chiral MHD. This will be explored in Section 7. We note that
there is a significant difference between the treatments of EM fields in Sections 2, 3, 7,
and that in Sections 5 and 6. In Sections 2, 3 and 7, we treat the EM fields as dynamical
variables following a recent formulation of RMHD. On the other hand, the EM fields
in Sections 5 and 6 are considered as backgrounds, and formulations are closer to the
conventional approach with the EM fields treated separately from the matter components.
Considering this difference, we compare the result of Sections 2 and 3 to the conventional
one to clarify these two formulations in the intermediate Section 4. Finally, we discuss the
future prospects of RMHD in Section 8.

Here is a summary of our notations. We use the natural units, h̄ = c = kB = 1.
For the electromagnetism, we use the Heaviside–Lorentz convention ε0 = µ0 = 1 and
α = e2/(4π)=1/137. Other notations are:

• Minkowski metric: ηµν = ηµν = diag(1,−1,−1,−1). A curved-spacetime metric is
denoted by gµν;

• Levi–Civita tensor in Minkowski spacetime: εµνρσ with ε0123 = −ε0123 = 1;
• Fluid velocity four vector: uµ = γ (1, v)T with γ = 1/

√
1− v2 and u2 = 1;

• Direction of the magnetic field: bµ = Bµ/B with B =
√
−BµBµ. Note that b2 = −1

and b · u = 0;
• Projector transverse to uµ: ∆µν = ηµν − uµuν;
• Projector transverse to both uµ and bµ: Ξµν = ∆µν + bµbν;

• Cross projector: bµν
? = −bνµ

? = εµνρσuρbσ. Note that uµbµν
? = 0 = bµbµν

? , bµλ
? bν

?λ = Ξµν;
• Co-moving derivative (or material derivative or proper-time derivative) of A: DA =

Ȧ = dA/dτ = uµ∂µ A;
• Spatial gradient of A: ∇µ A = ∆µν∂ν A;
• Symmetrization, anti-symmetrization, and traceless symmetrization of a rank-two ten-

sor Aµν: A(µν) = (Aµν + Aνµ)/2, A[µν] = (Aµν−Aνµ)/2, and A〈µν〉 = (1/2)∆µ
α ∆ν

β(Aαβ

+Aαβ)− (1/3)∆µν∆αβ Aαβ;
• Decomposition of velocity gradient: ∂µuν = uµDuν + ωµν + wµν where ωµν = ∇[µuν]

is the vorticity tensor and wµν = ∇(µuν) = ∇〈µuν〉 +
1
3 ∆µνθ with ∇〈µuν〉 the shear

tensor and θ = ∆αβwαβ the expansion rate of the fluid.
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2. Macroscopic Approach: The Entropy–Current Analysis

In this section, we review a phenomenological way to derive the RMHD equations
based on the second law of local thermodynamics. In Section 2.1, we first give a brief
overview of how one can build relativistic hydrodynamics without coupling to the EM
fields before going into the discussion of RMHD. This can help us understand some basic
ingredients that are essential to the construction of RMHD. In Section 2.2, we generalize
our discussion to RMHD based on the symmetry associated with the Bianchi identity.

As mentioned in Section 1, hydrodynamics is regarded as a low-energy effective theory
that describes the dynamics of gapless modes. In other words, hydrodynamics describe
the macroscopic behavior of conserved charges that do not dissipate away. Therefore, it is
crucial to identify symmetries of the system and associated conservation laws that serve as
the equations of motion (EOMs) in hydrodynamics. This observation allows us to derive
hydrodynamics from the viewpoint of the symmetry and thermodynamics of irreversible
processes [5,121] without going into details of the system. This macroscopic (phenomeno-
logical) approach is often called the entropy–current analysis since the constitutive relations
(see definition below Equation (3)) are derived by requiring the semi-positivity of the
entropy–current divergence, or the second law of local thermodynamics.

2.1. Primer to the Entropy–Current Analysis

For the sake of simplicity, let us consider a relativistic system that only enjoys spacetime
translational symmetries, and thus respects the energy–momentum conservation law:

∂µTµν = 0, (1)

where Tµν denotes the energy–momentum tensor.Throughout this paper, we always con-
sider relativistic systems respecting the Lorentz symmetry, so that one can write down the
hydrodynamic equations in a Lorentz covariant manner. One may think that the Lorentz
symmetry itself leads to the angular momentum conservation law, which should give
independent hydrodynamic equations as well. However, in the strict hydrodynamic limit
(i.e., the long wavelength and low frequency limit), the angular momentum conservation
law reduces to the constraint equation that forces the energy–momentum tensor to be
symmetric under the exchange of its two Lorentz indices. We thus use the symmetric
energy–momentum tensor Tµν = Tνµ in the following discussion In the transient time
scale, called the spin hydrodynamic regime in Refs. [122–124], the spin density of micro-
scopic constituents may show its intrinsic dynamics, and the energy–momentum tensor has
the anti-symmetric components. This is the main topic of relativistic spin hydrodynamics
which we will briefly discuss in Section 8. We also note that the discrete charge-conjugation
(C), time reversal (T), and parity (P) symmetries also impose strong constraints on the
transport phenomena. As will be seen in Section 7, breaking one or two of them will allow
the appearance of new transport terms in the constitutive relations. In this section, however,
we assume that C, P, and T symmetries are not violated.

Dynamical variables of hydrodynamics are the conserved energy–momentum den-
sities, or the corresponding thermodynamic conjugate variables given by the fluid four-
velocity uµ—normalized as ηµνuµuν = 1 with the Minkowski metric ηµν = diag(+1,−1,
−1,−1)—and the local inverse temperature β = 1/T. In this paper, we employ the
Landau–Lifshitz frame [5] to define the fluid velocity by

Tµ
νuν = εuν, (2)

with the energy density ε. The local inverse temperature is related to the energy density ε
through the usual thermodynamic relation. We will later give a concrete definition of the
inverse temperature in Equation (8) when we start to consider the entropy density.



Symmetry 2022, 14, 1851 5 of 63

Then, as a long-wavelength low-frequency effective theory, one can formulate hydro-
dynamics based on an expansion of Tµν with respect to the small derivatives of uµ and
β as

Tµν = Tµν

(0) + Tµν

(1) + O(∂2), (3)

where the subscripts (0) and (1) denote numbers of derivatives. This equation, which
expresses Tµν in terms of the dynamical variable uµ and β (or ε), is called the constitutive
relation. We will construct the constitutive relation on an order-by-order basis.

In the leading-order derivative expansion, one can uniquely decompose the zeroth-
order term Tµν

(0) as

Tµν

(0) = εuµuν − p∆µν, (4)

with the projection tensor ∆µν = ηµν − uµuν satisfying uµ∆µν = 0. This is because no other
rank-two symmetric tensors can be constructed from algebraic combinations of available
building blocks uµ, ηµν, and Levi–Civita tensor εµνρσ (normalized to be ε0123 = −ε0123 = 1).
The scalar coefficient functions ε and p are regarded as the energy density and pressure
in the fluid rest frame. This interpretation becomes manifest, Tµν

(0) = diag(ε, p, p, p), when
we take uµ = (1, 0). We note that we have already imposed the matching condition
for ε, Tµνuµuν = Tµν

(0)uµuν, in Equation (4), which enforces that Tµν

(1)uν = 0 following
Equations (2). On the other hand, no such matching condition is required for p, and there
could be O(∂1) correction to the physical pressure in the fluid.

At this stage, Equation (4) is just a parameterization of Tµν

(0) using the unknown function
p. In order to organize Equation (1) in a solvable leading-order hydrodynamic equation
with Tµν

(0), we have to relate the pressure p to ε. If our system is close to the local thermal
equilibrium, we can expect that such a relation is provided by the equation of state (EOS),
p = p(ε), so that p is identified as the thermodynamic pressure. As we will see shortly,
p(ε) has to satisfy a certain thermodynamic relation in order to respect the second law of
thermodynamics. Then, substituting the leading-order constitutive relation (4) into the
conservation law (1), one obtains the relativistic Euler equations:

(ε + p)Duµ −∇µ p = 0 , (5a)

Dε + (ε + p)θ = 0 , (5b)

where we defined the material (or co-moving time) derivative D = uµ∂µ, the spatial
gradient ∇µ = ∆µν∂ν, and the expansion rate of the fluid θ = ∂µuµ.

In the same manner, we can continue to perform the tensor decomposition of the
first-order term Tµν

(1). Noting that Tµν

(1) satisfies Tµν

(1)uν = 0 enforced by the Landau–Lifshitz
frame condition and the matching condition for ε, we use ∆µν to decompose the rank-
two symmetric tensor Tµν

(1) into the trace part Π and symmetric traceless part πµν (or
πµν∆µν = 0) as

Tµν

(1) = −∆µνΠ + πµν. (6)

This equation gives the decomposition of the rank-two symmetric tensor into irre-
ducible representations of the SO(3) rotation, and thus ∆µνΠ and πµν do not mix under the
SO(3) rotation. Here, we can regard Π as the derivative correction to the pressure because
it appears at the same place as the thermodynamic pressure p does. As we will see, Π
describes a viscous correction of the pressure proportional to the expansion rate θ, while
πµν gives the shear viscous contribution describing a friction-like process induced by the
velocity gradient. As being O(∂)-order quantities, Π, and πµν should be structured linearly
in the gradients of uµ and β (or, equivalently, ε).
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The entropy–current analysis gives an elegant way to work out such linear structures
based only on the thermodynamic laws. First, we write down the entropy current in a
similar manner as that for Tµν,

sµ = suµ + sµ

(1) + O(∂2), (7)

where s = s(ε) is the thermodynamic entropy density in the fluid rest frame, and sµ

(1) is a
derivative correction transverse to uµ. Note that the thermodynamic entropy density is a
function of the energy density ε, whose derivative with respect to ε gives a definition of the
local inverse temperature β(x) = 1/T(x) as

β(x) :=
∂s(ε)

∂ε

∣∣∣∣
ε=ε(x)

⇔ T(x)ds(x) = dε(x). (8)

Then, using the chain rule for the material derivative of the entropy density, and
the contracted equation of motion uν∂µTµν = 0 with Equations (4) and (6), we find the
divergence of the entropy current to be

∂µsµ = β(Ts− ε− p)θ − βΠθ + β∂〈µuν〉π
µν + ∂µsµ

(1) + O(∂3), (9)

where we introduced the symmetric traceless projection of the velocity gradient ∂〈µuν〉
(called shear tensor) as

∂〈µuν〉 = ∇〈µuν〉 =
1
2
(∇µuν +∇νuµ)− 1

3
∆µνθ. (10)

Since the divergence of the entropy current gives a local entropy production rate,
the second law of local thermodynamics requires ∂µsµ ≥ 0 for any configuration of the
hydrodynamic variables β and uµ. This is achieved by identifying the first-order entropy
current as sµ

(1) = 0 and the following conditions:

Ts = ε + p, (11a)

Π = −ζ θ, (11b)

πµν = 2η ∂〈µuν〉. (11c)

Here, Equation (11a) gives the thermodynamic relation, which restricts p(ε) ap-
pearing in the leading-order constitutive relation to be the thermodynamic pressure.
Equations (11b) and (11c) complete the first-order constitutive relations with the phe-
nomenological parameters ζ, η identified as the transport coefficients called bulk viscosity
and shear viscosity, respectively. The second law of local thermodynamics ∂µsµ ≥ 0 requires
the semi-positivity of those transport coefficients.

With the identification of Π and πµν given in Equations (11b) and (11c), we obtain the
hydrodynamic equations up to O(∂2) by substituting the derived constitutive relations into
the conservation law (1). By projecting the obtained equation into the spatial and temporal
directions, we have

(ε + p− ζθ)Duµ −∇µ(p− ζθ) + 2∆µ
ν ∂ρ(η∂〈νuρ〉) = 0 , (12a)

Dε + (ε + p− ζθ)θ − 2η∂〈µuν〉∂
〈µuν〉 = 0 . (12b)

These are the relativistic Navier–Stokes equations.
One can continue the above procedure to higher orders in derivative expansion.

The resultant constitutive relations and the hydrodynamic equations become complicated,
and we do not report these higher order results here. The readers who are interested in
such results can find excellent discussions in, e.g., Refs. [7,125,126].
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2.2. Relativistic MHD from the Magnetic Flux Conservation

We now proceed to the discussion of RMHD. Here, what is different from the usual
relativistic hydrodynamics is the existence of the U(1) gauge field, or dynamical electric
and magnetic fields. We thus first need to examine whether or not those fields deserve to
be qualified as hydrodynamic variables that persist in the low-energy long-wavelength
limit without being damped out in a fluid.

Firstly, one finds that the electric field is not a hydrodynamic variable. To see this,
notice that electric fields are subject to the Debye screening, which is a static screening effect
in the long spacetime limit [127,128]. Namely, an electric-charge density is redistributed
so that the Coulomb field offsets the electric field in an equilibrium state. Therefore, an
electric field is a gapped excitation due to the Debye screening mass and does not deserve
a hydrodynamic variable. One also finds the same conclusion from the Maxwell equation
∂µFµν = Jν, where Fµν := ∂µ Aν − ∂ν Aν is the field strength tensor and Jµ is the electric
current. The Maxwell equation indicates that the electric flux is not conserved due to the
presence of the electric current. With a given constitutive relation for Jµ describing the
Ohmic current, as shown in Appendix A, the electric field behaves like a decay mode in
neutral plasma.

In contrast, there is no static screening effect on a magnetic field, meaning that magnetic
field enjoys its intrinsic dynamics in the macroscopic scale even in a medium. This quali-
tative difference from the electric fields stems from the absence of a magnetic monopole.
Namely, there is no “magnetic charge” distribution that can screen magnetic fields. This is
a consequence of the Bianchi identity ∂µ F̃µν = 0, where we defined the Hodge dual of Fµν

by F̃µν = 1
2 εµνρσFρσ.

The novel formulation of RMHD reviewed in Sections 2 and 3 of this paper is based
on this simple observation that the magnetic flux is a conserved quantity [92,105–109,129]
due to the Bianchi identity. This observation allows us to straightforwardly derive RMHD
according to the philosophy of hydrodynamics that motivates us to keep only the con-
served quantities resulting from the associate symmetries. (The corresponding symmetry
associated with the conserved magnetic flux is called a one-form magnetic U(1) symme-
try [130]. This gives a generalization of the usual global symmetry because the conserved
magnetic flux acts on a one-dimensional extended object, or a ’t Hooft loop, rather than
a conventional local operator having a point-like charge.) In this section, we formulate
RMHD by plugging the magnetic-flux conservation law into the entropy–current analysis.
In Section 3, we identify the symmetry for the magnetic-flux conservation inherent in QED
and provide the derivation of RMHD on the basis of the nonequilibrium statistical method.

Before diving into the entropy–current analysis, it is useful to pay our attention to a
basic difference with the conventional formulation of MHD [131–136]. In the conventional
formulation of MHD, the starting point is to couple the Navier–Stokes (or Euler) equation
with the Maxwell equation and Bianchi identity. This means that we also keep the electric
field as a dynamical variable, which shows a non-hydrodynamic relaxational behavior
according to our identification. Thus, the conventional MHD describes the transient
dynamics including the electric field. On the other hand, the new formulation only keeps
conserved quantities as the dynamical variable, and gives a low-energy effective theory in
a strict hydrodynamic limit.

2.2.1. Entropy Production Rate with Magnetic Flux

Let us perform the entropy–current analysis to derive the RMHD equation. This is
carried out as a direct extension of the simple analysis in Section 2.1 by additionally
considering the magnetic-flux conservation law.

First of all, the energy–momentum and magnetic-flux conservation laws are given as

∂µTµν = 0 , ∂µ F̃µν = 0 . (13)
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Here, we note that Tµν is the total energy–momentum tensor of the system that includes
not only the matter part but also the contribution from the EM fields. The second equation,
or the Bianchi identity, indicates the conservation of magnetic flux, which corresponds to
the Gauss’s law for the magnetic flux in the absence of a magnetic monopole. Following
the philosophy of hydrodynamics discussed above, we do not include another Maxwell
equation into the set of hydrodynamic equations because it describes the time evolution of
the gapped electric fields.

We then introduce the dynamical variables of RMHD. Associated with the conserved
energy–momentum density, we again employ the Landau–Lifshitz frame to define the
energy density ε and the normalized fluid four-velocity uµ by Equation (2). In addition,
we define a magnetic flux density by Bµ = F̃µνuν in a covariant manner. This four vector
reduces to Bµ = (0, B) in the local rest frame with uµ = (1, 0, 0, 0). Thus, the number of
independent components of it is not four but three, which is manifest by noting that Bµ is
transverse to the fluid velocity, i.e., uµBµ = 0.

Let us next introduce the conjugate variables based on the first law of local thermody-
namics. Relying on the thermodynamic entropy density s(ε, Bµ) in the rest frame, which is
a function of the energy density ε and magnetic flux density Bµ, we define the local inverse
temperature β and (in-medium) magnetic field Hµ as

β :=
∂s(ε, Bµ)

∂ε
, βHµ := −∂s(ε, Bµ)

∂Bµ ⇔ Tds = dε− HµdBµ . (14)

With the help of these variables, we will derive the constitutive relations for Tµν and
F̃µν. Here we note that, in Section 2, 3 and 7, we call Hµ the magnetic field and Bµ the mag-
netic flux density, but, in other sections, we call Bµ the magnetic field
without confusion.

To perform the entropy–current analysis with Equations (13) and (14), it is useful to
decompose Tµν and F̃µν into possible tensor structures. In the present setup, we have the
magnetic flux vector Bµ in addition to the flow vector uµ as available zeroth-order vectors.
It is then convenient to introduce a normalized vector bµ = Bµ/B with B =

√
−BµBµ

such that ηµνbµbν = −1 and uµbµ = 0. With this vector, we also introduce a projector
Ξµν = ∆µν + bµbν transverse to both uµ and bµ (Ξµνuµ = 0 = Ξµνbµ). By the use of those
tensors, we parameterize the constitutive relations as

Tµν = εuµuν − p⊥Ξµν + p‖b
µbν + Tµν

(1) , (15a)

F̃µν = Bµuν − Bνuµ + F̃µν

(1) . (15b)

Here, we assume that p⊥, p‖ are zeroth-order in derivatives. The first-order corrections
are collectively denoted as Tµν

(1) and F̃µν

(1). Considering a charge-neutral and parity-even
plasma, we assume the charge–conjugation symmetry and require the energy–momentum
tensor Tµν not to have a charge-conjugation odd term proportional to u(µbν) at the zeroth-
order in derivatives. Likewise, F̃µν could not have a term εµναβuαbβ at the zeroth-order
because the resulting scalar coefficient for such a term is parity odd. Plugging those
expressions into the equations of motion (13) and contracting those with βuν and Hν,
we obtain

0 = uν∂µTµν = Dε + (ε + p⊥)θ + (p⊥ − p‖)bνbµ∂µuν + uν∂µTµν

(1) , (16a)

0 = Hν∂µ F̃µν = −HµDBµ − BµHµθ + BµHν∂µuν + Hν∂µ F̃µν

(1) . (16b)

Here, we note that our definitions of ε, uµ, and Bµ lead to the matching conditions
uνTµν

(1) = 0 = uν F̃µν

(1) (see Appendix B).



Symmetry 2022, 14, 1851 9 of 63

Now, let us compute the divergence of the entropy current sµ = suµ + sµ

(1). As in the
previous section, we use the chain rule and the equations of motion (16) to eliminate Dε
and −HµDBµ. Then, we obtain

∂µsµ = sθ + Ds + ∂µsµ

(1)

= sθ + βDε− βHµDBµ + ∂µsµ

(1)

= β(Ts− ε− p⊥ + BµHµ)θ − βbµ[(p⊥ − p‖)b
ν + Hν]∂µuν

+Tµν

(1)∂µ(βuν) + F̃µν

(1)∂µ(βHν) + ∂µ(s
µ

(1) − βuνTµν

(1) − βHν F̃µν

(1)) . (17)

Applying the second law of local thermodynamics ∂µsµ ≥ 0 to Equation (17), we will
derive the RMHD equation in the leading and next-to-leading orders in derivatives.

2.2.2. Zeroth-Order in Derivatives: Nondissipative RMHD

At the leading order in derivatives, we find a set of constraints by requiring the
absence of entropy production. For this requirement to be satisfied in any hydrodynamic
configuration, all the leading-order terms should vanish independently because they are
proportional to the irreducible tensor decomposition of ∂µuν and a non-derivative form of
uν in Equation (17). We thus find the following four constraints:

Ts + BµHµ = ε + p⊥ , (18a)

(p⊥ − p‖)b
ν + BHν = 0 . (18b)

The first constraint serves as an extension of the thermodynamic relation with the
magnetic flux. The second constraint indicates that there is a pressure anisotropy p⊥− p‖ =
BµHµ(> 0) induced by the finite magnetic flux (cf. Figure 1). In addition, noting that the
magnetic field Hµ is parallel to Bµ and recalling that the (in-medium) magnetic field is
parameterized by Hµ = −µ−1

m Bµ with the magnetic permeability µm, one identifies that
the pressure difference gives the magnetic permeability, µ−1

m = (p⊥ − p‖)/|B|2.

Figure 1. Anisotropic pressure induced by the magnetic field and the magnetization.

We conclude that the leading-order analysis leads to the following constitutive relations:

Tµν

(0) = εuµuν − p⊥Ξµν + (p⊥ − Bα Hα)bµbν , (19a)

F̃µν

(0) = Bµuν − Bνuµ . (19b)

Note that the derived constitutive relation for F̃µν

(0) indicates that the electric field is

absent at the leading order because it is given by Eµ

(0) := − 1
2 εµναβuν F̃(0)αβ = 0. This result is

consistent with our starting point treating the electric field as a non-hydrodynamic gapped
variable. We will find that an electric field (and corresponding electric current) appears as
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a first-order derivative correction. This will clearly show that they are slaved to the true
hydrodynamic variables in the strict hydrodynamic limit as shown below in the form of
the first-order constitutive relation.

2.2.3. First-Order Derivative Corrections: Dissipative RMHD

We proceed to the derivation of the first-order corrections Tµν

(1), F̃µν

(1). Being equipped
with the identified constraints (18), we can simplify the entropy production rate (17) as

∂µsµ = βTµν

(1)∂µuν + F̃µν

(1)∂µ(βHν) + ∂µ

(
sµ

(1) − βuνTµν

(1) − βHν F̃µν

(1)

)
, (20)

where we used Tµν

(1)uν = 0. Noting that uν and βHν are independent variables, one can
ensure the semi-positive entropy production, or the local second law ∂µsµ ≥ 0, in any
hydrodynamic configuration by requiring that

Ru := βTµν

(1)∂µuν ≥ 0 , (21a)

RE := F̃µν

(1)∂µ(βHν) ≥ 0 , (21b)

sµ

(1) = βuνTµν

(1) + βHν F̃µν

(1) . (21c)

As we will see, the first two conditions are satisfied by requiring each term to be a
semi-positive bilinear form, which determines the first-order constitutive relations. With
the resulting constitutive relations, we can also find the derivative corrections to the entropy
current from Equation (21c). Below, we will separately analyze the constitutive relations
for Tµν

(1) and F̃µν

(1).

Electric Field and Resistivities

Let us first derive the constitutive relation for F̃µν

(1), focusing on Equation (21b). To

makeRE a semi-positive bilinear, we can express F̃µν

(1) as

F̃µν

(1) = Tρµνρσ∂[ρ(βHσ]). (22)

Here, we introduced a rank-four tensor ρµνρσ, which will be identified as a resistivity
tensor. As we will see, the semi-positivity of RE and the anti-symmetric property in the
Lorentz indices restrict possible structures of the resistivity tensor ρµνρσ.

To identify the tensor structure of ρµνρσ, we first recall that F̃µν

(1) is transverse to uν,

F̃µν

(1)uν = 0. Thus, we can use bµ and Ξµν to perform the tensor decomposition of ρµνρσ.
Moreover, we note that it is anti-symmetric with respect to the exchange of its Lorentz
indices µ ↔ ν and ρ ↔ σ. Taking into account these properties, we can write down the
most general form for ρµνρσ in a neutral plasma as

ρµνρσ = 2ρ⊥
(

bµΞν[ρbσ] − bνΞµ[ρbσ]
)
+ 2ρ‖Ξ

µ[ρΞσ]ν. (23)

The two coefficients ρ⊥,‖ will be identified with two components of the electric resis-
tivity (see Section 4.2). Those tensor structures project out the gradient of the magnetic field
in parallel and perpendicular to bµ as opposed to what the subscripts of ρ⊥,‖ denote. This is
because the electric field is defined with F̃µν

(1) and the antisymmetric tensor that swaps
the directions (see Equation (25) below). Note that ρµνρσ cannot have a tensor structure
including bµν

? := εµναβuαbβ because any such term would violate the charge–conjugation
symmetry. To respect the second law of local thermodynamics, we require semi-positivity
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of the two resistivities, ρ‖ ≥ 0 and ρ⊥ ≥ 0. In fact, substituting Equations (22) and (23) into
Equation (21b), we find

RE = 8Tρ⊥
(

b[νΞµ]ρbσ∂[ρ
(

βHσ]

))2
+ 2Tρ‖

(
Ξµ[ρΞσ]ν∂[ρ

(
βHσ]

))2
, (24)

which is positive semi-definite. Equations (22) and (23) complete the constitutive relation
for F̃µν

(1). The first-order corrections to F̃µν

(1) give rise to an induced electric field

Eµ

(1) := −1
2

εµναβuν F̃(1)αβ = (ρ‖b
µbν − ρ⊥Ξµν)Tενλαβuλ∂α(βHβ) , (25)

where we used an identity 2bµ[α
? bβ] = Ξµ

ρ ερναβuν obtained from the Schouten identity.

Stress Tensor and Viscosities

One can derive the first-order corrections to the energy–momentum tensor Tµν

(1) in the
same manner. To ensure the semi-positivity of (21a), the left-hand side should also be a
positive semi-definite bilinear. Introducing the rank-four viscous tensor ηµνρσ, we now
express Tµν

(1) as

Tµν

(1) = ηµνρσ∂ρuσ, (26)

and identify the tensor structure of ηµνρσ.
We first recall that we employ the Landau–Lifshitz frame (see Appendix B for a detailed

discussion on the frame choice), in which Tµν

(1) is transverse to uν as Tµν

(1)u
ν = 0. Thus, we

can only use bµ and Ξµν as a possible vector and tensor to decompose the viscous tensor
ηµνρσ. Note that bµν

? cannot be used to decompose ηµνρσ because of charge-conjugation
symmetry. Moreover, recalling that Tµν is the symmetric energy–momentum tensor, one
finds that the viscous tensor should be symmetric with respect to the exchanges between
its Lorentz indices µ ↔ ν and ρ ↔ σ. These properties allow us to perform the tensor
decomposition as

ηµνρσ =ζ‖b
µbνbρbσ + ζ⊥ΞµνΞρσ − ζ×(bµbνΞρσ + Ξµνbρbσ)

− 4η‖b
(µΞν)(ρbσ) + η⊥

(
ΞµαΞνβ + ΞναΞµβ − ΞµνΞαβ

)
, (27)

where we introduced five viscosities—three bulk viscosities ζ‖, ζ⊥, ζ× and two shear vis-
cosities η‖, η⊥. As we will specify, these viscosities must satisfy a semi-positivity constraint
to ensure the second law of local thermodynamics.

To get a physical intuition of the dissipative processes and find the semi-positivity
constraint attached to each viscosity, it is useful to decompose the velocity gradient as

∂(µuν) = −θ‖bµbν +
1
2

θ⊥Ξµν − 2bαb(µΞν)β∂(αuβ) + ∂{µuν}, (28)

where we defined θ‖ := (−bµbν)∂µuν, θ⊥ := Ξµν∂µuν, and

∂{µuν} :=
1
2
(
ΞαµΞνβ + ΞανΞµβ − ΞµνΞαβ

)
∂αuβ. (29)

Using this decomposition, we find the first-order derivative corrections to the consti-
tutive relation (26) to be

Tµν

(1) =− (ζ‖θ‖ + ζ×θ⊥)bµbν + (ζ⊥θ⊥ + ζ×θ‖)Ξ
µν

− 4η‖b
(µΞν)(ρbσ)∂ρuσ + 2η⊥∂{µuν}. (30)
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Equation (30) allows us to get a physical intuition on the dissipative process attached
to each viscosity. Without the magnetic flux, an expansion/compression rate is given
as θ = ∇µuµ. In the presence of the magnetic flux, the expansion/compression in the
parallel and perpendicular directions should be distinguished from each other, and thus
we have θ‖ and θ⊥. Two viscosities ζ‖ and ζ⊥ describe a resistance to such two expan-
sions/compressions, respectively. Similarly, the flow gradient for the shear deformation is
projected into the parallel and perpendicular directions, which leads to the two friction-like
processes described by η‖ and η⊥ (cf. Figures 2 and 3). Based on these observations, we iden-
tify two coefficients ζ‖ and ζ⊥ with bulk viscosities and another two coefficients η‖ and η⊥
with shear viscosities. In addition, there is an off-diagonal cross response proportional to ζ×.
We also identify ζ× as one of the bulk viscosities since the associated term describes the cross
response of the anisotropic pressures to the two expansion/compression rates (cf. Figure 4).
These processes are reciprocal to one another, and the associated transport coefficients
should be the same according to the Onsager’s reciprocal relation [105,121,137,138]. Putting
ζ‖ = ζ⊥ = ζ× and η‖ = η⊥, one can confirm that the anisotropic viscous corrections in
Equation (30) reduce to the isotropic form (6) by the use of θ = θ‖ + θ⊥ and the identity (28).

Figure 2. Longitudinal and transverse bulk viscosities that are the off-equilibrium responses of the
pressure (green arrows)in the direction of the expansion/compression (blue arrows) of the system.

Figure 3. Shear deformations in and out of planes with respect to the magnetic field direction.

Figure 4. Cross bulk viscosities that are the response of the pressure (green arrows) in the orthogonal
direction to the expansion/compression (blue arrows) of the system. Those two cases are reciprocal
processes to each other.Compare those two with Figure 2.
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We next investigate the positivity constraint required for the viscosities. Substituting
the decomposition (28) into Equation (21a), we obtain

Ru = βηµνρσ∂µuν∂ρuσ

= β
(
θ‖ θ⊥

)( ζ‖ ζ×
ζ× ζ⊥

)(
θ‖
θ⊥

)
+ 2βη‖

(
2b(µΞν)ρbσ∂ρuσ

)2
+ 2βη⊥

(
∂{µuν}

)2 . (31)

Firstly, the last two terms are positive semi-definite by requiring η‖ ≥ 0 and η⊥ ≥ 0.
On the other hand, for the first term to respect the local second law, the matrix composed
of the bulk viscosities should be positive semi-definite. This means that the eigenvalue

of that matrix needs to be non-negative: ζ‖ + ζ⊥ ≥ ±
√
(ζ‖ − ζ⊥)2 + 4ζ2

×. Notice also
that the semi-positivity should be separately ensured in a parallel expansion/compression
(θ‖ 6= 0, θ⊥ = 0) and in a perpendicular one (θ⊥ 6= 0, θ‖ = 0) as necessary conditions,
requiring that ζ‖ ≥ 0 and ζ⊥ ≥ 0. Then, we find an inequality, ζ‖ζ⊥ − ζ2

× ≥ 0, from the
above eigenvalues. Summarizing, we found five inequalities

η‖ ≥ 0 , η⊥ ≥ 0 , ζ‖ ≥ 0 , ζ⊥ ≥ 0 , ζ‖ζ⊥ − ζ2
× ≥ 0 . (32)

Since the third and fifth (fourth and fifth) inequalities imply the fourth (third) inequal-
ity, one can get rid of either third or fourth inequality. See Appendix D for more discussions
and comparisons to the results in the literature. We also note that the second law of lo-
cal thermodynamics does not require the sign of ζ× to be semi-positive, but requires an
inequality among ζ× and ζ‖,⊥.

3. Nonequilibrium Statistical Operator Method for Relativistic MHD

From the underlying quantum field theory, one can also derive RMHD equations by
generalizing the nonequilibrium statistical operator method which was initiated by some
Japanese physicists in 1950s [139,140], further developed in the 1960–1970s [141–146], and
sophisticated quite recently [109,147–153]. We here review such an approach for deriving
RMHD (see Ref. [109] for more details).

3.1. Optimized Perturbation with Local Gibbs Distribution

The vital point in the nonequilibrium statistical operator method is to correctly identify
the appropriate form of the density operator. As we already discussed, the dynamical
variables in RMHD are the energy–momentum density T0

µ and the magnetic flux density
F̃0µ in a given coordinate system. Let us first identify these operators by considering QED
as an underlying quantum theory. The QED Lagrangian is given by

LQED = iψ̄γµDµψ−mψ̄ψ− 1
4

ηµνηαβFµαFνβ, (33)

where we introduced the Dirac field ψ with electric charge q, its Dirac conjugate ψ̄ = ψ†γ0,
and the U(1) gauge field Aµ. We also defined the covariant derivative Dµψ := ∂µψ− iqAµψ
and the field strength tensor Fµν := ∂µ Aν − ∂ν Aµ. The Poincaré symmetry and the Bianchi
identity enable us to find that the operators,

T̂µ
ν = iψ̄γµDνψ + FµρFνρ − δ

µ
νLQED, F̃µν =

1
2

εµνρσFρσ, (34)

satisfy the following Ward–Takahashi identities:

∂µT̂µ
ν(t, x) = 0, ∂µ F̃µν(t, x) = 0. (35)

Note that in order to keep the notations simple, we use the same symbol for operator
F̃µν and its expectation value, 〈F̃µν〉, the meaning should be self-explained in the context.
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One may wonder how the Bianchi identity is related to the symmetry of QED. In fact, it is
not so obvious how the QED Lagrangian is equipped with the corresponding symmetry—
the magnetic U(1) one-form symmetry—since it does not act on the local operator sitting in

Equation (33). Rather, it acts on the line operator exp
(

i
∫

C
dxµ Ãµ

)
, called the t’Hooft line

operator composed of a dual gauge field Ãµ defined by F̃µν = ∂µ Ãν − ∂ν Ãµ. The insertion
of the t’Hooft line is regarded as putting the test particle with the magnetic charge and is
analogous to the insertion of the Wilson line [130]. Thus, consider that Equation (35) as
the equations of motion is on the canonical line to set the starting point in constructing a
symmetry-based effective theory.

We then identify Tµν and F̃µν in the previous section with expectation values of
the above quantum operators T̂µν and F̃µν. This identification motivates us to specify
the appropriate density operator as the one describing fixed expectation values of our
dynamical variables 〈T̂0

ν(t, x)〉 and 〈F̃0µ(t, x)〉. The so-called local Gibbs (LG) distribution
ρ̂LG[λt; t] realizes such an density operator, which is parameterized by a set of the Lagrange
multipliers λt := {βµ(t, x),Hν(t, x)} as

ρ̂LG[λt; t] := exp(−Ŝ[λt; t]), (36)

where we introduced the entropy functional operator

Ŝ[λt; t] := −
∫

d3x
[

T̂0
ν(t, x)βν(t, x) + F̃0ν(t, x)Hν(t, x)

]
+ Ψ[λt]. (37)

Here, the first argument λt in ρ̂LG[λt; t] and Ŝ[λt; t] describes their functional depen-
dence on the Lagrange multipliers, λt := {βµ(t, x),Hν(t, x)}, while the second one t repre-
sents the time argument for a set of the conserved charge-density operators
ĉt := {T̂0

ν(t, x), F̃0µ(t, x)}. One finds that these Lagrange multipliers can be decomposed as
βµ(t, x) = β(t, x)uµ(t, x) andHµ(t, x) = β(t, x)Hµ(t, x) with the local inverse temperature
β(t, x), the fluid four-velocity uµ(t, x), and the magnetic field Hµ(t, x). In the following, we
express the average of a quantum operator Ô over the LG distribution as

〈Ô〉LG
λt

:= Tr(ρ̂LG[λt; t]Ô). (38)

In Equation (37), we also defined the local thermodynamic functional Ψ[λt], called the
Massieu–Planck functional, as a normalization factor of the LG distribution

Ψ[λt] := log Tr exp
(∫

d3x
[

T̂0
µ(t, x)βµ(t, x) + F̃0µ(t, x)Hµ(t, x)

])
. (39)

This functional is used to extract the average charge densities

〈T̂0
µ(t, x)〉LG =

δΨ[λt]

δβµ(t, x)
, 〈F̃0µ(t, x)〉LG =

δΨ[λt]

δHµ(t, x)
. (40)

In addition, we define the entropy functional S[ct] by taking the average of Equation (37)
over ρ̂LG[λt; t] as

S[ct] := −
∫

d3x
[
〈T̂0

ν(t, x)〉LG
λt

βν(t, x) + 〈F̃0ν(t, x)〉LG
λt
Hν(t, x)

]
+ Ψ[λt]. (41)

In other words, the entropy functional S[ct] is defined by the Legendre transform
of the Massieu–Planck functional Ψ[λt], and thus its argument is the averaged charge
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densities ct = {〈T̂0
ν(t, x)〉LG

λt
, 〈F̃0µ(t, x)〉LG

λt
}. One then finds the Lagrange multipliers, or

local thermodynamic variables conjugate to the conserved charge densities, as

βµ(t, x) = − δS[ct]

δT0
µ(t, x)

, Hµ(t, x) = − δS[ct]

δF̃0µ(t, x)
, (42)

which are consistent with Equation (14) in the previous section.
To describe the dissipative transport phenomena with the nonequilibrium statistical

operator method, we require a crucial assumption that the density operator ρ̂0 at the initial
time t0 be given by the LG distribution ρ̂0 = ρ̂LG[λt0 ; t0] [109,144–147,149]. Using the
Heisenberg picture, we define the expectation value of an arbitrary Heisenberg operator
Ô(t) at time t(≥ t0) as

〈Ô(t)〉 := Tr[ρ̂0Ô(t)] = 〈Ô(t)〉LG
λt0

, (43)

where we expressed the rightmost side using the above assumption and Equation (38).
Then, according to our identification, the averaged Ward–Takahashi identities,

∂µ〈T̂µ
ν(t, x)〉 = 0, ∂µ〈F̃µν(t, x)〉 = 0, (44)

should provide the RMHD equations after an appropriate derivative expansion is employed.
From this microscopic point of view, we have already fixed the definition of expectation

values 〈T̂µ
ν(t, x)〉 and 〈F̃µν(t, x)〉 by Equation (43). Thus, the remaining problem is to derive

the constitutive relations for Equation (43) based on our density operator ρ̂0 = ρ̂LG[λt0 ; t0].
However, recalling the result in the previous section, one realizes that this is a tough
problem; we expect that the resulting constitutive relations should be expressed by the
conjugate variables λt at time t, whereas our density operator ρ̂0 = ρ̂LG[λt0 ; t0] only contains
those λt0 at the initial time t0. In fact, the expectation value at time t (> t0) in the present
setup is always defined by taking average over the initial density operator ρ̂0 = ρ̂LG[λt0 ; t0],
which only contains conjugate variables at the initial time. Thus, it sounds impossible to
express 〈T̂µ

ν(t, x)〉 and 〈F̃µν(t, x)〉 in terms of λt at time t as we did in the previous section.
The above observation implies that the initial density operator ρ̂0 = ρ̂LG[λt0 ; t0] does

not give a useful starting point to evaluate the expectation value at later time t(> t0).
Instead, one immediately finds that the better starting point is the local Gibbs distribution
at time t. The question is how we can shift into such a different distribution when we do
not even have conjugate variables other than those at initial time t0.

We can resolve this problem by invoking the optimized (or renormalized) perturbation
theory (see, e.g., Refs. [154–156]). Suppose that we know the configuration of the conserved
charge densities at time t. With the help of the entropy functional S[ct], we first define the
conjugate variable λt by Equation (42). One can show that this definition is equivalent to
requiring the following matching conditions:

〈T0
ν〉 = 〈T0

ν〉LG
λt

, 〈F̃0ν〉 = 〈F̃0ν〉LG
λt

. (45)

Using the defined conjugate variables λt, we rearrange our density operator as

ρ̂0 = e−Ŝ[λt ;t]+Σ̂[t,t0;λ] = e−Ŝ[λt ;t]Tτ exp
(∫ 1

0
dτeτŜ[λt ;t]Σ̂[t, t0; λ]e−τŜ[λt ;t]

)
, (46)

where we just added and subtracted the entropy operator Ŝ[t; λt] at time t and defined the
entropy production operator Σ̂[t, t0; λ] as

Σ̂[t, t0; λ] := Ŝ[λt; t]− Ŝ[λt0 ; t0]. (47)

The rightmost side of Equation (46) gives a useful formula for the derivative expansion
since the entropy production operator Σ̂[t, t0; λ] will be shown to be O(∂1). Thus, we can
regard Σ̂[t, t0; λ] as a derivative correction, and Equation (46) gives a familiar perturbative
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expansion formula in the interacting picture, which we learn in the elementary course
of quantum mechanics. As a result, we see that the nonequilibrium statistical operator
method gives one useful expansion scheme relying on the new optimized (or renormalized)
parameter λt.

Expanding the rightmost side of Equation (46) at the first-order in Σ̂[t, t0; λ], we obtain

〈T̂µν(t, x)〉 = 〈T̂µν(t, x)〉LG
λt

+ (T̂µν(t, x), Σ̂[t, t0; λ])t + O(Σ̂2),

〈F̃µν(t, x)〉 = 〈F̃µν(t, x)〉LG
λt

+ (F̃µν(t, x), Σ̂[t, t0; λ])t + O(Σ̂2),
(48)

where we introduced the Kubo-Mori–Bogoliubov inner product:

(Â, B̂)t :=
∫ 1

0
dτ〈eτŜ[λt ;t] Âe−τŜ[λt ;t]B̂†〉LG

λt
. (49)

Equation (48) indicates that we have separated the problem into two parts: The first
one is to evaluate the expectation value of currents with the LG distribution describing the
local thermal equilibrium

Tµν

(0) = 〈T̂
µν(t, x)〉LG

λt
, F̃µν

(0) = 〈F̃
µν(t, x)〉LG

λt
, (50)

which will be shown to contain the leading-order terms in derivative. The second one is to
find the dissipative corrections

Tµν

(1) = (T̂µν(t, x), Σ̂[t, t0; λ])t, F̃µν

(1) = (F̃µν(t, x), Σ̂[t, t0; λ])t, (51)

by computing the entropy production.

3.2. Evaluating the Local Gibbs Averages

Let us first investigate the LG-averaged currents given in Equation (50). In evaluating
these expectation values, it is useful to put our system in the curved spacetime described
by the vierbein e a

µ and introduce a background two-form gauge field bµν that couples to
F̃µν. In the presence of these background fields, one can show the following variational
formulas [109]:

〈T̂µν(t, x)〉LG
λt

=
1

β0√γ

δΨ[λt]

δe a
µ (t, x)

eν
a,

〈F̃µν(t, x)〉LG
λt

=
2

β0√γ

(
β[µδ

ν]
ρ

δΨ[λt]

δHρ(t, x)
+

δΨ[λt]

δbµν(t, x)

)
,

(52)

where eν
a is the inverse of vierbein and β0 denotes the zeroth-component of the four vector

βµ. Here, we also used γ := det gij with a spatial part of the metric gij = e a
i e b

j ηab. Thus,

we can derive the LG expectation values 〈T̂µν(t, x)〉LG
λt

and 〈F̃µν(t, x)〉LG
λt

once we obtain
the form of the local thermodynamic functional Ψ[λt] under the background fields.

To specify the form of the Massieu–Planck functional Ψ[λt], we can rely on the path-
integral formula [109,150]. Substituting Equation (34) into the definition (39) of Ψ[λt] and
following the usual procedure of deriving the path-integral representation for the partition
function, we obtain

Ψ[λt] = log
∫
DψDψ̄DAµδ(F)det(∂F/∂α) exp

(∫ βref

0
dτd3x

√
−g̃L̃QED

)
, (53)

where βref is an arbitrary constant reference inverse temperature, and F denotes a gauge
fixing condition F = 0 with a gauge parameter α. Due to the inhomogeneity of the local
thermodynamic variables λt, we need to perform the path-integral not in the flat Euclidean
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spacetime but in the emergent curved spacetime with the two-form gauge field. In fact, we
find the Lagrangian density in Equation (53) to be

L̃QED = iψ̄γa ẽ µ
a D̃µψ−mψ̄ψ− 1

4
g̃µν g̃αβFµαFνβ +

1
2

b̃µν F̃µν, (54)

and the background fields—the thermal vierbein ẽ a
µ and thermal two-form gauge field

b̃µν—are given by

ẽ a
0 := eσua, ẽ a

i := e a
i , b̃0i := eσ Hi, b̃ij := bij, (55)

where we defined eσ(x) = β(x)/βref. We also defined the thermal metric g̃µν := ẽ a
µ ẽ b

ν ηab
with g̃ := det g̃µν, and the covariant derivative

D̃µψ := ∂̃µψ− iqAµψ− i
2

ω̃ ab
µ Σabψ, (56)

with the representation matrix of the Dirac spinor under the Lorentz transformation Σab :=
i[γa, γb]/4. The derivative in the thermal space is given as ∂̃µ = (i∂τ , ∂i) and the spin
connection ω̃ ab

µ is determined by the thermal vierbein ẽ a
µ as [150]

ω̃ ab
µ =

1
2

ẽaν ẽbρ(C̃νρµ − C̃ρνµ − C̃µνρ) with C̃µνρ := ẽ c
µ

(
∂̃ν ẽρc − ∂̃ρ ẽνc

)
. (57)

In short, the Massieu–Planck functional is described by performing the path integral
for QED in the presence of the curved and two-form backgrounds. This result is a general-
ization of the background field method to the locally thermalized system. We can read off
the symmetry properties of the Massieu–Planck functional as follows. To see this, note that
the line element ds̃2 and two-form gauge connection b̃,

ds̃2 := g̃µνdx̃µ ⊗ dx̃ν = −e2σ(dt̃ + aidxi)2 + g′ijdxi ⊗ dxj, (58)

b̃ :=
1
2

b̃µνdx̃µ ∧ dx̃ν = b̃0i(dt̃ + ajdxj) ∧ dxi +
1
2

b̃′ijdxi ∧ dxj, (59)

describe the backgrounds. Here, we defined (dt̃, dx̃) = (−idτ, dx) and expressed ds̃2 and
b̃ using the Kaluza–Klein parameterization

ai := −e−σui, g′ij := gij + uiuj, b̃′ij := bij − b̃0jai − b̃i0aj. (60)

The apparently complicated Kaluza–Klein parameterization is, indeed, useful because
the Massieu–Planck functional is invariant under the Kaluza–Klein gauge transformation

t̃→ t̃′ = t̃ + χ(x),

x→ x′ = x,

ai(x)→ a′i(x) = ai(x)− ∂iχ(x),

(61)

and eσ, γ′ij and b̃0i and b̃′ij are all invariant under the Kaluza–Klein gauge transformation.
In addition, the Massieu–Planck functional is invariant under the spatial diffeomorphism
and gauge transformation acting on bij,

xi → xi′ = f i(x), (62)

b̃ij → b̃ij + ∂iθj − ∂jθi. (63)

The crucial point here is that the Massieu–Planck functional has to respect the symme-
tries under the transformations (61)–(63). Using this symmetry property and relying on the
derivative expansion, one can write down the most general form of the Massieu–Planck
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functional in an order-by-order basis in derivative. In the leading-order expansion, we

have two zeroth-order invariant scalars eσ(x) = β(x)/βref and
√(

b̃0i(x)
)2

= eσ(x)H(x) =
H(x)/βref, where we decomposed the magnetic field as Hµ = −Hbµ and Hµ = −Hbµ

with the normalized spatial vector bµ. Moreover, there is no invariant scalar at O(∂1), and
thus the most general form of Ψ[λ] in the leading-order expansion is given by

Ψ[λ] =
∫ βref

0
dτd3x

√
−g̃p(β,H) + O(∂2) =

∫
d3x
√

γβ0 p(β,H) + O(∂2). (64)

Recalling the variational Formula (52), we find that the functional derivative of
Equation (64) leads to

〈T̂µν(t, x)〉LG
λt

= εuµuν − p⊥(ηµν − uµuν + bµbν) + p‖b
µbν,

〈F̃µν(t, x)〉LG
λt

= B(bµuν − bνuµ),
(65)

where we have taken the flat background limit and introduced a set of the scalar functions

ε = −∂(βp)
∂β

, p⊥ = p, p‖ = p− β−1HB, B = β
∂p
∂H . (66)

All of them can be extracted from the single function p(β,H). Equations (65) and (66)
give the leading-order constitutive relations of RMHD, which agree with Equation (19) in
the previous section (recall β−1HB = HµBµ). In contrast to the entropy–current analysis,
we now have the microscopic path-integral formula for p(β,H). One can thus, in principle,
compute all coefficient functions in Equation (66), or the equations of state, from the
underlying microscopic theory, i.e., QED.

3.3. Evaluating the Dissipative Corrections

We next evaluate the dissipative corrections given in Equation (51). For this purpose,
we first rewrite the entropy production operator by using the Ward–Takahashi identity (35)
and performing integration by parts. The resultant expression reads

Σ̂[t, t0; λ] := Ŝ[λt; t]− Ŝ[λt0 ; t0] =
∫ t

t0

dt′∂t′ Ŝ[λt′ ; t′]

= −
∫ t

t0

dt′∂t′

[∫
d3x′

(
βν(t′, x′)T̂0

ν(t
′, x′) +Hν(t′, x′)F̃0ν(t′, x′)

)
+ Ψ[λt′ ]

]
= −

∫ t

t0

dt′d3x′
[
δT̂µν(t′, x′)∂µβν(t′, x′) + δF̃µν(t′, x′)∂µHν(t′, x′)

]
, (67)

where we defined a deviation δÔ(t) := Ô(t)− 〈Ô(t)〉LG
λt

. To obtain the third line, we also
used the following identity:

∂tΨ[λt] = −
〈

∂t

∫
d3x

(
βνT̂0

ν +Hν F̃0ν
)〉LG

λt

=
∫

d3x
(
〈T̂µν〉LG

λt
∂µβν + 〈F̃µν〉LG

λt
∂µHν

)
.

(68)

Note that the entropy production operator Σ̂[t, t0; λ] in Equation (67) contains the time
derivative of the parameters λt′ . This can be explicitly seen by using the projection tensor,
δ

µ
ν = uµuν + ∆µ

ν , that decomposes a derivative as

∂µ = uµD +∇µ with D := uµ∂µ, ∇µ := ∆ν
µ∂ν. (69)

Substituting this decomposition together with βµ = βuµ andHν = −Hbν, we obtain
the following expression for the entropy production operator:
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Σ̂[t, t0; λ] = −
∫ t

t0

dt′d3x′
[
uµuνδT̂µνDβ + uµδT̂µνβDuν − uµbνδF̃µνDH

−HuµδF̃µνDbν + βδT̂µν∇µuν + uνδT̂µν∇µβ

+HδF̃µνbρuν∇µuρ + δF̃µν∆ρ
ν∇µHρ

]
.

(70)

Here, it is important to eliminate time-derivative terms in the first line. Otherwise, the
resulting Green–Kubo formulas pick up contributions from gapless linear hydrodynamic
modes, which prevents us from obtaining convergent time integrals for the transport
coefficients. In Ref. [109], we accomplish such a procedure by a formal manipulation. To
complement that formal manipulation, we will explicitly demonstrate this procedure here.

To eliminate the time-derivative terms, we solve the leading-order RMHD equations
following the leading-order constitutive relations (65). Using Equation (65), we find the
leading-order equations of motion

0 = ∂µTµν

(0) = ∂µ

[
εuµuν − p⊥(ηµν − uµuν) + BµHν

]
, (71a)

0 = ∂µ F̃µν

(0) = ∂µ[Bµuν − Bνuµ], (71b)

where we used p‖ = p⊥ − HB to express p‖ in terms of Bµ = Bbν and Hν = −Hbν. After
contracting these ideal RMHD equations with appropriate tensors such as bµ, we obtain
the following set of equations:

Dε = −(ε + p⊥)θ + HBθ‖, (72a)

(ε + p⊥)Duν = ∇ν p⊥ − Hν∂µBµ − ∆νρBµ∂µHρ, (72b)

DB = −Bθ⊥, (72c)

Dbν = Ξνρbµ∂µuρ + B−1uν∂µBµ, (72d)

where we used θ = θ‖ + θ⊥ with θ‖ = −bµbν∂µuν and θ⊥ = Ξµν∂µuν. Combining these
equations with thermodynamic relations, we can further simplify Duν and also find the
time derivatives of conjugate variables Dβ and DH as (see Appendix C for a derivation)

Dβ = β

(
∂p⊥
∂ε
− B

∂H
∂ε

)
θ‖ + β

∂p⊥
∂ε

θ⊥, (73a)

DH = −β
∂p⊥
∂B

θ⊥ − β

(
∂p⊥
∂B
− B

∂H
∂B

)
θ‖, (73b)

Duν = −β−1∇νβ− 1
ε + p⊥

[
2β−1Bbµ∇[µHν] + θ‖HBuν

]
, (73c)

Dbν = Ξ ρ
ν bµ∇µuρ + B−1uν∂µBµ. (73d)

These leading-order equations of motion for thermodynamic parameters enable us
to eliminate the time-derivative terms in the entropy production operator. Substitut-
ing them into Equation (70) and rearranging terms, we eventually obtain the entropy
production operator

Σ̂[t, t0; λ] = −
∫ t

t0

dt′d3x
[
δ̃ p̂‖βθ‖ + δ̃ p̂⊥βθ⊥ + 2δ̃π̂(µbν)β∇µuν + δ̃τ̂µνβ∇µuν

+ 2δ̃Ê[µbν]∇µHν + δ̃D̂µν∇µHν + O(∇2)
]
,

(74)
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where we defined the projected components of the operators δ̃T̂µν and δ̃F̃ρσ as

δ̃ p̂‖ = −bµbνδT̂µν + uµuνδT̂µν

(
∂p⊥
∂ε
− B

∂H
∂ε
− HB

ε + p⊥
+ uµbνδF̃µν

∂p‖
∂B

)
, (75a)

δ̃ p̂⊥ =
1
2

δT̂µνΞµν + uµuνδT̂µν ∂p⊥
∂ε

+ uµbνδF̃µν ∂p⊥
∂B

, (75b)

δ̃π̂µ =
(
−bσδT̂ρσ + HδF̃ρσuσ

)
Ξ µ

ρ , (75c)

δ̃τ̂µν =
(

Ξµ
ρΞν

σ −
1
2

ΞµνΞρσ

)
δT̂ρσ, (75d)

δ̃Êµ = bρδF̃ρσΞ µ
σ +

2B
ε + p⊥

uρδT̂ρµ, (75e)

δ̃D̂µν = Ξµ
ρΞν

σδF̃ρσ. (75f)

We then substitute the obtained entropy production operator into Equation (51). As-
suming that the correlation of projected operators δ̃T̂µν and δ̃F̃µν decays with the micro-
scopic scales, we perform the Markovian approximation for the integration kernel. As we
emphasized, this approximation does not work if we do not solve the ideal RMHD equa-
tions to obtain the projected operator (75). After this procedure, we eventually obtain the
dissipative corrections to the constitutive relations

Tµν

(1) =− (ζ‖θ‖ + ζ×θ⊥)bµbν + (ζ⊥θ⊥ + ζ ′×θ‖)Ξ
µν

− 2η‖

(
bµΞν(ρbσ) + bνΞµ(ρbσ)

)
∇ρuσ + 2η⊥∇{µuν}, (76a)

F̃µν

(1) =2ρ⊥T
(

bµΞν[ρbσ] − bνΞµ[ρbσ]
)
∇ρHσ + 2ρ‖TΞµ[ρΞσ]ν∇ρHσ. (76b)

Those tensor structures are the same as those in Equations (23) and (30). We defined a
set of transport coefficients which are expressed in the form of the spacetime integral of the
Kubo–Mori–Bogoliubov inner product:

ζ‖ = β(t, x)
∫ t

−∞
dt′d3x′(δ̃ p̂‖(t, x), δ̃ p̂‖(t

′, x′))t, (77a)

ζ⊥ = β(t, x)
∫ t

−∞
dt′d3x′(δ̃ p̂⊥(t, x), δ̃ p̂⊥(t′, x′))t, (77b)

ζ× = β(t, x)
∫ t

−∞
dt′d3x′(δ̃ p̂‖(t, x), δ̃ p̂⊥(t′, x′))t, (77c)

ζ ′× = β(t, x)
∫ t

−∞
dt′d3x′(δ̃ p̂⊥(t, x), δ̃ p̂‖(t

′, x′))t, (77d)

η‖ =
β(t, x)

2

∫ t

−∞
dt′d3x′(δ̃π̂µ(t, x), δ̃π̂ν(t′, x′))tΞµν, (77e)

η⊥ =
β(t, x)

4

∫ t

−∞
dt′d3x′(δ̃τ̂µν(t, x), δ̃τ̂ρσ(t′, x′))tΞµρΞνσ, (77f)

ρ⊥ =
β(t, x)

2

∫ t

−∞
dt′d3x′(δ̃Êµ(t, x), δ̃Êν(t′, x′))tΞµν, (77g)

ρ‖ =
β(t, x)

2

∫ t

−∞
dt′d3x′(δ̃D̂µν(t, x), δ̃D̂ρσ(t′, x′))tΞµρΞνσ. (77h)

They are the Green–Kubo formulas [157–159] for the seven transport coefficients—
three bulk viscosities (ζ‖, ζ⊥, ζ×), two shear viscosities (η‖, η⊥), and two electric resistivities
(ρ‖, ρ⊥) in RMHD (see Section 4.2).

Two remarks are in order. In the previous section, we do not count ζ ′× as an inde-
pendent transport coefficient. This is because the corresponding Green–Kubo formula
in (77) respects Onsager’s reciprocal relation [137]: ζ ′× = ζ×. This can be shown by per-
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forming an expansion around the global equilibrium and using the charge-conjugation
and time-reversal symmetries applied to the above Green–Kubo formula for ζ ′×. We also
note that the Green–Kubo formulas (77) automatically provide a set of the semi-positivity
constraints given by Equation (32) specified in the previous section. This stems from the
property of the Kubo–Mori–Bogoliubov inner product. Here, it is worth emphasizing that
the semi-positivity constraints (and Onsager’s reciprocal relation) are not required but
derived in the nonequilibrium statistical operator method.

While the expressions in Equation (77) are given in terms of the Kubo–Mori–Bogoliubov
inner product, one can derive a set of more familiar Green–Kubo formulas in terms of the
retarded Green’s functions. For this purpose, we again expand Equation (77) on top of the
global equilibrium. By inserting the convergence factor eε(t′−t) which will be eventually
turned off by taking ε→ 0 after the whole calculation, we generally obtain∫ t

−∞
dt′eε(t′−t)(Â(t), B̂(t′))eq =− 1

β

∫ dω

2π
P
(

1
ω

)
∂

∂ω
GA,B

R (ω)

− i
2β

lim
ω→0

∂

∂ω
GA,B

R (ω),
(78)

where P stands for the principal value, (Â(t), B̂(t′))eq is the global equilibrium limit of
the inner product (Â(t), B̂(t′))t, and GA,B

R is the retarded Green’s function, GA,B
R (t− t′) =

−iθ(t− t′)〈[Â(t), B̂(t′)]〉eq. With the help of this identity, we can replace the inner products
in Equation (77) with the retarded Green’s functions GA,B

R .

4. Interlude: Connection to the Conventional MHD

In previous sections, we have reviewed the recent formulation of the RMHD with only
the energy–momentum conservation law and the Bianchi identity as relevant equations of
motion from the very beginning. On the other hand, the RMHD can also be formulated in
a conventional approach in which the Maxwell equation and electric charge conservation
law enter as additional dynamical equations. In the following two Sections 5 and 6, we will
review hydrodynamics under the strong background magnetic field that is closer to the
latter formulation though the magnetic field is non-dynamical. Thus, in this intermediate
section, we discuss the relation between the two formulations, focusing on the anisotropic
pressure and the first-order constitutive relations. The second topic also serves as a basis
for the following two sections.

4.1. Anisotropic Pressure

We start with the correspondence of the zeroth-order terms, especially the anisotropic
pressure, between the conventional formulation and the formulation we discussed in
Sections 2 and 3. In the conventional formulation, one needs to separate the matter and
EM components in the system, and connect the two components via the Maxwell equation
∂µFµν = Jν and energy–momentum non-conservation equation ∂µTµν

matt = Fνµ Jµ, where
Jµ is the electric current and Tµν

matt is the matter energy–momentum tensor. To make a
connection with our formulation in Sections 2 and 3, let us decompose the total energy
density and pressure presented in Section 2 into the matter and magnetic components as
ε ∼ εmatt + |B|2/2−M · B and p ∼ pmatt + |B|2/2−M · B, respectively. (Note that the
Lorentz scalars here are given in the rest-frame expressions for clarity. The energy density
including the magnetization εmatt −M · B corresponds to the definition of ε in Ref. [119] as
stated there.) Then, inserting those expressions into Equation (19), we have

Tµν

(0) ' (εmatt +
1
2
|B|2 −M · B)uµuν

−(pmatt +
1
2
|B|2 −M · B)Ξµν + (pmatt −

1
2
|B|2)bµbν . (79)
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The above expression agrees with those in Equations (14) and (15) of Ref. [119] (see
also Refs. [132–136] for classic works): the terms with |B|2 are combined into the Maxwell
energy–momentum tensor (see below) and the rest terms give Tµν

matt(0). In this way, the
conventional “ideal MHD limit” is reproduced from the leading-order result in the new
formulation that generalizes the conventional formulation in the following points.

• The right-hand side of the energy–momentum non-conservation law, ∂µTµν
matt = Fνµ Jµ,

describes the Joule heat and Lorentz force which provide the source and/or dissipa-
tion of the energy and momentum, respectively. Similarly, the electric current in the
Maxwell equation ∂µFµν = Jν provides a source of EM fields. This latter equation
constrains the electric field as a gapped mode excited by the source term. The new for-
mulation does not contain such a redundancy and can work in the strict hydrodynamic
limit.

• The pressures p⊥ and p‖ in Equation (19) satisfy p⊥ − p‖ = BµHµ(> 0). Subtracting
the magnetic pressures pB⊥ = |B|2/2 and pB‖ = −|B|2/2, we obtain the anisotropic
matter pressures as pmatt‖ = pmatt and pmatt⊥ = pmatt − M · B, respectively. One
thus finds that pmatt⊥ − pmatt‖ = −M · B in the rest frame of the fluid. This leads to
pmatt⊥ < pmatt‖ since the magnetic susceptibility is usually positive.

• These non-conservation equations can be combined together into the form ∂µ(T
µν
matt +

Tµν
Maxwell) = 0, where Tµν

Maxwell is the Maxwell tensor. Explicitly, this means that
Fνµ Jµ = ∂µ(FµαFν

α − gµνFαβFαβ/4) =: −∂µTµν
Maxwell. Therefore, this equation can be

reduced from the first equation in Equation (13) if one assumes a clear separation
between the matter and electromagnetic contributions to the energy–momentum
tensor as in Equation (79). However, it would not be possible to separate those
contributions in a strongly coupled system where excitations are composed of mixture
of matter and electromagnetic fields. Moreover, hydrodynamic framework itself
should not care such microscopic details of the system, and the translational symmetry
of the system only tells us the conservation of the total energy–momentum. Those
facts should be respected in the formulation.

• Excluding an electric field from the set of hydrodynamic variables, one does not need
to assume an “infinite electric conductivity” as in the conventional formulation (see,
e.g., Refs. [134,160]). Note that the electric conductivity is a dimensionful quantity and
is, moreover, not defined a priori in the formulation of hydrodynamics. If it implies an
infinitesimally short relaxation time, there would be also a conceptual conflict when
one tries to include (finite) dissipative effects such as a viscosity in the derivative
corrections. The formulation in Sections 2 and 3 is free of such a dilemma.

4.2. First-Order Constitutive Relations Including Hall Transports

We next discuss the correspondence between the two formulations at the first-order
in derivatives and show how the electric field and current arises in the new formulation.
We also include the charge-conjugation odd terms in Tµν

(1) and F̃µν

(1) to identify how the Hall
components could appear when a finite charge density is allowed in a finite time scale.
When charge-conjugation odd terms are allowed in the tensor decomposition (23), we have
an additional term as

ρµνρσ = 2ρ⊥
(

bµΞν[ρbσ] − bνΞµ[ρbσ]
)
+ 2ρ‖Ξ

µ[ρΞσ]ν + 2ρH

(
bµbν[ρ

? bσ] − bνbµ[ρ
? bσ]

)
, (80)

where bµν
? = εµναβuαbβ. The charge–conjugation odd term does not create entropy in

Equation (21b). Thus, the additional coefficient ρH can be both positive and negative values,
while ρ‖,⊥ should be positive semi-definite as we have seen. The first-order correction F̃µν

(1)
provides the constitutive relation of the electric field

Eµ

(1) = −[ρ‖(−bµbρ) + ρ⊥Ξµρ + ρHbµρ
? ]Tερναβuν∂α(βHβ), (81)
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where we used identities bµλ
? bν

?λ = Ξµν, 2bµ[α
? bβ] = Ξµρερναβuν, and 2Ξµ[αbβ] = −bµρ

? ερναβuν.
This is an extension of Equation (25) with the Hall term. On the other hand, the in-medium
Maxwell equation provides the relation between the zeroth-order field strength tensor and
the free electric current (also called conduction current) as

Jµ

f (1) =
1
2

ενµαβ∂ν(Hαuβ − Hβuα)

= −Tεµναβuν∇α(βHβ) + εµναβHν∇αuβ − εµναβuν Hα(Duβ −∇β ln T) . (82)

Note that, using Hµ = −µ−1
m Bµ with µm the magnetic permeability, one can find that

the free current Jµ

f (1) is related to the total current Jµ

(1) = −(1/2)ενµαβ∂ν(Bαuβ − Bβuα) by

Jµ

f (1) = µ−1
m Jµ

(1) + εµναβHαuβ∇ν ln µm.
The first term in Equation (82) is generated by a nonzero curl of the magnetic field.

The second term is along uµ direction and thus generates a non-zero charge density in
the rest frame of the fluid, uµ Jµ

f (1) = εµναβuµHν∇αuβ = −2ωµHµ with the vorticity vector

ωµ := (1/2)εµναβuν∇αuβ. The rest of terms are Hall-like currents that are driven by the
acceleration and the temperature gradient, which, upon using Equation (73c), can be
re-written as

−εµναβuνHα(Duβ −∇β ln T) =
2T

ε + p⊥
εµναβuν HαBλ∇[λ(βHβ])

=
TBH

ε + p⊥
Ξµ

λελναβuν∇α(βHβ). (83)

Therefore, we have

−Tεµναβuν∇α(βHβ) =
ε + p⊥

ε + p⊥ − BH
Ξµ

λ Jλ
f (1) − bµbλ Jλ

f (1). (84)

Plugging those expressions, one can rewrite the entropy production rate (21b) as

RE = −βEµ

(1)

[
ε + p⊥

ε + p⊥ − BH
Ξµλ Jλ

f (1) − bµbλ Jλ
f (1)

]
+ O(∂3) . (85)

The origin of the entropy productionRE is identified with the Joule heat due to the
induced electric field and current.

To get a direct relation between the electric field and current, we eliminate the magnetic
fields in Equation (81) using Equation (82) to find

Eµ

(1) = [−ρ̃‖b
µbν + ρ̃⊥Ξµν + ρ̃Hbµν

? ]J f (1)ν , (86)

where ρ̃‖ := ρ‖, ρ̃⊥ := ρ⊥(ε + p⊥)/(ε + p⊥ − BH), and ρ̃H := ρH(ε + p⊥)/(ε + p⊥ − BH).
Note that, the same as ρ‖ and ρ⊥, ρ̃‖ and ρ̃⊥ are positive semi-definite as well. The structure
of Equation (86) becomes more transparent if we write it in three-vector form in frame
uµ = (1, 0). The result is

E(1) = ρ̃⊥ J f (1) +
ρ̃‖ − ρ̃⊥
|B|2 (B · J f (1))B +

ρ̃H
|B| J f (1) × B,

where J f (1) = µ−1
m

(
J(1) −∇ ln µm × B

)
in terms of the total current J(1). When order-zero

effective background charges are present, E(1) may also contain terms proportional to the
gradient of the effective background charge potential. Similar results have recently been
obtained by using the method of effective field theory [161].
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It is more convenient to express the free electric current in terms of the electric fields
and we obtain

Jµ

f (1) = −2ω · Huµ + [−σ‖b
µbν + σ⊥Ξµν + σHbµν

? ]E(1)ν . (87)

The three coefficients are given by the coefficients ρ̃⊥,‖,H as

σ‖ =
1
ρ̃‖

, σ⊥ =
ρ̃⊥

ρ̃2
⊥ + ρ̃2

H
, σH =

ρ̃H

ρ̃2
⊥ + ρ̃2

H
. (88)

The Hall term ∝ σH identically vanishes in Equation (85) and does not create entropy.
The other coefficients σ‖ and σ⊥ are the parallel and perpendicular components of the
Ohmic conductivity with respect to the direction of the magnetic flux. The Ohmic conduc-
tivities should be positive semi-definite σ‖,⊥ ≥ 0, while the Hall conductivity σH can be
both positive and negative values.

Next, we discuss the Hall components in the viscous tensor. One can divide the
energy–momentum tensor into the dissipative and nondissipative components as

Tµν

(1) = Tµν

(1)dis + Tµν

(1)?. (89)

In the preceding sections, we have already discussed the dissipative component Tµν

(1)dis

that creates an entropy. Here, we focus on the nondissipative component Tµν

(1)? that can be
further decomposed as

Tµν

(1)? =
[

2ηH‖(−bαb(µ)bν)β
? + 2ηH⊥Ξα(µbν)β

?

]
wαβ , (90)

where wαβ = ∇(auβ). This term does not create entropy, and the Hall viscous coeffi-
cients ηH‖ ,⊥ can take both positive and negative values. (This can be verified by notic-

ing that bαb(µbν)β
? wαβwµν = 2bνβ

? (bαwαβ)(bµwµν) = 0, and then that Ξα(µbν)β
? wαβwµν =

gα(µbν)β
? wαβwµν = 0.) The presence of the antisymmetric tensor bµν

? implies that the direc-
tion of the stress is orthogonal to both the flow velocity and the magnetic field.

We briefly demonstrate the mechanisms that generate the Hall viscosities in magnetic
fields (assuming that there is a possible electric-charge density). In Figure 5, the direction of
a magnetic field is taken along the z direction, and the flow velocity and the Lorentz force
are shown with green and orange arrows, respectively. When there is a gradient of the
transverse flow along the magnetic field ∂zux(z) > 0, the Lorentz force exerting on the fluid
volume is oriented in the y direction and has a gradient along the magnetic field (see the
left panel). This configuration corresponds to the term proportional to ηH‖. The gradient of
the Lorentz force gives rise to a shear stress in the plane orthogonal to the flow-velocity and
magnetic fields. On the other hand, when there is a flow gradient in the transverse plane
∂yux(y) > 0, the Lorentz force is oriented in the y direction and has a gradient in the same
direction (see the right panel). Therefore, the fluid volume is stretched in this direction
according to the term proportional to ηH⊥. This term also induces a shear deformation
in the x-y plane in response to an expansion/compression in the x direction, ∂xux(x) 6= 0.
This effect can be understood in a similar manner.

In the nonrelativistic theory, it has been known for some time that there are seven
viscous coefficients [117,138] (see also Ref. [121]). In this paper, we have obtained the
breakdown of the seven viscous coefficients in the relativistic extension. Including the five
dissipative viscosities discussed in the previous sections, we identified three bulk, two
shear, and two Hall composnents. The relativistic extension was also carried out earlier
in Refs. [105,109,119,120]. However, those authors use different tensor bases. For readers’
convenience, we provide an explicit comparison among those tensor bases in Appendix D.
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Bz

Figure 5. Hall viscosities induced by the Lorentz force exerting on charged fluid cells. The flow
velocity and the Lorentz force are shown with green and orange arrows, respectively. The length and
thickness of the arrows denote the magnitudes of the vectors. The direction of a magnetic field is
taken along the z direction.

5. Towards Relativistic MHD from Kinetic Equations

In addition to hydrodynamics, kinetic theory is also often used for the studies of
many-body systems (See Refs. [117,162] for the standard textbooks of kinetic theory). It is
valid in the regime where the system permits well-defined particles (or quasi-particles)
and when the densities of these particles are low enough. More precisely, let the typical
microscopic scales be set by the interaction range rc ∼

√
σ with σ the scattering cross

section, the inter-particle distance rd ∼ n−1/3 with n the number density, and the mean-
free path λmfp ∼ 1/(nσ). The applicability of kinetic theory requires λmfp � rd � rc
(dilute condition). The scatterings of the particles drive the system to evolve towards
global thermal equilibrium, a process called kinetic thermalization. This process is usually
associated with the arising of a new, macroscopic scale, L, over which the macroscopic
properties of the system vary. In the late stage of the thermalization, the scale L will
be clearly separated from the microscopic scales. This gives a characteristic parameter
Kn = λmfp/L (the Knudsen number). When Kn� 1 or equivalently when the derivative
∂ is much smaller than 1/λmfp, the macroscopic properties become insensitive to the
microscopic details of the system and the hydrodynamic description is expected to arise.
Therefore, when the kinetic theory is applied to the regime where Kn � 1, its solution
is expected to be expressed by the local hydrodynamic variables and their derivatives.
This gives a systematical way to derive the hydrodynamic constitutive relations (including
expressing the transport coefficients in terms of kinetic-theory parameters) and EOMs
by expanding the kinetic equation and the distribution functions in Kn or ∂. This is the
essential idea of the Chapman–Enskog method [163] which we will now discuss. Another
frequently utilized approach to hydrodynamics from kinetic theory is the Grad’s method
of moments [164] which we will explore in Section 5.2.

5.1. Chapman–Enskog Method

Before studying RMHD using kinetic theory, in order to demonstrate the methodology,
let us consider a simpler case in which the EM fields are absent. The starting point is the
relativistic Boltzmann equation for on-shell particles:

kµ∂µ fk = C[ f ], (91)

where kµ = (k0 =
√

k2 + m2, k) with m being the mass of the particles, fk(x) is the
distribution function, and all external forces are omitted. For the sake of simplicity, we
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consider only one species of particles. We assume that the collisional process conserves the
energy–momentum and also the particle numbers, so that the collision kernel satisfies∫

dKC[ f ] =
∫

dKkµC[ f ] = 0, (92)

where dK = gd3k/[(2π)3k0] is the invariant momentum-space measure with g = 2S + 1
the spin degenerate factor with S spin of the particles. By using Equation (91), Equation (92)
leads to the conservation of particle–number current Nµ and energy–momentum tensor Tµν,

∂µNµ = 0, (93a)

∂µTµν = 0, (93b)

where Nµ and Tµν are expressed by

Nµ = 〈kµ〉 = nuµ + νµ, (94a)

Tµν = 〈kµkν〉 = εuµuν − ∆µν(p + Π) + hµuν + hνuµ + πµν, (94b)

with 〈. . .〉 =
∫

dK(. . .) fk. Here, we introduced a timelike unit vector field uµ which will be
identified as the fluid velocity. Using uµ, the momentum can be decomposed into two parts
(following the notations of Ref. [165]): kµ = Ekuµ + k〈µ〉, with Ek = u · k and k〈µ〉 = ∆µνkν.
We have also introduced the number density n, the number diffusion current νµ, the energy
density ε, the thermodynamic pressure p, the viscous pressure Π, the shear viscous tensor
πµν, and the heat flux hµ,

n = 〈Ek〉, νµ = 〈k〈µ〉〉, ε = 〈E2
k〉, p + Π = − 1

3 ∆µν〈kµkν〉,
πµν = 〈k〈µkν〉〉, hµ = 〈Ekk〈µ〉〉, (95)

where A〈µν〉 = (1/2)∆µ
α ∆ν

β(Aαβ + Aβα) − (1/3)∆µν∆αβ Aαβ is the spatial traceless sym-
metrization of Aµν. The expression for p itself will be determined later. To specify the rest
frame of the fluid, we use the Landau–Lifshitz choice so that Tµνuν = εuµ. This imposes
the constraint

hµ = 〈Ekk〈µ〉〉 = 0. (96)

To proceed, one takes the Chapman–Enskog expansion of the distribution function,
fk = f (0)k + f (1)k + . . ., and of the Boltzmann Equation (91) order by order in Kn or equiva-
lently in derivatives. At zeroth order in the derivative expansion, Equation (91) reads

0 = C[ f (0)]. (97)

Its solution is called the local-equilibrium distribution f (0)k = f0k because it saturates
the local detailed balance. We assume that f0k = 1/[exp(βEk − α) + a] with a = 1, 0 and
−1 for fermions, classical Boltzmann particles, and bosons. Here, β and α = βµ are the
local inverse temperature and the ratio of the chemical potential to temperature. Their
values are fixed by matching conditions [162,166]:

ε = 〈E2
k〉 = 〈E

2
k〉0, n = 〈Ek〉 = 〈Ek〉0, (98)

where 〈. . .〉0 =
∫

dK(. . .) f0k. Substituting f0k into Equations (94a) and (94b), one obtains
the zeroth-order Nµ and Tµν:

Nµ

(0) = nuµ, (99a)

Tµν

(0) = εuµuν − p∆µν, (99b)
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where p = − 1
3 ∆µν〈kµkν〉0, and Equations (93a) and (93b) become the ideal hydrody-

namic equations.
At first order in derivative expansion, the collision kernel becomes a linear integral

operator acting on f (1)k , C(1)[ f ] = L̂ f (1)k . The Boltzmann Equation (91) at O(Kn) thus reads

kµ∂µ f0k = L̂ f (1)k . (100)

Once f (1)k is solved out from this equation, the first-order constitutive relations are
then obtained:

νµ = 〈k〈µ〉〉1, Π = −1
3

∆µν〈kµkν〉1, πµν = 〈k〈µkν〉〉1, (101)

with 〈. . .〉1 =
∫

dK(. . .) f (1)k . To see how this procedure works in practice, let us consider a
collision kernel in relaxation-time approximation (RTA),

C[ f ] = −Ek
fk − f0k

τR
. (102)

Note that this collision kernel does not automatically conserve particle number and
energy–momentum, Equation (92). However, these conservation laws are recovered once
the matching conditions (98) and Landau–Lifshitz frame constraint (96) are imposed.

Writing f (1)k as f (1)k = f0k f̃0kφk with φk at O(Kn) and f̃k = 1 − a fk, one obtains

L̂ f (1)k = −τ−1
R Ek f0k f̃0kφk. From Equation (100), one finds

φk =
βτR
Ek

[(
1
3

∆µνkµkν + E2
k

∂p
∂ε

∣∣∣
n
+ Ek

∂p
∂n

∣∣∣
ε

)
θ

+T
(

nEk
ε + p

− 1
)

kµ∇µα + k〈µkν〉ξµν

]
, (103)

where we defined ξµν := w〈µν〉, which is the shear tensor, and the terms are organized in
such a way that they are mutually orthogonal under integral

∫
dK(. . .)F(Ek) with F(Ek) an

arbitrary converging function of Ek. (Note that the symbol ξµν for shear tensor is used only
in this section in order to simplify the equations. In other sections, we simply use w〈µν〉 or
∇〈µuν〉 to denote the shear tensor.) Substituting φk into Equation (101), one finds

νµ = κ∇µα, with κ = τRT

(
2
3

ε− 3p
m2 − n2

ε + p
+

m2

3

〈
1

E2
k

〉
0

)
, (104a)

Π = −ζ θ, with ζ = τR

[(
1
3 − c2

s

)
(ε + p)− 2

9 (ε− 3p)− m4

9

〈
1

E2
k

〉
0

]
, (104b)

πµν = 2η ξµν, with η = τR

[
4
5

p +
1
15

(ε− 3p)− m4

15

〈
1

E2
k

〉
0

]
, (104c)

where c2
s = ∂p/∂ε|s/n = ∂p/∂ε|n + (ε + p)−1n ∂p/∂n|ε is the sound velocity squared,

κ, ζ, η are conductivity of number diffusion current, bulk viscosity, and shear viscosity.
Note that, when m = 0, the bulk viscosity vanishes because ε = 3p and c2

s = 1/3 in
massless limit. Thus, at O(Kn), we recover the relativistic Navier–Stokes hydrodynamics.

With the above preparation, let us now consider RMHD in the Chapman–Enskog
method. In this case, the Boltzmann equation contains the EM force term:

kµ∂µ fk + qFµνkν∂kµ fk = C[ f ], (105)

where q is the charge of the particles (we consider only one species of particles and assume
q > 0). We assume that the particles are under binary elastic collisions and the colliding



Symmetry 2022, 14, 1851 28 of 63

processes are not interfered by the external EM field Fµν. Hence, the collision kernel
preserves the particle number (and the electric charges as well) and energy–momentum,
i.e., Equation (92) still holds, which implies

∂µNµ = ∂µ

∫
dKkµ fk = 0, (106)

∂µTµν = ∂µ

∫
dKkµkλ fk = qFνλNλ = Fνλ Jλ, (107)

where Jµ = qNµ is the charge current. We emphasize that the EM fields appear in our
kinetic approach as external fields which is very different from Sections 2 and 3 in which
the dynamics of the EM fields plays an important role. This leads to different leading-order
constitutive relations, but they share the same structures of the dissipative constitutive
relations for the fluid (namely, the viscous and conductivity tensors).

Let us clarify a significant distinction between how the EM fields are treated in this
section and how they are treated in Sections 2 and 3. In Sections 2 and 3, the EM fields
are dynamical and the energy–momentum tensor include contributions from the EM
fields as well, resulting in a conserved energy–momentum tensor. The RMHD derived in
Sections 2 and 3 is therefore a strict hydrodynamic theory. This is not the case with this
section, where the EM fields are external fields (as clearly seen in Equation (105)), hence Nµ

and Tµν obtained from the kinetic theory only include contributions from the matter. As
shown on the right-hand side of Equation (107), matter exchanges energy and momentum
with EM fields, causing the Tµν to be non-strictly conserved. For this reason, the pressure
and energy density include only the matter contributions.

The presence of the EM fields introduces new scales into the kinetic equation (and also
the hydrodynamic equations). Thus, let us clarify the range of scales that we will focus on in
this case. The typical microscopic scales are still set by the interaction range rc, inter-particle
distance rd, and the mean-free path λmfp. In terms of Kn or the gradient ∂ of the conserved
densities, the electric field in the rest frame of the fluid, Eµ = Fµνuν, is considered as O(∂),
while the magnetic field in the rest frame of the fluid, Bµ = εµναβuνFαβ/2, can be an O(1)
quantity, as we already emphasized in Section 2. This amounts to the fact that the electric
field is screened by the gradient of charge distribution in a plasma, while the magnetic
field is not. The magnetic field makes the motion of charged particles curvilinear with
radius RL = k⊥/(qB) (the Larmor radius) with k⊥ being the momentum of the particles
transverse to the magnetic field. For hot relativistic plasma, k⊥ ∼ T, so RT = T/(qB) sets
the magnetic cyclotron scale. We will always assume that the thermal wavelength β = 1/T
of the particles and the interaction range rc are much smaller than RT , β� RT , and rc � RT .
The first inequality means that the Landau quantization effect is not significant, and we can
safely use a classical treatment. The second inequality means that, in the collision process,
the magnetic field can be neglected so we can use a magnetic-field independent collision
operator C (but the distribution function fk can certainly depend on Bµ). The situation with
an even stronger magnetic field, RT � β, that can make the Landau quantization effect
significant will be discussed in Section 6.

We will always use the Landau–Lifshitz frame for the fluid and use the matching
conditions for ε and n. The zeroth-order distribution function is still chosen as f (0)k = f0k =
1/[exp(βEk − α) + a] with a = 1, 0 and −1 for fermions, classical Boltzmann particles,
and bosons. Choosing such an equilibrium distribution amounts to assuming that the
magnetization pressure −MB is much smaller than thermodynamic pressure p and thus is
omitted. This also implies that the magnetization current is vanishing and we thus do not
distinguish the free electric current and the total electric current in this section. Therefore,
the ideal-fluid constitutive relations are still given by Equations (99a) and (99b). To obtain
f (1)k , let us again take the RTA for the collision kernel,

C[ f ] = −Ek
fk − f0k

τR
. (108)
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First, we consider a situation in which both Eµ and Bµ in Equation (105) are of order
O(∂), namely, when both the electric and magnetic fields are very weak. This is not in the
MHD region but let us make a case study first. Writing f (1)k as f (1)k = f0k f̃0kφk with φk at
O(∂) and f̃k = 1− a fk, one obtains from Equation (105),

φk = − τR
Ek

( f0k f̃0k)
−1(kµ∂µ f0k + qFµνkν∂kµ f0k

)
=

βτR
Ek

[
T
(

nEk
ε + p

− 1
)

kµ
(
∇µα + βqEµ

)
+

(
1
3

∆µνkµkν + E2
k

∂p
∂ε

∣∣∣
n
+ Ek

∂p
∂n

∣∣∣
ε

)
θ + k〈µ⊥ kν〉

⊥ ξµν

]
. (109)

Compared with Equation (103), the only new term is the electric-field term which is
always accompanied with ∇µα and the magnetic field drops out. To obtain φk, we have
used the EOMs at O(1) order (ideal hydrodynamic equations):

Duµ =
1

ε + p
(∇µ p + nqEµ), (110)

Dα = −β
∂p
∂n

∣∣∣
ε
θ, (111)

Dβ = β
∂p
∂ε

∣∣∣
n
θ. (112)

Substituting f (1)k into Equations (101), we find that the Π and πµν are still given by
Equations (104b) and (104c), but νµ is given by νµ = κ(∇µα + βqEµ) with the number
diffusion constant κ given in Equation (104a). The charge diffusion current jµ = q〈k〈µ〉〉1 is

jµ = qνµ = qκ(∇µα + βqEµ). (113)

This relation gives that the electric conductivity (the coefficient in front of Eµ) is
determined by number diffusion conductivity, σ = βq2κ, a relation representing the Wiede-
mann–Franz law.

The above situation with Bµ ∼ O(∂) is not in the MHD region. Let us now consider
the MHD region in which Eµ is at O(∂) but Bµ is at O(1). The Boltzmann equation at
O(∂) reads

kµ∂µ f0k − qEνkνuµ∂kµ f0k = −qBbµν
? kν∂kµ f (1)k − Ek

τR
f (1)k , (114)

where B =
√
−BµBµ is the strength of the magnetic field and bµν

? = εµναβuαbβ is the cross

projector. The solution for f (1)k is f (1)k = f0k f̃0kφk with

φk = φ‖ +
τR
Ek

β

1+ξ2
k

(
Vµ + ξkbµν

? Vν

)
k⊥µ + τR

Ek

β

1+4ξ2
k

(
wµν
⊥ + 2ξkbµλ

? wν
⊥λ

)
k⊥{µk⊥

ν}, (115)

φ‖ =
βτR
Ek

[(
1
2

Ξαβkαkβ + E2
k

∂p
∂ε

∣∣∣
n
+ Ek

∂p
∂n

∣∣∣
ε

)
θ⊥ +

(
−k2
‖ + E2

k
∂p
∂ε

∣∣∣
n
+ Ek

∂p
∂n

∣∣∣
ε

)
θ‖

−Tk‖

(
nEk

ε + p
− 1
)

bµ
(
∇µα + βqEµ

)]
, (116)

Vµ =

[
T
(

nEk
ε + p

− 1
)

Ξµλ(∇λα + βqEλ)− 2k‖Ξ
µλwλρbρ +

qB
ε + p

Ekbµλ
? νλ

]
, (117)
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where ξk := qBτR/Ek, and we have introduced

k‖ = b · k, Ξµν = ∆µν + bµbν, kµ
⊥ = Ξµνkν, k{µ⊥ kν}

⊥ = kµ
⊥kν
⊥ −

1
2

ΞµνΞαβkαkβ,

wµν =
1
2
(∇µuν +∇νuµ), θ⊥ = Ξαβwαβ, θ‖ = −bµbνwµν,

wµν
⊥ =

(
ΞµαΞνβ − 1

2
ΞµνΞαβ

)
wαβ.

(118)

Note that, to derive Equation (115), we use again Equations (110)–(112), but Equation (110)
is replaced by

Duµ =
1

ε + p

(
∇µ p + nqEµ + qBbµλ

? νλ

)
, (119)

because now Bµ ∼ O(1) and is kept in the ideal EOMs.
We can check explicitly that the matching conditions 〈Ek〉1 = 0, 〈E2

k〉1 = 0 are satisfied

with f (1)k . The Landau–Lifshitz frame-fixing condition 〈Ekk〈µ〉〉1 = 0 is, however, not

satisfied. In fact, because f (1)k depends on νµ explicitly, the Landau–Lifshitz condition must
be coupled with the defining condition for νµ to determine uµ and νµ. A simpler way
to solve out νµ from these complicated coupled equations is by considering the frame-
independent vector (See Appendix B for the discussion of the transformation among
different choices of the fluid velocity)

lµ = 〈k〈µ〉〉1 −
n

ε + p
〈Ekk〈µ〉〉1, (120)

which depends on νµ and should equal to νµ once the Landau–Lifshitz condition is fulfilled.
Therefore, νµ in the Landau–Lifshitz frame should be determined by

νµ = 〈k〈µ〉〉1 −
n

ε + p
〈Ekk〈µ〉〉1. (121)

This is a linear equation for νµ and can be directly solved. To demonstrate this
and for simplicity of the discussion, we assume that the magnetic cyclotron frequency
ωB = 1/RT = qB/T is much larger than the collision rate ωcol = 1/τR (or equivalently,
ξ = λmfp/RT � 1). In this case, ξk ∼ ξ � 1 and we can expand f (1)k in 1/ξk. Solving
Equation (121) order by order in 1/ξ, we obtain

νµ = κµν(∂να + βqEν), (122)

κµν = κ⊥Ξµν − κ‖b
µbν + κHbµν

? , (123)

where the conductivities read

κ⊥ =
1

τR(qB)2
ε + p

β

(
J31 J51

J2
41
− 1

)
+ O(ξ−4) =

1
τR(qB)2

J31D41

J2
41

+ O(ξ−4), (124a)

κ‖ = τR

(
J11 −

n
ε + p

J21

)
= τR

D21

J31
, (124b)

κH =
1

qB

(
n
β
−

J2
31

J41

)
+ O(ξ−3) =

1
qB

D31

J41
+ O(ξ−3). (124c)
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We have introduced the thermodynamic functions Jnq and Dnq to simplify the expres-
sions. For the later use, we also introduce another two thermodynamic functions Inq and
Gnm. They are defined by [165]

Inq =
(−1)q

(2q + 1)!!

∫
dKEn−2q

k (∆αβkαkβ)q f0k, (125a)

Jnq =
(−1)q

(2q + 1)!!

∫
dKEn−2q

k (∆αβkαkβ)q f0k f̃0k, (125b)

Dnq = Jn+1,q Jn−1,q − J2
nq, (125c)

Gnm = Jn0 Jm0 − Jn−1,0 Jm+1,0, (125d)

where Jnq and Inq are related by βJnq = In−1,q−1 + (n − 2q)In−1,q. Note that κ‖ = κ in
Equation (104a) (which can be directly shown using Equation (125b)), meaning that the
charge diffusion along the magnetic field is unaffected by the magnetic field. Note that the
leading-order Hall conductivity κH is independent of the relaxation time τR; it is purely
due to the Lorentz force. The first term in κH gives the classical Hall conductivity for a
stationary material while the second term is due to the fluid flow and thus depends on how
we approximate the dynamic kinetic and hydrodynamic equations.

Substituting f (1)k into τµν := 〈k〈µ〉k〈ν〉〉1 = πµν − ∆µνΠ, we obtain the viscous stress
tensor τµν as

τµν =
7

∑
i=1

ηiη
µνρσ
i wρσ, (126)

where the tensor forms of η
µνρσ
i are already defined in Equation (27) and Equation (90) but

listed here for convenience

η
µνρσ
1 = bµbνbρbσ, (127a)

η
µνρσ
2 = ΞµνΞρσ, (127b)

η
µνρσ
3 = −Ξµνbρbσ − Ξρσbµbν, (127c)

η
µνρσ
4 = −2

[
b(µΞν)ρbσ + b(µΞν)σbρ

]
, (127d)

η
µνρσ
5 = 2 Ξρ(µΞν)σ − ΞµνΞρσ, (127e)

η
µνρσ
6 = −b(µbν)ρ

? bσ − b(µbν)σ
? bρ, (127f)

η
µνρσ
7 = Ξρ(µbν)σ

? + Ξσ(µbν)ρ
? , (127g)

and the viscosities are given by

η1 := ζ‖ = βτR

(
3J32 − J31

∂p
∂ε

∣∣∣
n
− J21

∂p
∂n

∣∣∣
ε

)
, (128a)

η2 := ζ⊥ = βτR

(
2J32 − J31

∂p
∂ε

∣∣∣
n
− J21

∂p
∂n

∣∣∣
ε

)
, (128b)

η3 := ζ× = βτR

(
J32 − J31

∂p
∂ε

∣∣∣
n
− J21

∂p
∂n

∣∣∣
ε

)
, (128c)

η4 := η‖ =
β

τR(qB)2 J52 + O(ξ−4), (128d)

η5 := η⊥ =
β

4τR(qB)2 J52 + O(ξ−4), (128e)

η6 := ηH‖ =
2β

qB
J42 + O(ξ−3), (128f)

η7 := ηH⊥ =
β

2qB
J42 + O(ξ−3), (128g)
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where ζ’s and η’s are bulk and shear viscosities whose physical meaning has been discussed
in Section 2.2. The above result automatically satisfies the Onsager relation for ζ× that was
assumed in Section 2.2. Note that ηH‖ and ηH⊥ do not depend on τR at the leading order
in 1/ξ; they arise due to the Lorentz force and are thus called Hall viscosities; see more
discussions in Section 4.2.

For massless Boltzmann gas, using Jnq = (n + 1)!β2−n p/[2(2q + 1)!!] [59] and
τR = 9λmfp/4, the transport coefficients become

κ‖ =
3

16
λmfpn, κ⊥ =

16
45

λmfpn
ξ2 , κH =

1
5

n
βqB

, ζ‖ =
12
5

λmfp p, ζ⊥ =
3
5

λmfp p,

ζ× = −6
5

λmfp p, η‖ =
32
3

λmfp p
ξ2 , η⊥ =

8
3

λmfp p
ξ2 , ηH‖ =

8p
βqB

, ηH⊥ =
2p

βqB
.

(129)

Note that ζ‖ζ⊥ − ζ2
× = 0 due to the conformal invariance in three-dimensional space in the

massless limit.
Recently, there has been intensive use of the Chapman–Enskog method to study the

constitutive relations and transport coefficients in RMHD; see Refs. [62,63,65,167–174] (also,
e.g. Refs. [175,176] for related Kubo-formula calculations). Our discussions here serve as a
simple overview and summary of how the Chapman–Enskog method is used to derive the
constitutive relations of the first-order RMHD. For more information, the reader is referred
to the list of references for recent works.

The above iterative procedure of solving Boltzmann equation can continue to the
higher orders in gradient, but the calculations become much more involved. For exam-
ple, at the second order, one obtains the Burnett-type equations [177,178]. However, the
relativistic EOMs from the Chapman–Enskog expansion are in general unstable [179–184]
(though there could exist special rest frames where the first-order relativistic dissipative
hydrodynamics can be stable; see Refs. [185–190]). For the Burnett equations, even at the
non-relativistic limit, they suffer from the so-called Bobylev instability [191]. For this reason,
instead, the method of moments are widely used in recent years because it can avoid this
problem [165,192–195].

5.2. Grad’s Method of Moments

This approach was first established by Grad for non-relativistic systems [164] that
can be viewed as an expansion of the distribution function in terms of momenta kν and
was then generalized to relativistic systems by Israel and Stewart [125,166,196,197] among
others. Recently, a variant of this method was developed and widely adopted to derive
the causal second-order hydrodynamics [59,60,165,192–195,198–205]. The following discus-
sions closely follow Refs. [59,60,165,195]. We first discuss the simpler situation without EM
fields and then consider the effect of EM fields.

The ideal hydrodynamics is still generated by the local equilibrium distribution f0k.
Write the dissipative part of the distribution function as δ fk = fk − f0k = f0k f̃0kφk. In the
method of moments, φk is expanded as a series of the irreducible tensors
1, k〈µ〉, k〈µkν〉, k〈µkνkλ〉, . . ., φk = ∑M

l=0 λ〈µ1 ...µl〉(Ek)k〈µ1
. . . kµl〉. These irreducible tensors

are defined by k〈µ1 . . . kµl〉 = ∆µ1 ...µl ν1 ...νl kν1 . . . kνl and form a complete and orthogonal set
in the spatial momentum space, satisfying [165]∫

dKF(Ek)k〈µ1 . . . kµm〉k〈ν1 . . . kνn〉 =
m!δnm

(2m + 1)!!
∆µ1 ...µmν1 ...νm

∫
dKF(Ek)(∆αβkαkβ)m, (130)

where (2m + 1)!! is the double factorial, F is an arbitrary converging scalar function, and
∆µ1 ...µmν1 ...νm is the projection ∆µν when m = 1 and the symmetrized spatial traceless
projection when m ≥ 2, e.g., ∆µναβ = 1

2 (∆
µα∆νβ + ∆µβ∆να)− 1

3 ∆µν∆αβ. The coefficients
λ〈µ1 ...µl〉(Ek) may be further expanded in Ek, conveniently with an orthogonal basis of poly-
nomials P(l)

n (Ek), λ〈µ1 ...µl〉(Ek) = ∑Nl
n=0 c〈µ1 ...µl〉

n P(l)
n (Ek). Here, we have assumed that the
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coefficients λ〈µ1 ...µl〉(Ek) have no singularity at Ek → 0 so that they are Taylor expandable
(A singularity may appear when the system evolves towards, e.g., a condensate near Ek → 0).
The functions P(l)

n (Ek) are n-th order polynomials in Ek, P(l)
n (Ek) = ∑n

r=0 a(l)nr Er
k, where the

coefficients a(l)nr can be determined order by order using the orthonormality condition

N (l)

(2l + 1)!!

∫
dK(∆αβkαkβ)l f0k f̃0kP(l)

n (Ek)P(l)
m (Ek) = δnm,

where N (l) = (2l + 1)!!
[∫

dK(∆αβkαkβ)l f0k f̃0k

]−1
are the normalization factors. (Here, we

list a few of the coefficients a(l)nr which are useful for the following calculations: a(l)00 = 1 is by

setting, a(l)11 = ±J2l,l/
√

D2l+1,l , a(l)10 = ∓J2l+1,l/
√

D2l+1,l , a(0)22 = ±
√

J00D10/
√

J20D20 + J30G12 + J40D10, a(0)21 = G12a(0)22 /D10, a(0)20 = D20a(0)22 /D10. For given n, the sign

of a(l)nr can take either the upper or the lower convention without changing δ fk; we will use
the upper-sign convention. More details about P(l)

n (Ek) can be found in Refs. [165,195].)
The remaining coefficients c〈µ1 ...µl〉

n can be more conveniently re-expressed using the irre-
ducible moments:

ρ
µ1 ...µl
r := 〈Er

kk〈µ1 . . . kµl〉〉δ =
∫

dKEr
kk〈µ1 . . . kµl〉δ fk, (131)

as c〈µ1 ...µl〉
n = N (l)

l! ∑n
r=0 ρ

µ1 ...µl
r a(l)nr . Finally, the distribution function is expressed as

fk = f0k

(
1 + f̃0k

M

∑
l=0

Nl

∑
n=0

n

∑
r=0

N (l)

l!
a(l)nr P(l)

n (Ek)ρ
µ1 ...µl
r k〈µ1

. . . kµl〉

)
. (132)

In principle, M and Nl should be infinite, but, in practice, they are chosen to be finite
in order to truncate the expansion. Thus, the distribution function is solely determined by
the moments ρ

µ1 ...µl
r and, after substituting it in the Boltzmann equation, the Boltzmann

equation is turned into a set of coupled EOMs for the moments. For our purpose, we
focus on the three leading-order moments, ρ0, ρ

µ
0 , and ρ

µν
0 because they are related to the

dissipative currents,

ρ0 = − 3
m2 Π, ρ

µ
0 = νµ, ρ

µν
0 = πµν. (133)

To get the first relation to Π, we used the matching condition for ε. Together with the
matching condition for n and the Landau–Lifshitz frame condition, we find that

ρ1 = ρ2 = 0, ρ
µ
1 = 0. (134)

To derive the EOMs for ρ0, ρ
µ
0 , and ρ

µν
0 or, equivalently, for Π, νµ, and πµν, we re-write

the Boltzmann Equation (91) as

δ ḟk = − ḟ0k −
1

Ek
kµ∇µ fk +

1
Ek

C[ f ], (135)
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where Ȧ := dA/dτ := DA. Substituting this expression into Equation (95), one obtains a
set of exact dynamical equations for Π, νµ, and πµν:

Π̇ := − 1
3

d
dτ

∫
dK∆µνkµkνδ fk = −m2

3

∫
dKδ ḟk

= −m2

3
C− βΠθ − ζΠΠΠθ + ζΠππµνξµν − ζΠν∂µνµ

+
m4

9
ρ−2θ +

m2

3
∇µρ

µ
−1 +

m2

3
ρ

µν
−2ξµν, (136a)

ν̇〈µ〉 := ∆µ
ρ ν̇ρ =

∫
dKk〈µ〉δ ḟk

= Cµ + βν∇µα− νµθ − νλ

(
ωλµ +

3
5

ξλµ

)
+

1
h

(
Πu̇µ −∇µΠ + ∆µ

ρ ∂λπλρ
)

−m2

3

(
∇µρ−1 + ρ

µ
−2θ +

6
5

ρλ
−2ξ

µ
λ

)
− ∆µ

ρ∇λρ
ρλ
−1 − ρ

µρλ
−2 ξρλ, (136b)

π̇〈µν〉 := ∆µν
αβ

d
dτ

∫
dKk〈αkβ〉δ fk =

∫
dKk〈µkν〉δ ḟk

= Cµν + 2βπξµν − 4
3

πµνθ − 10
7

πρ〈µξ
ν〉

ρ + 2π
〈µ
ρ ων〉ρ +

6
5

Πξµν − 2m4

15
ρ−2ξµν

− 2m2

5
∇〈µρ

ν〉
−1 −

m2

3
ρ

µν
−2θ − 4m2

7
ρ

λ〈µ
−2 ξ

ν〉
λ − ∆µν

αβ∇λρ
αβλ
−1 − ρ

µναβ
−2 ξαβ, (136c)

where ωµν = (∇µuν −∇νuµ)/2 is the vorticity. We have adapted the Landau–Lifshitz
frame (96) and the matching conditions (98) and defined the collision terms

Cµ1 ...µl =
∫

dK
1

Ek
k〈µ1 . . . kµl〉C[ f ]. (137)

To derive Equations (136a)–(136c), the exact EOMs (93a)–(93b) are used to eliminate
the time derivative of α, β, and uµ:

α̇ =
1

D20

[
−J30(nθ + ∂µνµ) + J20(ε + p + Π)θ − J20πµνξµν

]
, (138a)

β̇ =
1

D20

[
−J20(nθ + ∂µνµ) + J10(ε + p + Π)θ − J10πµνξµν

]
, (138b)

u̇µ =
1
β

(
1
h
∇µα−∇µβ

)
− 1

ε + p

(
Πu̇µ −∇µΠ + ∆µ

ν ∂λπνλ
)

, (138c)

where h = (ε + p)/n is the enthapy per particle. The coefficients in Equations (136a)–(136c)
are all thermodynamic quantities given by [165,193,195]

βΠ =
m2

3

[
I01 − I00 −

n
D20

(hG20 − G30)

]
=

[(
1
3
− c2

s

)
(ε + p)− 2

9
(ε− 3p)− m4

9

〈
1

E2
k

〉
0

]
, (139a)

ζΠΠ =
2
3
− m2

3
G20

D20
= 1−

(
∂p
∂ε

)
n
, (139b)

ζΠπ = −m2

3
G20

D20
=

1
3
−
(

∂p
∂ε

)
n
, (139c)

ζΠν =
m2

3
G30

D20
= −

(
∂p
∂n

)
ε

, (139d)
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βν = J11 −
1
h

J21 = T

(
2
3

ε− 3p
m2 − n2

ε + p
+

m2

3

〈
1

E2
k

〉
0

)
, (139e)

βπ = I21 − I22 =
4
5

p +
1

15
(ε− 3p)− m4

15

〈
1

E2
k

〉
0

. (139f)

Note that βΠ, βν, βπ agree with the bulk viscosity, conductivity, and shear viscosity
given in Equation (104a)–(104c) obtained from the Chapman–Enskog method up to the
overall factor of τR. This is not surprising because they have the same origin: they both are
from the gradient of f0k in the Boltzmann equation.

The EOMs (136a)–(136c) are not closed because they contain the moments other than
Π, νµ, πµν. To close them, we have to truncate the expansion (132) for δ f0k so that it is
expressed by the dissipative currents Π, νµ, πµν. The minimal truncation scheme adjusts
M = 2, N0 = 2, N1 = 1, and N2 = 0, so that the distribution function is expanded in terms
of 14 moments which are ρ0 = −3Π/m2, ρ

µ
0 = νµ, ρ

µν
0 = πµν, ρ1 = 0, ρ2 = 0, ρ

µ
1 = 0

(The last two scalar and one vector moments vanish due to the matching condition
and Landau–Lifshitz frame choice). This scheme is called the 14-moment approxima-
tion, introduced first by Israel and Stewart. Generalization to include other moments
are possible, but it does not guarantee a better performance of the method. Now, us-
ing Equations (131) and (137), all the moments and the collision terms are expressed by
Π, νµ, πµν (In particular, ρ

µ1 ...µl
r with l ≥ 3 are vanishing), and thus Equations (136a)–(136c)

are closed.
To see how the 14-moment approximation works in practice. Let us consider a massless

Boltzmann gas (i.e., a = 0 for f0k) and consider the RTA for the collision kernel, i.e.,
Equation (102). In this case, Inq = Jnq = (n+1)!

(2q+1)!! β2−n p/2 and analytical expressions can be
obtained for all the transport coefficients. In the massless limit, the bulk viscous pressure
vanishes and each term in Equation (136a) vanishes as well. The dissipative part of the
distribution function reads,

δ fk = f0k f̃0k

[
− 1

p

(
1− 2P(1)

1 (Ek)
)

νµkµ +
β2

8p
πµνk〈µkν〉

]
, (140)

where P(1)
1 (Ek) = βEk/2− 2. (We note that, though Π vanishes in the massless limit,

ρ0 = −3Π/m2 may not vanish and δ fk still contain terms in the form of
f0k f̃0k[c0 + c1P(0)

1 (Ek) +c2P(0)
2 (Ek)] with cr ∝ Π/m2. However, the contributions of these

terms to Equations (136a)–(136c) vanish at m2 → 0 limit. Thus, we omit them.) The colli-
sion terms are thus given by

Cµ = − νµ

τR
, Cµν = −πµν

τR
. (141)

Similarly, all the moments appearing in Equations (136b)–(136c) are easily obtained.
The final results are [165,193,195]

τRν̇〈µ〉 + νµ = κ∇µα− τRνλωλµ − δνννµθ − λνννλξλµ + lνπ∆µ
ρ∇λπλρ

+τνππµλu̇λ − λνππµν∇να, (142a)

τRπ̇〈µν〉 + πµν = 2ηξµν + 2τRπ
〈µ
ρ ων〉ρ − δπππµνθ − τπππ

〈µ
ρ ξν〉ρ, (142b)

where the transport coefficients are

κ = τRβν =
τR
12

n, δνν = τR, λνν =
3
5

τR, lνπ = λνπ =
τR
20

β, τνπ =
τR
5

β,

η = τRβπ =
4τR

5
p, δππ =

4τR
3

, τππ =
10τR

7
.

(143)
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Here, κ and η are the conductivity and the shear viscosity, respectively; they are the
first-order transport coefficients. All the other ones on the right-hand sides are the second-
order transport coefficients. The Navier–Stokes limit is reached when t� τR, i.e., νµ and
πµν relax to their Navier–Stokes values at the late time. Such relaxation dynamics is very
important for practical applications of relativistic dissipative hydrodynamics because it
cures the numerical instability stemming from the instantaneous responses represented in
the usual first-order Navier–Stokes constitutive relations.

With the above preparation, we now turn to Grad’s method of moments for RMHD.
The basic logic is the same as above, so that we will skip some of the intermediate steps.
We will always use the Landau–Lifshitz choice for the rest frame of the fluid. First, the EM
fields induce the Joule heat/Lorentz force term in Equation (107), and the exact EOMs of
α, β, and uµ, Equations (138a)–(138c) are replaced as

α̇ =
1

D20

[
−J30(nθ + ∂µνµ) + J20(ε + p + Π)θ − J20πµνξµν + J20qEµνµ

]
, (144a)

β̇ =
1

D20

[
−J20(nθ + ∂µνµ) + J10(ε + p + Π)θ − J10πµνξµν + J10qEµνµ

]
, (144b)

u̇µ = 1
β

(
1
h∇

µα−∇µβ
)
− 1

ε+p

(
Πu̇µ −∇µΠ + ∆µ

ν ∂λπνλ − nqEµ − qBbµν
? νν

)
. (144c)

These equations contain unknown dynamical variables Π, νµ, πµν and are thus not
closed. The EOMs of Π, νµ, πµν can be derived in the same manner as in the case without
EM fields. They can be conveniently expressed as the irreducible moments of rank 0, 1, and
2, which are ρ0, ρ

µ
0 , ρ

µν
0 . These exact EOMs read [59,60]

Π̇ =
m2

3
G20

D20
qEµνµ − m2

3
qEµρ

µ
−2 +

[
− m2

3
C− βΠθ − ζΠΠΠθ (145a)

+ζΠππµνξµν − ζΠν∂µνµ +
m4

9
ρ−2θ +

m2

3
∇µρ

µ
−1 +

m2

3
ρ

µν
−2ξµν

]
,

ν̇〈µ〉 = βν βqEµ + qBbµ
? ν

(
− 1

h
νν + ρν

−1

)
+

(
2
3

ρ0 +
m2

3
ρ−2

)
qEµ + ρ

µν
−2qEν (145b)

+
[
Cµ + βν∇µα− νµθ − νλ

(
ωλµ +

3
5

ξλµ

)
+

1
h

(
Πu̇µ −∇µΠ + ∆µ

ρ ∂λπλρ
)

−m2

3

(
∇µρ−1 + ρ

µ
−2θ +

6
5

ρλ
−2ξ

µ
λ

)
− ∆µ

ρ∇λρ
ρλ
−1 − ρ

µρλ
−2 ξρλ

]
,

π̇〈µν〉 = 2qBρ
λ(µ
−1 bν)

? λ + qEαρ
αµν
−2 +

2
5

m2qE〈µρ
ν〉
−2 +

8
5

qE〈µνν〉 +
[
Cµν + 2βπξµν − 4

3
πµνθ

− 10
7

π
〈µ
ρ ξν〉ρ + 2π

〈µ
ρ ων〉ρ +

6
5

Πξµν − 2m4

15
ρ−2w〈µν〉 − 2m2

5
∂
〈µ
⊥ ρ

ν〉
−1

−m2

3
ρ

µν
−2θ − 4m2

7
ρ

λ〈µ
−2 ξ

ν〉
λ − ∆µν

αβ∇λρ
αβλ
−1 − ρ

µναβ
−2 ξαβ

]
. (145c)

Note that only the EM related terms differ from Equations (136a)–(136c), and the other
terms between the square brackets are the same. Within the RTA, the collision terms are
given in very simple forms:

C =
3

τRm2 Π, Cµ = − νµ

τR
, Cµν = −πµν

τR
. (146)

The above equations, together with Equations (144a)–(144c), are still not closed because
they involve the moments other than ρ0, ρ

µ
0 , ρ

µν
0 . To close them, we again take the 14-

moment approximation in which the moment expansion of δ fk is truncated by choosing
the first 14 moments (i.e., by taking M = 2, N0 = 2, N1 = 1, and N2 = 0). In this scheme,
the independent moments are ρ0 = −3Π/m2, ρ

µ
0 = νµ, ρ

µν
0 = πµν, ρ1 = 0, ρ2 = 0, ρ

µ
1 = 0

(The last two scalar and one vector moments vanish due to the matching conditions for
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n and ε and Landau–Lifshitz frame choice). The other moments can thus be expressed in
terms of the first 14 moments:

ρ−r = − 3
m2 γ

(0)
r Π, (147a)

ρ
µ
−r = γ

(1)
r νµ, (147b)

ρ
µν
−r = γ

(2)
r πµν, (147c)

and the moments of rank higher than 2 are all vanishing. The coefficients γ
(l)
r are thermo-

dynamic functions given by [165]

γ
(l)
r =

(−1)l

(2l + 1)!!
1

J2l,l

Nl

∑
n=0

a(l)n0

∫
dK f0k f̃0kE−r

k P(l)
n (Ek)(∆αβkαkβ)l . (148)

With Equations (147a)–(147c), Equations (145a)–(145c) and Equations (144a)–(144c) are
closed with given EM fields.

The peculiar feature of Equations (145a)–(145c) is that they show the relaxation be-
haviors of Π, νµ, πµν towards the hydrodynamic constitutive relations at time scales much
larger that τR. In order to make a comparison with the results from the Chapman–Enskog
method, we take the Navier–Stokes limit for Equations (145a)–(145c). In this limit, we
regard the dissipative fluxes Π ∼ νµ ∼ πµν ∼ O(∂) as well as Eµ ∼ O(∂), Bµ ∼ O(1) and
discard all second-order terms in Equations (145a)–(145c). This leads to

Π = −τRβΠθ, (149a)

νµ = τRβν(∇µα + βqEµ) + qBτRbµν
?

(
γ
(1)
1 −

1
h

)
νν, (149b)

πµν = 2τRβπξµν + qBτRγ
(2)
1 (bµλ

? πν
λ + bνλ

? π
µ
λ). (149c)

After solving Equations (149b)–(149c) for νµ and πµν and combining πµν and Π into
τµν = πµν −Π∆µν, we obtain the following constitutive relations at O(∂):

νµ = κµν(∂να + βqEν), (150a)

τµν =
7

∑
i=1

ηiη
µνρσ
i wρσ, (150b)

with κµν and η
µνρσ
i given in Equations (123) and (127) and the transport coefficients given by

κ⊥ =
τRβν

1 + (qBτR)2(γ
(1)
1 − 1/h)2

=
1

(qB)2τR

J31D2
31

J2
41D21

+ O(ξ−4), (151a)

κ‖ = τRβν = τR
D21

J31
, (151b)

κ× =
qBτ2

Rβν(γ
(1)
1 − 1/h)

1 + (qBτR)2(γ
(1)
1 − 1/h)2

=
1

qB
D31

J41
+ O(ξ−3), (151c)

η1 := ζ‖ = τR

(
βΠ +

4
3

βπ

)
, (151d)

η2 := ζ⊥ = τR

(
βΠ +

1
3

βπ

)
, (151e)

η3 := ζ× = τR

(
βΠ −

2
3

βπ

)
, (151f)
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η4 := η‖ =
τRβπ

1 + (γ
(2)
1 qBτR)2

=
β

(qB)2τR

J2
42

J32
+ O(ξ−4), (151g)

η5 := η⊥ =
τRβπ

1 + 4(γ(2)
1 qBτR)2

=
β

4(qB)2τR

J2
42

J32
+ O(ξ−4), (151h)

η6 := ηH‖ =
2qBτ2

Rβπγ
(2)
1

1 + (γ
(2)
1 qBτR)2

=
2β

qB
J42 + O(ξ−3), (151i)

η7 := ηH⊥ =
2qBτ2

Rβπγ
(2)
1

1 + 4(γ(2)
1 qBτR)2

=
β

2qB
J42 + O(ξ−3), (151j)

where we have used the relations γ
(1)
1 = (J11 J41 − J21 J31)/D31, γ

(2)
1 = J32/J42 which can

be directly calculated from Equation (148) and βπ = I21 − I22 = βJ32. Compared with
Equations (124) and (128), we find that the results from the method of moments in the
Navier–Stokes limit coincide with the results from the Chapman–Enskog method at the
leading-order in 1/ξ except for κ⊥, η‖ and η⊥. For Boltzmann gas in the massless limit,
they are given by

κ⊥ =
16
75

λmfpn
ξ2 , η‖ =

80
9

λmfp p
ξ2 , η⊥ =

20
9

λmfp p
ξ2 , (152)

and all the other transport coefficients are the same as those given in Equation (129). We note
that the results of method of moments here are in complete consistence with Refs. [59,60],
but one should be careful when making the detailed comparison because Refs. [59,60] did
not use the RTA which makes the relaxation time τπ for the shear viscous tensor different
from ours.

In this section, we construct the RMHD constitutive relations at O(∂) and gives explicit
expressions for the anisotropic transport coefficients using the RTA. In the next section, we
discuss a more rigorous calculation of these transport coefficients in QED or QCD going
beyond the RTA. To end this section, we note that, for practical calculations using kinetic
equations in, e.g., astrophysics, one may use the particle-in-cell method to perform the full
kinetic calculations going beyond the RTA; see, e.g., Refs. [206–209].

6. Perturbative Evaluation of Transport Coefficients

In the previous section, we discussed the kinetic theory with the relaxation-time
approximation (RTA). This simple model provides us with an insight into how the balance
between the driving forces and the collision term is realized. However, this model has a
few drawbacks that should be improved so that one can push forward the kinetic theory.
For example, the RTA does not automatically satisfy the conservation laws of energy,
momentum, particle number, etc, since symmetries of the system are not implemented in
the collision term. In addition, the RTA collision kernel completely ignores the potential
effects of the magnetic fields on the scattering processes.

In case of weak-coupling theories, one can achieve more realistic evaluation
of the transport coefficients with the perturbation theories that respect the symmetries
and can take into account effects of the magnetic fields on the scattering
processes [54,55,57,58,210,211] (see also Refs. [67,69] for the strong-coupling methods).
In this section, we demonstrate the perturbative evaluation of the transport coefficients
in the strong magnetic fields where the energy eigenstates of the scattering particles are
subject to the Landau quantization. One finds that the chiral symmetry constrains the
scattering amplitudes among the particles in the ground states called the lowest Landau
level (LLL). This serves as a prominent example of the aspects that are not captured in the
RTA treatment in last section.
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6.1. Transport Coefficients in Strong Magnetic Fields

We provide a concise description of perturbative evaluation of the transport coefficients
in the strong magnetic field limit. We focus on the contributions from a single fermion
with an electric charge e and mass m for simplicity. Notice that the cyclotron radius is
inversely proportional to the magnetic-field strength. Therefore, it is expected that the
charged fermions can only serve as transport carriers for the currents along the magnetic
field in the strong field limit (cf. Figure 6). Indeed, one can show that the fermions in the
LLL can only contribute to the longitudinal electric current Jz and the longitudinal pressure
δp‖ [54,55,57]. Therefore, only the longitudinal conductivity σ‖ and bulk viscosity ζ‖ take
nonzero values in the strong-field limit, while the other transport coefficients vanish in the
strong-field limit.

Figure 6. Induced currents in a strong magnetic field. Fermion carriers live in the (1+1) dimensions
(blue tubes), while photon scatterers in the (3 + 1) dimensions.

To see the induced currents, we apply an electric field E = (0, 0, Ez) and a flow
perturbation with an expansion/compression along the magnetic field, u ∼ (0, 0, uz(z)). In
the linear-response regime where the induced currents are linear in those driving forces,
the longitudinal transport coefficients σ‖ and ζ‖ are given by

σ‖ =
Jz

Ez
= e

eB
2π
· 2
∫ ∞

−∞

dkz

2π

kz

εk

[
δ f (kz)

Ez

]
, (153a)

ζ‖ = −
p̃‖

∂zuz
= − eB

2π
· 2
∫ ∞

−∞

dkz

2π

p2
k −Θβε2

k
εk

[
δ f (kz)

∂zuz

]
, (153b)

where Θβ = (∂p‖/∂ε)B, and εk is the one-particle energy in the LLL (see Equation (155)
for an explicit form). Here, the dominant contribution to the pressures comes from the
matter part, e.g., p‖ = pmatt‖. To simplify the notations, we omit the subscript ‘matt’
in this section. [We note that a factor of 1/3 was attached to ζ‖ in Ref. [57] according
to the convention in Ref. [119]. Here, we follow the present convention without this
numerical factor (see Equation (A20) for the correspondences). Note also that the color
factors are included in Ref. [57] for the QCD plasma, while we focus on the QED plasma for
simplicity.] We have assumed without losing generality that a homogeneous magnetic field
is oriented in the z direction with eB > 0. The two-dimensional transverse phase space
is degenerate with the Landau degeneracy factor eB/(2π) since the energy eigenvalue
does not depend on the position of the cyclotron motion in a homogeneous magnetic
field. The momentum integrals come from standard definitions of the currents with the
one-particle distribution functions f (kz), where δ f (kz) := f (kz) − feq(kz) denotes the
displacement from the equilibrium distribution function caused by the driving force. In
neutral plasmas, particles and antiparticles provide the same contributions, which results
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in the factor of 2 in front of the integrals. There is no spin degeneracy factor because the
LLL is the unique ground state with respect to the spin direction.

To extract the off-equilibrium component of the pressure p̃‖, one needs to subtract
the equilibrium component because the pressure varies even in an adiabatic expansion/
compression [212]. In the operator form, the off-equilibrium component of the pressure
is p̃‖ = Tµνbµbν − ΘβTµνuµuν = T33 − ΘβT00. In the massless limit, the adiabatic ex-
pansion rate is given by Θβ = 1 that agrees with an inverse of the number of spatial
dimensions (=1) in the presence of the effective dimensional reduction [57]. The bulk
viscosity vanishes in the massless limit due to the absence of a characteristic scale of the
dimensionally reduced system, where the scale invariance preserves the equilibrium state
at any step of the expansion/compression. Therefore, the bulk viscosity is sensitive to the
fermion mass that breaks the scale invariance. In the massive case, one finds a deviation as
Θβ = 1− 3m2/(π2T2) [57].

The crucial part of the computation is evaluation of the off-equilibrium components of
the distribution functions δ f (kz) that will be obtained as solutions of the kinetic equations.
In the presence of the electric field Ez and the expansion/compression flow uz(z), the
explicit forms of the kinetic equations are, respectively, given as

eEz
∂ f (kz)

∂kz

= C[ f ] , (154a)

(∂t + vz∂z) f (kz; t, z) = C[ f ] , (154b)

where vz := kz/εk is the carrier velocity in the direction of magnetic field. We have taken
the steady and homogeneous limits in Equation (154a). The equilibrium distribution
functions are given by feq(kz) = [exp(βεk) + 1]−1 in the absence of the flow and by
feq(kz, t, z) = [exp{β(t)γu(εk− kzuz)}+ 1]−1 in the presence of the flow uz with the gamma
factor γu = (1− u2

z)
−1/2. Note that one should take into account the time dependence of

temperature in Equation (154b) since the energy density decreases during the adiabatic
expansion/compression of the system [212].

6.2. Roles of the Chiral Symmetry

The electric and momentum currents reach steady states when the external driving
force and the collisional effects are balanced with each other. The transport coefficients
in the zero frequency and momentum limits characterize such steady-state currents in
response to the external forces. Therefore, the collision term C[ f ] plays a crucial role in
determining what steady state the system reaches. The collision term provides a bridge
between microscopic interaction properties and macroscopic hydrodynamic frameworks.

We consider the scattering processes among fermions and photons according to the
QED Lagrangian. To compute the collision term C[ f ], we use perturbation theory with
respect to the coupling constant e. As one can imagine from the familiar cyclotron radiation,
the leading-order contributions stem from 1-to-2 (2-to-1) scattering processes. This contrasts
to the ordinary perturbative expansion in the absence of an external magnetic field that
starts from the 2-to-2 processes (see, e.g., Ref. [213]). A simple reason for the absence of the
1-to-2 processes is the kinematics; The invariant masses in the initial and final states do not
match each other.

The kinematics in the presence of a magnetic field can be understood from the disper-
sion relation in the Landau quantization. The quantized energy levels are obtained from
the Dirac equation in a constant magnetic field as

εk =
√

k2
z + m2 + (2n + 1± 1)eB , (155)

with n and kz being the principal quantum number and the kinetic momentum along the
magnetic field. The Zeeman energy shifts for spin-1/2 particles are included with the
alternative signs. This dispersion relation has a (1 + 1)-dimensional form. On the other
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hand, photons have the normal (3 + 1)-dimensional dispersion relations without being
subject to the Landau-level discretization. Because of this mismatch in the dimensions
(cf. Figure 6), the photons transverse momentum |q⊥|2 = q2

0 − q2
z can be regarded as an

“effective mass” in the (1 + 1)-dimensional kinematics. One may be then convinced that the
kinematics of the 1-to-2 processes with a “massive gauge boson” can be satisfied [54,55].
This is a general property in a magnetic field that is valid not only in the LLL but also in
the higher Landau levels (hLLs).

However, one needs to look into the kinematics more closely in the case of the LLL.
Actually, we recognize prohibition of those 1-to-2 processes when the massless LLL fermions
have the (1 + 1)-dimensional linear dispersion relations k0 = ±kz. (Note that the correct
dispersion relation that satisfies the Dirac equation is k0 = ±kz instead of k0 = ±|kz| in the
massless case.) To understand the kinematics, we start with a particle scattering process
in the leftmost diagram of Figure 7, which is obviously understood as a transition from
one filled particle state to one of vacant states on the dispersion relation (see the rightmost
panel). One may regard an antiparticle as a hole of a negative-energy particle state, and
include both positive and negative particle states on the same footing. Then, all the 1-to-2
and 2-to-1 processes in Figure 7, including the pair creation/annihilation channels, can be
also interpreted just as a transition from one to another particle state (with either a positive
or negative energy). In the presence of the chiral symmetry, this transition has to occur on
one diagonal line due to the absence of the chirality mixing. The origin of energy is not
shown since it is not relevant here.

R↑

Figure 7. The 1-to-2 processes in a strong magnetic field. Time goes from bottom to top. All
these processes can be interpreted as a transition on the diagonal dispersion relation (rightmost).
The chirality conservation at the vertices gives crucial constraints on the relaxation dynamics.

Now, notice that this diagonal transition does not change quantum numbers other than
the energy and momentum since the initial and final particle states carry the same quantum
numbers, especially the same chirality and spin. This means that an emitted photon
can only take away the energy and momentum with the same amount, i.e., q2

0 − q2
z =

{±(qz − q′z)}2 − (qz − q′z)2 = 0, and is not allowed to carry a nonzero spin along the
magnetic field. This kinematical constraint readily implies that a transverse photon cannot
satisfy the kinematics of the 1-to-2 or 2-to-1 processes. Indeed, the kinematics is only
satisfied in the collinear limit (q ‖ k ‖ k′) with |q⊥| = 0, where the coupling between a
physical transverse photon and fermions vanishes. In other words, the angular momentum
along the magnetic field is not conserved with the transverse photons. (One may satisfy the
angular momentum conservation when the photon momentum is completely perpendicular
to the magnetic field, i.e., qz = 0. However, the on-shell conditions for the fermions and
photon cannot be satisfied simultaneously in this case.)

Following the above discussions, we conclude that the collision term vanishes in the
massless limit as a consequence of the chirality conservation and the linear dispersion
relation in the LLL. This is a expected from the fact that there is no transverse photon
in a purely (1+1)-dimensional system. On the other hand, a finite fermion mass allows
for chirality mixing at interaction vertices. Then, the kinematics is no longer limited to
the collinear configuration, and we find a finite collision term which is proportional to
the squared fermion mass m2. It is worth mentioning that a similar mass dependence
in the charged-pion decay rate is known as the helicity suppression [214,215]; this is the
essential reason why the muonic channel dominates over the electronic channel in spite of
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the smaller phase-space volume of the heavier particle. Technical details of the collisional
effects are given in Refs. [54,55].

We obtain the induced currents by inserting the solutions of Equations (154a) and (154b)
into Equations (153a) and (153b), respectively. Finally, the electric conductivity and the bulk
viscosity in the LLL and at the leading-log accuracy with respect to the coupling constant
are obtained as [54,55,57]

σ‖ = e2 eB
2π

4T
e2m2 ln(T/M)

, (156a)

ζ‖ = 3
eB
2π

4m2

e2 ln(T/M)

[
1

π2 −
14
3
× (0.0304 . . .)

]
. (156b)

The logarithmic factor originates from the collision integral with the ultraviolet and
infrared cutoff scales at T and M2 = min[m2, e2/(2π)eB/(2π)], respectively. The latter is
the Debye screening mass from the fermion loop. In addition to the above contributions
from the fermion carriers, there is a finite contribution from photon carriers to the bulk
viscosity. The latter contribution is, however, suppressed by a factor of 1/(eB) because the
photon carriers are scattered by the abundant fermions of which the phase space volume
is enhanced by the Landau degeneracy factor. Moreover, the phase space volume of the
photon carriers is ∼ T3 instead of ∼ TeB, so that there is no enhancement by the factor of
eB as compared to the fermion contribution included in the above result. Therefore, the
photon contribution is subleading to the fermion contribution in the strong-field limit.

We have discussed the fermion-mass suppression of the collision term and have
understood it as a consequence of the chirality conservation in the dimensionally reduced
system. This suppression is reflected in Equations (156a) and (156b) as an enhancement
by a factor of 1/m2 when the fermion mass is small m2 . eB. Note that the bulk viscosity
is suppressed by m4 when eB = 0 [212] as a consequence of the conformal symmetry (or,
more restrictively, the scale invariance) as mentioned below Equation (153b). The power
dependence on the fermion mass is now reduced to m2 as a consequence of the competition
between the scale invariance and the chirality conservation, both of which govern the
behaviors in the massless limit. It is remarkable that the dependences on the fermion mass
are important even in the high temperature limit T � m as long as eB� T2.

6.3. Contributions of Higher Landau Levels

As we decrease the ratio eB/T2, contributions of the higher Landau levels become
significant. The fermion mass is less important for the kinematics in the higher Landau
levels because their dispersion relations are parabolic even for massless fermions. In
Refs. [210,211], the authors have elaborated dependences of the electric conductivity on
the fermion mass and magnetic field strength, and found a milder mass dependence after
including the higher Landau levels. (As in the above computation with the LLL, the 1-to-2
(2-to-1) scatterings, the leading scattering channels in the coupling constant, are included
in Ref. [210].) In particular, a smooth massless limit was observed. This result on the mass
dependence implies that the LLL fermion carriers acquire new scattering channels that
open via transitions to the hLL and are at work even in the massless limit. Indeed, thanks
to the parabolic dispersion relation of the hLL, the kinematics of the transition from the
LLL to a hLL are satisfied with a finite photon transverse momentum |q⊥| > 0 even in
the massless limit, and the hLL with a finite energy gap ∼ |eB| has a smaller velocity than
the LLL. (Since the dynamics of the hLL, as well as of the LLL, is (1+1) dimensional in
the momentum space, relaxation of the longitudinal electric current occurs only when the
velocities of fermion carriers are changed.) The transition to the hLL occurs only when
assisted by absorption of thermal photons, so that existence of the thermal photons, as well
as of the hLL, is crucial for this relaxation dynamics. As for scattering processes among the
hLLs, one of the important scattering channels may be back scatterings which are allowed
again thanks to the parabolic dispersion relations in the hLL, but are prohibited for the
massless fermions in the LLL.
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In this subsection, we have discussed the perturbative computation of electric con-
ductivities and viscosities. In the strong field limit, they have a significant anisotropy and
their magnitudes depend on the magnetic field strength. In addition, a special kinematics
in the LLL gives rise to an interesting fermion mass dependence. The hLL contributions
become important in the weak to intermediate magnetic field strength. Evaluation of the
viscosities with the hLL contributions remains a challenging issue. Potential applications
include relativistic heavy-ion collisions, Dirac/Weyl semimetals, and neutron star physics.

7. Chiral Magnetohydrodynamics

The system composed of massless chiral fermions also supports the conserved axial
charge density when there are no electromagnetic fields. However, in the presence of
the electromagnetic field, a conservation law of the axial charge is broken by the source
term proportional to EµBµ, which induces the coupling between the electromagnetism
and dynamics of the axial charge [216–218]. This anomalous violation of the axial charge
conservation is a famous consequence of the chiral anomaly (see, e.g., [219,220] for a review).
When one treats the electromagnetic field as non-dynamical backgrounds, the effect of the
chiral anomaly should be also present in the low-energy effective theory due to the t’Hooft
anomaly matching condition [221,222].

In the last decade, there is a significant progress on understanding macroscopic
manifestation of the underlying quantum anomaly in the hydrodynamic regime. It has been
clarified that the consistency to the chiral anomaly requires the novel transport phenomena,
called the anomaly-induced transport (or anomalous transport), whose example includes
the chiral magnetic effect (CME) [16,17,223–225]. In Ref. [226], Son and Surowka provide
an elegant derivation of the anomaly-induced transport on the basis of the second law
of local thermodynamics, which has been further investigated along this line [227–230].
On the other hand, there also appear the fruitful applications of the anomaly matching to
the hydrodynamic effective action or thermodynamic functional [231–244] (see also, e.g.,
Refs. [18–21,153,245–249] for reviews).

In this section, we generalize those frameworks to include dynamical magnetic fields.
This can be also regarded as an extension of RMHD discussed in earlier sections with
the chirality imbalance. This extension provides a hydrodynamic framework called the
chiral magnetohydrodynamics (chiral MHD). In Section 7.1, we formulate the chiral MHD
and derive the CME on the basis of the entropy–current analysis [92]. Then, after briefly
reviewing the linear waves in RMHD in Section 7.2, we demonstrate the helical instability
in the chiral MHD in Section 7.3.

7.1. Entropy-Current Analysis with Chiral Anomaly

Let us generalize the entropy–current analysis to derive the chiral MHD equations.
Having the massless Dirac fermions as microscopic constituents in mind, we consider the
anomalous Ward–Takahashi identity for the axial current:

∂µ Jµ
A = −CAEµBµ , (157)

where Jµ
A and CA = e2/(2π2) denote the axial current and an anomaly coefficient for

a single (colorless) Dirac fermion, respectively. This equation together with those in
Equation (13) serves as the equation of motions.

It should be emphasized that the anomalous Ward–Takahashi identity (157) gives a
non-conservation law for the axial current due to the non-vanishing right-hand side. Thus,
Equation (157) implies that the axial charge density is, in general, not a hydrodynamic
variable, showing a transient dynamics towards the true hydrodynamic equilibrium. Note,
however, that the chiral anomaly is a quantum effect arising from the one-loop diagram,
which is suppressed by the Planck constant. Motivated by this observation, we assume
that the relaxation time of the axial charge density is longer than time scales of other
non-hydrodynamic modes and treat it as a quasi-hydrodynamic quantity. Based on this
assumption and the second law of local thermodynamics, we formulate the chiral MHD
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as an effective model describing the transient coupled dynamics of strictly conserved
quantities and non-conserved axial charge density. We keep track of the chiral anomaly
effect with CA regarded as a small parameter.

Having identified the equations of motion, we then generalize the thermodynamic
relation Equation (14) by including the axial charge nA := uµ Jµ

A. Introducing the axial chem-
ical potential µA as the thermodynamic conjugate of nA, we generalize the thermodynamic
relation as

dε = Tds + HµdBµ + µAdnA . (158)

In this section, we assume a neutrality in electric-charge density as before. We parame-
terize the constitutive relation for the axial current as

Jµ
A = nAuµ + Jµ

A(1) , (159)

which enables us to rewrite Equation (157) as

−CAEµBµ = ∂µ Jµ
A = nAθ + DnA + ∂µ Jµ

A(1) . (160)

Including the axial charge contribution, we compute the entropy production rate. As
a result, the divergence of the entropy current (17) for RMHD is extended as

∂µsµ = β(Ts− ε− p⊥ + BµHµ + µAnA)θ − β[(p⊥ − p‖)b
µbν + BµHν]∂µuν

+Tµν

(1)∂µ(βuν) + F̃µν

(1)∂µ(βHν)− Jµ

A(1)∂µ(βµA) + µACAEµ

(1)Bµ

+∂µ(δsµ − βuνTµν

(1) − βHν F̃µν

(1) + βµA Jµ

A(1)) .

Note that the induced electric field is at most the first order in derivative; see
Equation (25). We now require that the above expression satisfies the second law of
thermodynamics. At the leading-order in derivative and CA, we find the constraints as in
Equation (18) but with the replacement of the thermodynamic relation by

Ts = ε + p⊥ − BµHµ − µAnA . (161)

This is an extension with the contribution of the axial-charge density. The other
constraints, the relation between p⊥ and , p⊥ and the absence of the zeroth-order electric
field Eµ

(0) = 0, are intact.
In the correction terms, we focus on the regime where ∂ ∼ CA. Then, the semi-positive

entropy production requires that [92]

sµ

(1) = βuνTµν

(1) + βHν F̃µν

(1) − βµA Jµ

A(1) , (162a)

R̃E := −Eµ

(1)(−µACABµ + J(1)µ) ≥ 0 , (162b)

RA := Jµ

A(1)∂µ(−βµA) ≥ 0 . (162c)

The corrections to the energy–momentum tensor are the same as in Equation (21a), and
there is no modification of the energy–momentum tensor by either CA or µA in the Landau
frame. This is, however, a frame-dependent statement, and the the energy–momentum
tensor in general can acquire anomalous contributions due to a redefinition of the flow
vector (see, e.g., Ref. [247]).

Let us focus on the chiral anomaly effect appearing in R̃E. Compared with the parity-
even case (85), the electric current is shifted by the anomaly-induced term. The electric
current is, therefore, given as

Jµ

(1) = CAµABµ + [−σ‖b
µbν + σ⊥Ξµν + σHbµν

? ]E(1)ν . (163)
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The second term in the square brackets is the same as in Equation (87). What is new
and remarkable is the first term that reproduces the CME [16,17]. This term does not
depend on an undetermined coefficient like the Ohmic terms. The laws of thermodynamics
uniquely determines the relation between the CME and the anomalous term in the equation
of motion (157). Notice that the anomalous term in R̃E can take an arbitrary value in
general hydrodynamic configurations. Therefore, unless this term is cancelled by the CME
in Equation (163), the entropy production is not necessarily positive semi-definite. As first
pointed out in Ref. [226], the existence of the CME is demanded to ensure the semi-positive
entropy production, and is more than allowed in the hydrodynamic frameworks. We have
seen that the same logic works for the dynamical magnetic fields.

As for the axial current, one can make a bilinear form

RA = −Jµ

A(1)ρ
A
µν Jν

A(1) , (164)

with all the possible tensor structures

ρA
µν = ρA

‖ (−bµbν) + ρA
⊥Ξµν − ρA

Hbµν
? . (165)

The first two coefficients should be semi-positive quantities ρA
‖,⊥ ≥ 0. Similar to the

Hall terms, the third term does not contribute to the entropy production, so that ρA
H can take

both positive and negative signs. The constitutive relation of the axial current is obtained as

Jµ

A(1) = (ρ−1
A )µν∂ν(βµA) = κA

‖ α
µ

‖ + κA
⊥α

µ
⊥ + κA

Hα
µ
? , (166)

where we defined α
µ

‖ = −bµbν∂ν(βµA), α
µ
⊥ = Ξµν∂ν(βµA), and α

µ
? = bµν

? α⊥ν. The lon-

gitudinal components are simply related to each other as κA
‖ = 1/ρA

‖ , while the trans-

verse components are mixed with the Hall-like component, κA
⊥ = ρA

⊥/[(ρA
⊥)

2 + (ρA
H)

2] and
κA

H = ρA
H/[(ρA

⊥)
2 + (ρA

H)
2]. Three diffusion constants κA may take different values in a

magnetic field. According to the sign constraints (165), two of the diffusion constants
should take semi-positive values, κA

⊥,‖ ≥ 0.

7.2. Linear Waves in Relativistic MHD

In general, it is far from a simple task to find solutions of hydrodynamic equations.
Nevertheless, one could find a solution near a stationary hydrodynamic configuration and
study a linear wave describing propagation of a weak disturbance on top of the stationary
state. Here, before investigating the linear wave in the chiral MHD, we briefly describe the
linear wave in RMHD. Starting from the stationary state ε0, p0, uµ = (1, 0), and Bµ = (0, B0)
with a constant B0, we apply perturbations, δε, δp, δuµ, and δBµ. Maintaining the linear
terms with respect to those perturbations in the MHD Equations (13) and (15), we obtain
the simple linearized wave equations. The resulting linearized equation describe six modes,
called the Alfvén wave and the fast and slow magnetosonic waves, which are three pairs of
the waves propagating in opposite directions. The number of modes coincide with that
of the dynamical degrees of freedom counted. Those waves have been well-known in the
non-relativistic theory [160,250] (see below and also Ref. [251] for relativistic cases).

One finds a simple physical mechanism that induces the Alfvén wave as follows. If
one applies perturbations to the flow velocity and the magnetic field perpendicular to the
static field B0, the tension of the magnetic lines acts as a restoring force that tends to bring
the fluid volume back to the original stationary position (cf. Figure 8). However, the energy
density (or mass density in the non-relativistic case) provides an inertia, which prevents
the fluid volume from stopping at the original position. Consequently, the fluid volume
and the penetrating magnetic lines start oscillating just like a string. The Alfvén wave is,
thus, a transverse wave. Let us denote the perturbations δu⊥(t, z) and δB⊥(t, z) which are



Symmetry 2022, 14, 1851 46 of 63

perpendicular to B0 and depend on time and the spatial coordinate along B0 = (0, 0, B0).
Then, the linearized MHD equations read

B0∂zδu⊥ − ∂tδB⊥ = 0 , (167a)

(ε + p)∂tδu⊥ − B0∂zδB⊥ = 0 , (167b)

where B0 = |B0|, and we assumed that µm = 1 for simplicity. Eliminating δB⊥, we indeed
find a wave equation

∂2
t δu⊥ =

B2
0

ε + p
∂2

zδu⊥ . (168)

This equation simply means that two transverse waves are propagating in opposite
directions along B0 with a velocity v2

A = B2
0/(ε + p) called the Alfvén velocity. This form is

anticipated since the tension is proportional to the magnetic field strength. Remember that
ε and p are the total energy density and pressure including the magnetic-field contributions.
When the magnetic field is so strong that its contribution dominates in the energy density
and pressure, the Alfvén velocity approaches the speed of light from below. Thus, the
propagation of the Alfvén wave respects the causality. Eliminating δu⊥ in Equation (167),
one obtains the same wave equation for δB⊥. This means that the magnetic field lines are
“frozen-in” to the fluid volume. and their disturbances propagate together (cf. Figure 8).

Transverse fluctuation Oscillation

Figure 8. Transverse Alfvén wave propagating along the magnetic field. A resorting force is provided
by the tension of the disturbed magnetic lines.

The disturbance of the magnetic field lines also induces the compression of the energy
density δε ∼ δεmatt + B0 · δB and the pressure fluctuation δp ∼ δpmatt + B0 · δB. Therefore,
the velocities of sound modes are modified in RMHD. When the compression of the
magnetic field lines is in-phase (out-of-phase) to that of the fluid volume, the restoring force
becomes larger (smaller) as compared to the case without a magnetic field. Consequently,
the wave velocities are enhanced or reduced depending on the relative phases, so that the
sound modes split into the fast and slow magnetosonic waves (see, e.g., Ref. [250] for more
discussions). Their dispersion relations can be also obtained from the linearized MHD
equations in the same manner. The full linearlized equation will be a 6× 6 matrix equation,
determining all of the six dispersion relations after the diagonalization. The secular equation
will be a cubic equation for the squared frequency ω2 for the three pairs of the waves.

7.3. Helical Instabilities in the Chiral MHD

We found the six stable waves in RMHD in the above. It is interesting to see how the
CME affects those propagating modes. Each mode in RMHD is paired with another mode
propagating in the opposite direction with the same velocity. This degeneracy is, however,
resolved in the chiral MHD since the parity symmetry is broken by the axial chemical
potential. As a result, the dispersion relations could acquire different dispersion relations
depending on the propagation directions. The dispersion relations can be obtained by
diagonalizing the linearized equations in the same manner as above.
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The “phase diagram” of the linear modes are drawn in Figure 9 with respect to the
propagation direction θ and the axial chemical potential µA (with σ and uA being the Ohmic
conductivity and the Alfvén velocity). The phases are classified with respect to the imagi-
nary parts of the dispersion relations that appears at the linear order in the momentum. As
we increase µA in the Phase IIA and IIB, one of the paired waves exponentially grows in
time, while the other is damped out. The exponentially growing mode indicates a hydrody-
namic instability induced by the CME current. Moreover, the growing and damping modes
are found to be helicity eigenstates and carry opposite helicities [92]. Remarkably, this means
that a particular helicity mode is selectively excited in the chiral MHD. As expected, the
roles of the growing and damping helical modes are interchanged if we flip the sign of
the axial chemical potential. Namely, the excess of the R (L) fermionic chirality induces
the exponential grows of the R (L) helical waves as the mixture of the disturbances in the
magnetic field and the fluid velocity.

Figure 9. “Phase diagram” of the collective excitations in the chiral MHD with respect to the axial
chemical potential µA and the angle θ between the directions of the propagation and the magnetic
field (with σ and uA being the Ohmic conductivity and the Alfvén velocity ) [92].

This instability reminds us of the chiral plasma instability (CPI) that is an exponential
amplification of the magnetic field in the presence of the CME current [252,253] (see also
Refs. [36,37,37,99,100,102,103]). Here, the chiral anomaly is coupled to the fluid dynamics
as well as the magnetic field, so that the total helicity conversion can be extended with
the inclusion of the “fluid helicity” [254]. As in the CPI, one may expect the conversion of
the fermionic helicity to the fluid and magnetic helicities as the topological origin of the
instability. Recently, the instability was also found in Ref. [255]. (There is a disagreement
between the secular equations in Equation (61) of Ref. [95] and in Equation (14) of Ref. [92].
Seemingly, the overall sign of the anomalous term in Ref. [95] may be positive instead of
negative. This may be the reason why the authors did not find unstable modes.) This new
hydrodynamic instability deserves further study beyond the linear-mode analysis.

8. Conclusions and Future Prospects

We have reviewed the progresses in the theory of RMHD over the last decade. We
do not go into details about the applications of RMHD; instead, we provide the literature
pertinent to the applications of RMHD to relativistic heavy-ion collisions, astrophysics,
cosmology, and so on, so that the reader can follow the trails. We have structured the
discussions in a pedagogical manner so that this review could benefit the readers who
are not familiar with hydrodynamics. To derive the constitutive relations of RMHD up
to the first order in derivative expansion, we first employ a phenomenological approach
based on the entropy–current analysis (Section 2). In this construction, the Bianchi identity
is regarded as a conservation law for the magnetic flux, and the magnetic field is treated
as a leading-order quantity in the derivative expansion. At both the ideal and dissipa-
tive levels, we show how the presence of such a leading-order magnetic field gives rise
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to anisotropic constitutive relations. Then, we discussed the nonequilibrium statistical
operator technique (Section 3) that verifies the constitutive relations from the microscopic
theory. In this method, the phenomenological parameters (transport coefficients introduced
in the entropy–current analysis) are expressed as the low-energy limit of certain correlation
functions, the Green–Kubo formulas that connect the underlying quantum theories (or
QED) to macroscopic RMHD. In Section 4, we have discussed how this recent formulations
presented in Sections 2 and 3 are related to the conventional formulation of RMHD in the
literature. Based on this conventional view, we then used the kinetic theory to re-derive the
constitutive relations at the first order of derivatives by treating the EM fields as external
fields and evaluate the transport coefficients in a relaxation time approximation (Section 5).
By going beyond the relaxation time approximation, we also demonstrate how one can use
the perturbative QCD or QED to compute these transport coefficients (Section 6). Finally,
we considered the situation in which the parity is allowed to be violated (Section 7). This
brings new, non-dissipative, transport terms, such as the chiral magnetic effect, into the
constitutive relations, and leads to new types of wave modes and instabilities.

Certainly, the theory of RMHD has progressed significantly in the previous decade.
However, there are many challenges to be addressed in the future works. Here, are a couple
of them that, in our opinion, require further investigation.

(1) Spin hydrodynamics. One profound effect of the magnetic field is to polarize spin.
This naturally addresses the question of, in the situation where the spin can be a
quasi-hydrodynamic mode, how the formulation of RMHD is modified by the spin
degree of freedom. Quite recently, relativistic spin hydrodynamics have attracted
intensive discussions. It is theoretically very interesting and potentially applicable to
the study of spin transport phenomena in QGP or supernova matter. In fact, one of the
main motivations that drives the study of relativistic spin hydrodynamics is the recent
experimental breakthrough of the observation of the spin polarization in the vortical
QGP produced in heavy-ion collisions (see Refs. [256–260] and references therein).

In the absence of EM fields, the basic symmetries underlying spin hydrodynamics
are the translational and Lorentz symmetries, which give the conservation laws of
energy–momentum and angular momentum

∂µTµν = 0, (169)

∂µJ µρσ = ∂µ(Σµρσ + xρTµσ − xσTµρ) = 0, (170)

where J µρσ is the angular momentum tensor and Σµρσ is the spin current. Re-
arranging Equation (170) into the form

∂µΣµρσ = −2T[ρσ], (171)

shows that the spin current is not conserved but is sourced by the anti-symmetric part
of the energy–momentum tensor, representing the conversion of angular momentum
between spin and orbital components. The non-conservation of spin current ren-
ders spin density not a strict hydrodynamic variable. However, when the spin–orbit
coupling is weak (see Ref. [123] for a concrete analysis showing how the spin–orbit cou-
pling can be parametrically weak), the spin relaxation time can be parametrically large,
making spin density a quasi-hydrodynamic mode [122]. The spin hydrodynamics is
thus well formulated in this regime as a quasi-hydrodynamics [261] or Hydro+ [262].
A striking consequence of the spin–orbit coupling is the pseudo-gauge ambiguity in
defining the spin current, namely, a finite shift of Σµρσ

Σµρσ → Σµρσ −Φµρσ, (172)

is compensated by a corresponding change in Tµν

Tµν → Tµν + 1
2 ∂λ(Φλµν −Φµλν −Φνλµ), (173)
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leaving the conservation laws (169) and (171) preserved. Noticeably, choosing
Φµρσ = Σµρσ eliminates the spin current and results in a symmetric energy–momentum
tensor, called the Belinfante–Rosenfeld improved energy–momentum tensor [263–265].

Such pseudo-gauge ambiguity brings freedom of choosing different structures
for the spin current and energy–momentum tensor in constructing the spin hydro-
dynamics. Then, in a similar manner as we present in this article, one can construct
the spin hydrodynamics in an order-by-order analysis in the derivative expansion
(see, e.g., Refs. [122,124,266–280]). In particular, anisotropic constitutive relations arise
as in RMHD when there is a zeroth-order vector provided by a strong spin polariza-
tion [124]. When dynamical EM fields are present, it is worth looking into how we
can unify the frameworks of spin hydrodynamics and RMHD and clarify the resulting
new phenomena in such a unified formulation (see recent attempts in Refs. [281,282]
and also in Ref. [283] and references therein for non-relativistic cases). In this case, we
need to choose a pseudo-gauge (e.g., a totally antisymmetric spin current) and couple
Equations (169)–(171) with the magnetic flux conservation

∂µ F̃µν = 0, (174)

and work out a derivative expansion with an appropriate power counting scheme, as
we outlined in Sections 2 and 3.

(2) Kinetic theory and transport coefficient with the new formulation. As we demon-
strated in Sections 2 and 3, the formulation based on magnetic flux conservation
provides a new view on RMHD based on the symmetries of the system. Noting that
the hydrodynamics provide a universal description of low-energy behaviors of the
system, we expect that this formulation of RMHD should also be derived based on
the kinetic theory. Since the kinetic theory reviewed in Section 5 is based on the
conventional approach with background magnetic fields, it is an interesting problem
to reconstruct the kinetic description along the line of the recent formulation of RMHD
with dynamical magnetic fields.

In establishing such a kinetic theory, it is again crucial to consider the Bianchi
identity (174) as an additional equation of motion together with the energy–momentum
conservation law. Thus, the reformulated kinetic theory should be equipped with the
distribution function of photons as well as matters, and we need to clarify how we
can extract information of F̃µν based on the distribution functions. Expanding the
off-equilibrium part of the distribution function by generalizing the approaches in
Section 5, one may obtain the dissipative corrections to the constitutive relations. Once
this is established, one can extract values of all the transport coefficients by the use of
the resulting kinetic theory.

As for the computation of transport coefficients, we have already presented the
Green–Kubo formulas in terms of the correlation functions in the recent formulation
of RMHD. Thus, one can also compute the Green–Kubo Formulas (77) with field
theoretical techniques. In Ref. [284], such a calculation at a certain strong-coupling
regime is performed based on the holographic principle, but there is little discussion
about the perturbative evaluation at the weak-coupling regime in Ref. [105]. It is
worth working out the perturbative evaluation of the Green–Kubo Formulas (77) and
clarifying their relations to those obtained from the conventional approach partly
reviewed in Section 6.
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Appendix A. Electric Charges in MHD

In neutral plasmas, the electric field E in the fluid rest frame and the electric charge-
density fluctuation δJ0 are damped out in a finite time scale and are therefore not qualified
as hydrodynamic variables [92]. This can be shown in the following way. An electric field
E, induced by the charge-density fluctuation, obeys the Gauss’s law ∇ · E = δJ0/εe with
εe being a dielectric constant. Charges will be redistributed via an Ohmic current J = σE.
Plugging the Gauss’s law into the current conservation ∂µ Jµ = 0, we find

∂δJ0(t, x)
∂t

= −∇ · J(t, x) = − σ

εe
δJ0(t, x) . (A1)

Thus, the charge-density fluctuation is damped out in time as

δJ0(t, x) = δJ0(0, x) exp
(
− σ

εe
t
)

. (A2)

Plugging this solution back to the Gauss’s law, we find that the electric field is also
damped out in the same time scale.

Therefore, neither of them are qualified to be included in a set of hydrodynamic vari-
ables in the formulation of RMHD. Nevertheless, they can be induced in the dynamics and
should be expressed as functionals of hydrodynamic variables, i.e., constitutive relations.
On the other hand, the magnetic field persists in a plasma. This difference arises from the
presence of the current term in the Maxwell equation, which breaks the duality between
electric and magnetic fields.

Appendix B. Matching and Frame Conditions in Relativistic MHD

For the systems invariant under the charge-conjugation and parity transformations,
the most general tensor structures of the first-order dissipative corrections Tµν

(1) and F̃µν

(1) can
be written as

Tµν

(1) = δεuµuν − δp⊥Ξµν + δp‖b
µbν + 2h(µuν) + 2 f (µbν) + π

µν
⊥ , (A3)

F̃µν

(1) = 2δBb[µuν] + 2g[µuν] + 2b[µ`ν] + mµν . (A4)

We denote the derivative corrections as {δε, δp‖, δp⊥, hµ, f µ, π
µν
⊥ , δB, gµ, `µ, mµν} ∼

O(∂1). The off-equilibrium pressure correction, which is written as δp∆µν in the absence of
a magnetic field, is split into two terms due to the preferred orientation in a magnetic field.
The fourth term in Tµν

(1) is proportional to the familiar heat current hµ. The second-rank

tensors are symmetric π
µν
⊥ = π

νµ
⊥ and antisymmetric mµν = −mνµ in their Lorentz indices.

Those tensors are all transverse to both uµ and bµ, i.e., uµhµ = 0 = bµhµ, uµ f µ = 0 = bµ f µ,
uµπ

µν
⊥ = 0 = bµπ

µν
⊥ , uµgµ = 0 = bµgµ, uµ`µ = 0 = bµ`µ, and uµmµν = 0 = bµmµν. If some

of them, e.g., the heat current h, have longitudinal components, we can always decompose
them into the longitudinal and transverse parts as hµ = (Ξµα + uµuα − bµbα)hα = Ξµαhα +
{ (uαhα)uµ + (bαhα)bµ }. Only the first term provides an independent structure to the
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energy–momentum tensor, and the other terms between the braces can be absorbed by the
terms existing in Equation (A3).

In an off-equilibrium state, the local thermodynamic quantities as well as the flow
velocity and the magnetic field are not uniquely defined, but are subject to ambiguities
of the order of derivative [5,120,180,233,285–287]. The derivative corrections vanish as
the system approaches an equilibrium state, and those quantities reduce to the same
equilibrium values, which may be defined unambiguously by the expectation values of
the microscopic current operators in equilibrium statistical mechanics. We shall, therefore,
express the coefficients as

ε + δε = uαuβTαβ, p⊥ + δp⊥ = − 1
2

ΞαβTαβ, p‖ + δp‖ = +bαbβTαβ,

hµ = u(αΞµ

β)
Tαβ, f µ = −b(αΞµ

β)
Tαβ, π

µν
⊥ = (Ξ(µ

α Ξν)
β −

1
2

ΞµνΞαβ)Tαβ, (A5)

B + δB = −bµuν F̃µν, gν = −Ξν
αuµ F̃µα, `ν = −Ξν

αbµ F̃µα, mµν = 2Ξµ[αΞβ]ν F̃αβ.

The conserved currents may be parametrized by either set of variables before and
after the redefinition T → T′ = T + δT, uµ → u′µ = uµ + δuµ, H → H′ = H + δH, and
bµ → b′µ = bµ + δbµ with δT, δuµ, δH, δbµ ∼ O(∂1), where H =

√
−HµHµ. We examine

how those shifts change the constitutive relations. Under the redefinition of T, the scalar
quantities are transformed as, e.g., ε(T) → ε(T′) ∼ ε(T) + (∂ε/∂T)δT and so on, while
their derivative corrections as δε(T)→ δε(T′) ∼ δε(T) + O(∂2). A similar transformation
holds under the redefinition of H. Therefore, up to the first order in derivatives, the
redefinition induces a set of the shifts

ε + δε→ ε′ := ε +
∂ε

∂T
δT +

∂ε

∂H
δH + δε + O(∂2), (A6a)

p‖ + δp‖ → p′‖ := p‖ +
∂p‖
∂T

δT +
∂p‖
∂H

δH + δp‖ + O(∂2), (A6b)

p⊥ + δp⊥ → p′⊥ := p⊥ +
∂p⊥
∂T

δT +
∂p⊥
∂H

δH + δp⊥ + O(∂2), (A6c)

B + δB→ B′ := B +
∂B
∂T

δT +
∂B
∂H

δH + δB + O(∂2). (A6d)

We will neglect the second-order terms which are beyond the current working accuracy.
By using the transforms of the scalar quantities (A6), one can eliminate the off-equilibrium
quantities δε, δp‖, or δp⊥ in Tµν

(1) and δB in F̃µν

(1). It is customary to eliminate the off-
equilibrium energy density and magnetic field so that the equilibrium energy density ε and
B are maintained in the derivative expansion. Those demands can be achieved by adjusting
δT and δH so that ε = ε′ and B = B′ up to the second-order corrections, while the pressure
components remain while having the off-equilibrium contributions that correspond to the
bulk viscosities. These are the matching conditions for ε and B.

One can generalize this redefinition process to the case with multiple conserved
charges. If there are n conserved scalar quantities, one can maintain their equilibrium
quantities by the redefinitions of the n thermodynamic conjugate parameters, leaving the
components of pressures subject to off-equilibrium corrections.

Similarly, one can eliminate some of the dissipative currents by the redefinition of
zeroth-order vectors, uµ → u′µ = uµ + δuµ and bµ → b′µ = bµ + δbµ with δuµ, δbµ ∼
O(∂1). These shifts in the ideal constitutive relations (15) induce shifts of the first-order
derivative terms

hµ → h′µ = hµ + (ε + p⊥)δuµ + O(∂2), (A7a)

f µ → f ′µ = f µ − (p⊥ − p‖)δbµ + O(∂2), (A7b)

gµ → g ′µ = gµ + Bδbµ, (A7c)

`µ → ` ′µ = `µ + Bδuµ. (A7d)
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Making a choice of δuµ is simultaneously reflected in hµ and `µ, and so is making
a choice of δbµ in f µ and gµ. One traditional choice is the Landau–Lifshitz frame [5,287]
with δuµ = −hµ/(ε + p⊥), eliminating the heat current h′µ. In addition, we choose
δbµ = −gµ/B to eliminate g′µ. This is the frame used in Section 2.2.3:

Tµν

(1) = −δp′⊥Ξµν + δp′‖b
µbν + 2 f ′(µbν) + π

µν
⊥ , (A8a)

F̃µν

(1) = 2b[µ` ′ν] + mµν . (A8b)

One can make another possible choice with δuµ = −`µ/B. This is an analogue of the
Eckart frame [1], leading to

Tµν

(1) = −δp′⊥Ξµν + δp′‖b
µbν + 2h′(µuν) + 2 f ′(µbν) + π

µν
⊥ , (A9a)

F̃µν

(1) = mµν , (A9b)

where we chose the same δbµ as above. In this frame, the components of the first-order
electric field perpendicular to bµ have been eliminated from F̃µν

(1) at the price of the presence

of the heat current in Tµν

(1). It is also possible to eliminate f ′µ by choosing δb = f µ/(p⊥− p‖).

However, f µ appears in g′µ = gµ + B f µ/(p⊥ − p‖) in F̃µν

(1).
In case there is also a conserved number current Nµ = nuµ + νµ in the absence of

dynamical electromagnetic fields, the shift in uµ leads to a shift in νµ by

νµ → νµ + nδuµ + O(∂2). (A10)

One can choose δuµ = −νµ/n to eliminate νµ. Such a choice is called the Eckart
frame [1]. It is worth noting that the following combination is frame-choice independent:

νµ − n
ε + p

hµ → νµ − n
ε + p

hµ + O(∂2). (A11)

See more discussions in Refs. [120,233,285,286] for other possible frame choices.

Appendix C. Derivation of Equations (73a)–(73c)

We here present a derivation of Equation (73) by rewriting the ideal RMHD
Equation (72). For that purpose, we first call our attention to the thermodynamic rela-
tion βp⊥ = s− βε +HB. By using the definition of the conjugate variables, this relation
enables us to find the differential thermodynamic relation as

βdp⊥ = −(ε + p⊥)dβ + BdH, (A12)

from which we find a set of relations as

ε + p⊥ = −β
∂p⊥
∂β

, B = β
∂p⊥
∂H and ∇µ p⊥ = β−1[− (ε + p⊥)∇µβ + B∇µH

]
. (A13)

In addition, another thermodynamic relation ds = βdε − HdB enables us to find the
following Maxwell relation:

∂β

∂B
= −∂H

∂ε
. (A14)

Combining Equations (72) and (A12), we also find the divergence of the magnetic
flux as

∂µBµ = β−1Bν∇νβ. (A15)
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Thanks to these equations, we can simplify the leading-order equations of motion
for the thermodynamic parameters. For instance, the time-derivative of the local inverse
temperature β reads

Dβ =
∂β

∂ε
Dε +

∂β

∂B
DB

=
∂β

∂ε

[
− (ε + p⊥)θ + HBθ‖

]
− ∂H

∂ε
(−Bθ⊥)

=
∂β

∂ε

(
β

∂p⊥
∂β

θ + βH
∂p⊥
∂H θ‖

)
+ β

∂H
∂ε

∂p⊥
∂H θ⊥

= β

(
∂p⊥
∂ε
− B

∂H
∂ε

)
θ‖ + β

∂p⊥
∂ε

θ⊥,

(A16)

where we used Equations (72), (A13) and (A14), and simplified the result by using the
chain rule. This is Equation (73a) given in the main text. Likewise, we can compute DH to
derive Equation (73b) as

DH =
∂H
∂ε

Dε +
∂H
∂B

DB

=
∂H
∂ε

[
− (ε + p⊥)θ + HBθ‖

]
+

∂H
∂B

(−Bθ⊥)

=
∂H
∂ε

(
β

∂p⊥
∂β

θ + βH
∂p⊥
∂H θ‖

)
− β

∂H
∂B

∂p⊥
∂H θ⊥

= −β
∂p⊥
∂B

θ⊥ − β

(
∂p⊥
∂B
− B

∂H
∂B

)
θ‖.

(A17)

Furthermore, relying on the differential thermodynamic relation and Equation (A15),
we can also simplify the time-derivative of the fluid velocity as

Duν =
1

ε + p⊥

[
− ε + p⊥

β
∇νβ +

1
β

Bµ∇νHµ

]
− 1

ε + p⊥
(β−1HνBµ∇µβ + ∆ρ

νBµ∂µHρ)

= −β−1∇νβ +
1

ε + p⊥

[
β−1Bµ∇νHµ − Hνβ−1Bµ∇µβ− ∆ρ

νBµ∂µHρ

]
= −β−1∇νβ− 1

ε + p⊥

[
2β−1Bbµ∇[µHν] + θ‖HBuν

]
.

(A18)

This gives Equation (73c).

Appendix D. Viscous Coefficients and Inequalities

The viscous tensor in magnetic fields has been investigated in classic works [117,138],
and recently in Refs. [67,105,109,119,120] for relativistic systems. Those authors obtained
the same number of independent viscous coefficients, so that their viscous tensors are
expected to be equivalent. Here, we compare the viscous tensors in the literature and clarify
discrepancies in the inequalities that should be satisfied by the viscous coefficients.

The construction of the independent tensor structures is elaborated by Huang, Se-
drakian, and Rischke (HSR) in Section 2.2 of Ref. [119], providing useful building blocks
and a relativistic extension of the nonrelativistic theory in a classic textbook [117]. Therefore,
the result by HSR serves as a good starting point for comparisons to other works. Since the
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technical machinery has been already detailed there, we shall start with the result given in
Equation (39) of Ref. [119]:

Tµν

(1) = 2ηHSR
0

(
wµν − 1

3
∆µνθ

)
− ηHSR

1

(
bµbν +

1
2

Ξµν

)(
θ‖ −

1
2

θ⊥

)
−4
(

ηHSR
2 bαb(µΞν)β − ηHSR

3 Ξα(µbν)β
? + ηHSR

4 bαb(µbν)β
?

)
wαβ

−3ζHSR
‖ bµbνθ‖ +

3
2

ζHSR
⊥ Ξµνθ⊥ . (A19)

Here, we used our notations introduced in Section 2.2. In particular, note that θ =
θ⊥ + θ‖. Nevertheless, the above expression and definitions of the viscous coefficients are
exact duplicates of the result by HSR.

The tensors in the last two terms have nonvanishing traces in Equation (A19), while
the others are traceless. Therefore, the two ζHSR’s and the five ηHSR’s are called the bulk
and shear viscosities in HSR [119], respectively (see also Ref. [117]). The term with ηHSR

1 is
proportional to the expansion/compression rates θ‖,⊥. However, this term is a traceless
part of the viscous tensor, so that the fluid volume does not change as the expansion in the
parallel/perpendicular direction to the magnetic field is compensated by the compression
in the perpendicular/parallel direction. In this sense, this term was not regarded as a bulk
viscosity in HSR [119]. We will see that this term generates the cross viscosity ζ× discussed
in Section 2.2.

Now, by using the identity (28), one can arrange Equation (A19) into the form ex-
pressed with the tensor basis introduced in Equations (30) and (90). One can identify
the correspondences between the viscous coefficients introduced in Section 2.2 and in
HSR [119] as

η⊥ = ηHSR
0 , η‖ = 2(ηHSR

0 + ηHSR
2 ), ηH‖ = 2ηHSR

4 , ηH⊥ = 2ηHSR
3 , (A20)

ζ‖ = 3ζHSR
‖ +

(
4
3

ηHSR
0 + ηHSR

1

)
, ζ⊥ =

3
2

ζHSR
⊥ +

1
4

(
4
3

ηHSR
0 + ηHSR

1

)
,

ζ× = −1
2

(
4
3

ηHSR
0 + ηHSR

1

)
.

It is now clear that the cross viscosity ζ× was generated from the traceless terms
proportional to η0 and η1 in Equation (A19). The correspondences between the viscous coef-
ficients in HSR [119] and Hernandez and Kovtun (HK) [120] are available in Equation (B.1)
of HK [120]. Putting Equation (A20) together, the list of correspondences is expanded as

ηHK
⊥ = ηHSR

0 = η⊥ , (A21a)

η̃HK
⊥ = −2ηHSR

3 = −ηH⊥ , (A21b)

ηHK
‖ = ηHSR

0 + ηHSR
2 =

1
2

η‖ , (A21c)

η̃HK
‖ = −ηHSR

4 = −1
2

ηH‖ , (A21d)

ηHK
1 = −1

2
ηHSR

0 − 3
8

ηHSR
1 − 3

4
ζHSR
⊥ = −1

2
(ζ⊥ − ζ×) , (A21e)

ηHK
2 =

3
2

ηHSR
0 +

9
8

ηHSR
1 +

3
4

ζHSR
⊥ +

3
2

ζHSR
‖ =

1
2
(ζ‖ − 2ζ× + ζ⊥) , (A21f)

ζHK
1 = ζHSR

⊥ =
1
3
(2ζ⊥ + ζ×) , (A21g)

ζHK
2 = ζHSR

‖ − ζHSR
⊥ =

1
3
(ζ‖ + ζ× − 2ζ⊥) . (A21h)

We note that the viscous coefficients in the current paper agree with those in
Equations (3.9), (3.10), (3.13), and (3.14) of Grozdanov, Hofman, and Iqbal (GHI) [105]
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up to conventions in the signs and factors. Further correspondences to the conventions
in Ref. [67] are discussed in the appendix of HK [120]. The viscosities were computed
in external weak magnetic fields by Li and Yee (LY) [58]. Compared with Equation (A5)
therein, one finds the correspondences

ηLY = ηHSR
0 + ηHSR

2 = η‖, ζLY = 3ζHSR
‖ +

4
3

ηHSR
0 + ηHSR

1 = ζ‖, (A22)

ζ ′LY = −2
3

ηHSR
0 − 1

2
ηHSR

1 = ζ×.

All three coefficients quantify the responses along the external magnetic field.
By the use of the above identifications, the somewhat involved inequalities in

Equation (B.2) of HK [120] can be simplified as

η⊥ ≥ 0 , η‖ ≥ 0 , ζ⊥ ≥ 0 , ζ‖ + ζ⊥ + 2ζ× ≥ 0 , ζ‖ζ⊥ − ζ2
× ≥ 0 . (A23)

As mentioned below Equation (32), one may remove one inequality ζ‖ ≥ 0 from the
list (32), or putting it differently, one can show that ζ‖ ≥ 0 when the two inequalities ζ⊥ ≥ 0
and ζ‖ζ⊥ − ζ2

× ≥ 0 are satisfied. Therefore, an essential difference from Equation (32) is
only the existence of the second-last inequality, ζ‖ + ζ⊥ + 2ζ× ≥ 0. This inequality can
be, however, deduced from the others in Equation (A23), as follows. We can immediately
show that (ζ‖ + ζ⊥)

2 − (2ζ×)2 = (ζ‖ − ζ⊥)
2 + 4(ζ‖ζ⊥ − ζ2

×) ≥ 0. Since we have ζ‖,⊥ ≥ 0,
we find that ζ‖ + ζ⊥ + 2ζ× ≥ 0, regardless of the sign of ζ×. This proof suggests that the
fourth inequality in Equation (A23), and thus in Equation (B.2) of HK [120], is redundant.
The minimal list of the inequalities is given by

η⊥ ≥ 0 , η‖ ≥ 0 , ζ⊥ ≥ 0 , ζ‖ζ⊥ − ζ2
× ≥ 0 . (A24)

The inequality ζ⊥ ≥ 0 can be alternatively replaced by the other one, ζ‖ ≥ 0.
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