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Abstract: The RSA (Rivest–Shamir–Adleman) asymmetric-key cryptosystem is widely used for
encryptions and digital signatures. Let (n, e) be the RSA public key and d be the corresponding
private key (or private exponent). One of the attacks on RSA is to find the private key d using
continued fractions when d is small. In this paper, we present a new technique to improve a small
private exponent attack on RSA using continued fractions and multicore systems. The idea of the
proposed technique is to find an interval that contains φ(n), and then propose a method to generate
different points in the interval that can be used by continued fraction and multicore systems to
recover the private key, where φ is Euler’s totient function. The practical results of three small
private exponent attacks on RSA show that we extended the previous bound of the private key that
is discovered by continued fractions. When n is 1024 bits, we used 20 cores to extend the bound of
d by 0.016 for de Weger, Maitra-Sarkar, and Nassr et al. attacks in average times 7.67 h, 2.7 h, and
44 min, respectively.

Keywords: continued fractions; private exponent attack; RSA; Wiener’s attack; integer factorization;
multicore systems

1. Introduction

In 1978, Rivest, Shamir and Adleman [1] proposed the first asymmetric-key cryptosys-
tem (RSA) for encryptions and digital signatures. Its security is based on the difficulty of
factoring a large integer n = p1 p2 that is a product of two large prime numbers p1 and
p2, with p1 > p2, of the same bit-sizes, i.e., p2 < p1 < 2p2. Although there is a quantum
algorithm that factors integers in polynomial time [2], there is no polynomial time algorithm
for factoring integers in classical computers.

The RSA encryption process of a message x is computing xe (mod n), where (n, e)
is the RSA public key. The RSA decryption process of the ciphertext y is computing yd

(mod n), where d is the private key and satisfies that ed − 1 = kφ(n) for some integer
k, where φ(n) = (p1 − 1)(p2 − 1) is Euler’s totient function. The RSA encryption and
decryption processes take times O(log e log2 n) and O(log d log2 n), respectively.

In order to speed up the decryption process, one might be tempted to use a small
private exponent d = nδ,, i.e., δ is small. Wiener [3] showed that if d < 1

3 n1/4, i.e., δ ≤ 1/4,
then d is one of the denominators of the convergents of the continued fraction expansion of
e
n , and thus RSA is insecure. Boneh and Durfee [4] used the lattice reduction to improve
the bound of d to be n0.292, where their method is based on Coppersmith’s [5] technique to
find small roots of modular polynomial equations.

Many other strategies [6–10] for improving the bound of d were inspired by Wiener’s
result. They mainly try to find an approximation of φ(n) better than n or to find a better
lattice to recover large d.

For example, de Weger [6] used n + 1− 2
√

n as an estimation of φ(n) to recover d
when δ < 3/4 − β, where p1 − p2 = nβ, 0.25 < β ≤ 0.5. Maitra and Sarkar [9] used

Symmetry 2022, 14, 1897. https://doi.org/10.3390/sym14091897 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14091897
https://doi.org/10.3390/sym14091897
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-8137-7939
https://orcid.org/0000-0002-5550-3372
https://orcid.org/0000-0002-0703-5826
https://orcid.org/0000-0001-9448-6168
https://doi.org/10.3390/sym14091897
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14091897?type=check_update&version=3


Symmetry 2022, 14, 1897 2 of 13

n + 1− 3
√

2
2
√

n as an estimation of φ(n) to recover d when |2p2 − p1| is small. Note that
if p1 − p2 = nβ, 0 ≤ β ≤ 0.25, then Fermat’s factoring method [6,11–13] factorizes n in
polynomial time.

In order to unify small private exponent attacks on RSA and to determine a universal
attack using continued fractions or lattices, the authors in [14,15] proposed concepts of
the Wiener and Coppersmith intervals using continued fractions and lattices, respectively.
An integer interval I is called Wiener’s interval if each m ∈ I satisfies Wiener’s attack, i.e.,∣∣∣ e

m −
k
d

∣∣∣ < 1
2d2 . While an interval I is called Coppersmith’s interval if each m ∈ I satisfies

that the tuple (u0, v0) = (k, φ(n)−m) is a root of the polynomial F(u, v) = uv + mu + 1
(mod e).

In this paper, we are interested in improving the bound of d by:

1. Proposing an interval I that contains φ(n), Section 3. The proposed interval is not
necessary a Wiener or Coppersmith interval. It is sufficient to find an approxima-
tion m ∈ I of φ(n) such that

∣∣∣ e
m −

k
d

∣∣∣ < 1
2d2 , i.e., Wiener’s attack using continued

fraction succeeds.
2. Proposing a new strategy to search for m ∈ I such that

∣∣∣ e
m −

k
d

∣∣∣ < 1
2d2 .

3. Using multicore systems to accelerate finding m ∈ I such that
∣∣∣ e

m −
k
d

∣∣∣ < 1
2d2 . The

interval I is divided into subintervals of the same length approximately. Then each
core searches for such m in one subinterval. We choose that the number of subintervals
is equal to the number of available cores.

We use the proposed strategy to study practically the possibility of attacking RSA
when d = nδ <

√
n. Estimating a small interval that contains φ(n) is not simple. Therefore,

we estimate the interval based on some conditions on the primes factors of n as we will see
in Section 3. The practical study of the proposed method shows that we succeed to factor n
with δ greater than previously discovered using continued fractions.

The organization of this paper is as follows. Section 2 includes a brief background on
continued fractions and a review of some results on small private exponent attacks on RSA.
In Section 3, we propose three intervals that contain φ(n) for three attacks on RSA. Each
attack has different conditions on the prime factors p1 and/or p2. In Section 4, we present a
new technique to search for m in the estimated intervals to find a good approximation of
φ(n). Section 5 includes using multicore systems to study practically how the proposed
technique can improve three attacks on RSA, i.e., extend the bound of δ in three attacks.
The theoretical study of the complexity of the proposed attacks is presented in Section 6.
The conclusion and future works are given in Sections 7.

2. Preliminaries

This section presents a definition of continued fractions, how to calculate continued
fractions and some theorems and lemmas necessary in this paper.

Given a non-negative rational number r, a (finite) continued fraction expansion [16,17]
of r (or simply we write CF (r)) is an expression of the form:

r = r1 +
1

r2 +
1

r3+···+ 1
rs

.

This expansion is denoted by s− tuple of non-negative integers [r1, r2, . . . , rs].
The following steps are a polynomial time algorithm [18] of order O(log2y) for com-

puting a unique CF (r) for the rational number r = x
y , where x < y are two positive integers

such that gcd(x, y) = 1 :

• r0 = x/y.
• Compute ri =

1
ri−1−bri−1c

, 1 ≤ i ≤ s, where s ≤ 2 log y is the smallest value of i such
that bcic = ci.
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• Return [r1, r2, . . . , rs], where rs > 1.

The CF (r) is infinite in case of r is irrational number, i.e.,

r1 +
1

r2 +
1

r3+···+ 1
...

.

In this case, we write the expansion as [r1, r2, . . . ].

Theorem 1 ((Legendre) [19]). Let λ be a real number, and u, v be two positive integers such that
gcd(u, v) = 1. If ∣∣∣λ− u

v

∣∣∣ < 1
2v2 ,

then u
v is a convergent of CF (λ).

Lemma 1 ([20,21]). If n is a product of two primes p1 and p2 of the same size, then n + 1−
3
√

2
2
√

n < φ(n) < n + 1− 2
√

n.

Theorem 2 ([6]). Let n = p1 p2 be a product of two primes p1, p2 of the same size, with p1 > p2.
Suppose that 1 < e, d < φ(n) satisfy ed ≡ 1 (mod φ(n)) and d = nδ. Given n and e, the integer
n can be factored in polynomial time in log n if

δ <
3
4
− β using continued fraction (1)

δ <
1
6
(4β + 5)− 1

3

√
(4β + 5)(4β− 1) using lattice (2)

where p1 − p2 = nβ.

Proposition 1 ([9]). Suppose that l is a positive integer, and n = p1 p2 is a product of two primes

p1 and p2. If p2 > 2l+2
4l+1 p1, then

∣∣∣ 3√
2

√
n− (p1 + p2)

∣∣∣ < l(2p2−p1)
2

( 3√
2
+2)
√

n
.

Theorem 3 ([9]). Let l be a positive integer, and n = p1 p2 be a product of two primes p1 and p2
with p2 > 2l+2

4l+1 p1, 2p2 − p1 = nθ , and d = nδ. Then n can be factored in polynomial time in
log n when

δ <
3
4
− θ − τ (3)

where 2τ > (log 4l
3√
2
+2

)( 1
log n ).

Theorem 4 ([14]). Let (n = p1 p2, e), and d = nδ be the public and private keys of RSA, respec-
tively, where p1 > p2 and 2p1 < n− 9

4
√

n. If p0 ≥
√

n is an approximation for p1 such that

|p1 − p0| ≤
1
8

nα, α ≤ 1
2

, δ <
1− α

2
(4)

Then [n + 1− λ1, n + 1− λ2] is a Wiener’s interval for (n, e), where

λ1 =



p0 +
n
p0

+ 1
8 nα, p0 ≤ p1;

p0 +
n

p0− 1
8 nα

, p1 ≤ p0 and
√

n ≤ p0 − 1
8 nα;

2
√

n + 1
8 nα, p1 ≤ p0 and p0 − 1

8 nα <
√

n.
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λ2 =



p0 +
n

p0+
1
8 nα

, p0 ≤ p1;

n
p0

+ p0 − 1
8 nα, p1 ≤ p0 and

√
n ≤ p0 − 1

8 nα;

√
n + n√

n+ 1
8 nα

, p1 ≤ p0 and p0 − 1
8 nα <

√
n.

3. Estimation of φ(n)

The main problem of using CFs in small private exponent attacks of RSA is to find
a good approximation of φ(n) to use it in Theorem 1. In this section, we estimate an
interval I that contains φ(n), i.e., determine the lower and upper bounds of φ(n). In fact,
estimating a small interval that contains φ(n) is not easy. It is known that computing φ(n)
is computationally equivalent to factoring n. Thus, we try to estimate I based on some
conditions on the prime factors p1 and p2 of n.

In the following, we consider three cases for the prime factors p1 and p2 :

Attack 1: In [6], if p1 − p2 = nβ, 0.25 ≤ β ≤ 0.5, then

n + 1−
√

n2β + 4n ≤ n + 1−
√
(p1 − p2)2 + 4n

= n + 1− (p1 + p2) = φ(n)

< n− 2
√

n

Thus,
I = [n + 1−

√
n2β + 4n, n− 2

√
n].

Attack 2: Using Proposition 1 and Theorem 3 if for a positive integer l, 2l+2
4l+1 p1 and 2p2 −

p1 = nθ , δ < 3
4 − θ − τ, 2τ > (log 4l

3√
2
+2

)( 1
log n ), then

∣∣∣∣∣3
√

2
2
√

n− (p1 + p2)

∣∣∣∣∣ < l(2p2 − p1)
2

( 3
√

2
2 + 2)

√
n

Therefore,

n + 1− 3
√

2
2
√

n < φ(n) < n + 1− 3
√

2
2
√

n +
l(2p2 − p1)

2

( 3
√

2
2 + 2)

√
n

It is clear that if l
3
√

2
2 +2

< nε, for a small value ε, then

I = [n + 1− 3
√

2
2
√

n, n + 1− 3
√

2
2
√

n + n2θ−0.5+ε].

Attack 3: Based on the result in [22], an approximation p0 of the prime factor p1 may be
obtained by some expectations in side-channel attacks. In [14], if p2 < p1 < 2p2 and p0 be
an approximation of the prime factor p1 where |p1 − p0| ≤ 1

2 nα, then φ(n) can be estimated
to be in the interval

I = [n + 1− (p0 +
n
p0

)− 1
2

nα, n + 1− (p0 +
n
p0

) +
1
2

nα].

The proof is as follows:
Let p1 = cn1/2. Then p2 = 1

c n1/2, where 1 < c <
√

2. We have p1 + p2 = c2+1
c n1/2.

Since |p1 − p0| ≤ 1
2 nα, we have either p0 ≤ p1 ≤ p0 +

1
2 nα or p0 − 1

2 nα ≤ p1 ≤ p0.
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If p0 ≤ p1 ≤ p0 +
1
2 nα, then p0√

n ≤ c ≤ p0+
1
2 nα
√

n . Therefore,

p0 +
n
p0
≤ p1 + p2 ≤ p0 +

1
2

nα +
n

p0 +
1
2 nα

.

Furthermore, if p0 − 1
2 nα ≤ p1 ≤ p0, then p0− 1

2 nα
√

n ≤ c ≤ p0√
n . Therefore,

p0 −
1
2

nα +
n

p0 − 1
2 nα
≤ p1 + p2 ≤ p0 +

n
p0

.

Therefore, either p0 ≤ p1 ≤ p0 +
1
2 nα or p0 − 1

2 nα ≤ p1 ≤ p0, we have

|p1 + p2 − (p0 +
n
p0

)| ≤ 1
2

nα.

Thus,

I = [n + 1− (p0 +
n
p0

)− 1
2

nα, n + 1− (p0 +
n
p0

) +
1
2

nα].

4. The Proposed Strategy

In this section, we propose a new strategy to search for m ∈ I, such that
∣∣∣ e

m −
k
d

∣∣∣ < 1
2d2 .

In general, the proposed interval I = [a, b] that contain φ(n) are large. Since I is large, it is
not feasible in polynomial time to test all integers in I. The main problem is to determine
the number of tested points, i.e., how many points are sufficient to find φ(n) or to stop
the search. Testing a fixed number L of points in I has a problem: if L is small, then we
may not find the solution. Otherwise, i.e., if L is very large, then the distance between two
consecutive points may be small and the time to find a solution may be large if the solution
is in the last parts of I. For this reason, we propose a new method to generate test points in
I as follows (see Algorithm 1):

We first test whether k/d is a convergent of CF (e/a) or CF (e/b). If k/d is not a
convergent of CF (e/a) or CF (e/b), we set the length c = b− a, x1 = a, x2 = x1 + c, and
then we repeat taking x as the midpoint between x1 and x2, i.e., x = (x1 + x2)/2 and check
whether k/d is a convergent of CF (e/x). If not, we repeat the previous steps with the
length c = c/2, change x1 to be x2 and x2 to be x1 + c until the midpoint x is greater than b.
For each new midpoint x, the counter is increased by 1 as long as it does not exceed the
maximum number of iterations L. The loop is terminated either by:

1. Finding a solution, Lines 19–20 in Algorithm 1.
2. Exceed the maximum number of generated test points L, Line 13 in Algorithm 1. This

number can be replaced by a maximum time to find a solution.
3. The number of round i, i.e., number of iterations in the first while loop (Line 13 in

Algorithm 1), is i > blog2(b− a)c, i.e., c ≤ 1. In this case, we exhausted most points
in the interval and the total number of tested points is about

2 +
blog2(b−a)c

∑
i=0

2i

which is large when b− a is large.

Figure 1 shows the idea of generating uniformly distributed 2i test points in I for a
round i, where c = b(b− a)/2ic, i ≥ 0.

For example, let n = 802117 = 761 ∗ 991 be an RSA modulus. We have I = [800218,
800326]. Figure 2 shows the generated test points in I for rounds i = 0, 1, and 2, i.e., we
repeat the second while loop (Lines 17–25) of Algorithm 1 three times i = 0, 1, 2. In Figure 3,
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we show the generation of the first fifty-five test points in the first 6 rounds (the sixth round
is not completed).

Figure 1. generating test points in a round i.

x1 x2

800218 800225 800232 800239 800246 800253 800260 800267 800274 800281 800288 800295 800302 800309 800316 800323

x1 x3 x2

800218 800225 800232 800239 800246 800253 800260 800267 800274 800281 800288 800295 800302 800309 800316 800323

x1 x4 x3 x5 x2

800218 800225 800232 800239 800246 800253 800260 800267 800274 800281 800288 800295 800302 800309 800316 800323

x1 x6 x4 x7 x3 x8 x5 x9 x2

800218 800225 800232 800239 800246 800253 800260 800267 800274 800281 800288 800295 800302 800309 800316 800323

Figure 2. Generating test points in I = [800218, 800323], with rounds 0, 1, and 2.

Figure 3. The scatter of test points.
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Algorithm 1: Search for d

1 Input: RSA public key (e, n), an interval I = [a, b], where φ(n) ∈ I, and a
maximum number L of points.

2 Output: the private exponent d, or 0.
3 Begin
4 if k/d is a convergent of CF (e/a) then
5 return d
6 else
7 if k/d is a convergent of CF (e/b) then
8 return d
9 else

10 i = 0
11 c = b− a
12 counter = 0
13 while counter < L and c > 1 do
14 x1 = a
15 x2 = x1 + c
16 x = b(x1 + x2)/2c
17 while x < b and counter < L do
18 counter = counter + 1
19 if k/d is a convergent of CF (e/x) then
20 return d
21 end if
22 x1 = x2
23 x2 = x1 + c
24 x = b(x1 + x2)/2c
25 end while
26 c = bc/2c
27 i = i + 1
28 end while
29 return 0 – not found
30 end if
31 end if
32 end

5. Implementation

In this section, we present the implementation of the proposed attack. The implementa-
tion is written in C/C++, compiled with GNU C++ Compiler, and run on an Intel(R) Xeon(R)
E5645 CPU 2.40GHz running the Ubuntu operating system. We used GMP package [23], a
free library for arbitrary precision arithmetic, and OpenMP (Open Multi-Processing) [24] to
support multiprocessing programming in C.

The implementation considers the three attacks described in Section 3. If φ(n) is
expected to be in an interval I = [a, b], then we distribute I on 20 threads. Let S = {a0 =
a, a1, . . . , a20 = b} be the set of end points of the 20 sub-intervals of [a, b]. Then thread
number i, 1 ≤ i ≤ 20, independently runs Algorithm 1 on the sub-interval [ai−1, ai[. The
size of the RSA modulus n conducted in the experimental study was 1024 bits, where each
prime factor has 512 bits and was generated randomly. For most studied cases, the number
of tested n is 100. The maximum value of test points was L = 107.

The First Attack: We consider the first attack in Section 3. We assume that e ≈ n,
d = nδ and p1− p2 = nβ, i.e., φ(n) ∈ [n+ 1−

√
n2β + 4n, n+ 1− 2

√
n]. Based on Equations

(1) and (2), we study the performance of using the proposed technique to attack RSA when
β in the range 0.36 ∼ 0.5. For each selected value of β, we study the possibility of attack for
different values of δ.
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Table 1 shows the average execution time and the (ceiling of) the average number of
tested points of running the attack using single core and 20-cores. For β = 0.5, 0.46, 044, 0.4,
and 0.36 we study δ in the ranges 0.256∼0.268, 0.296∼0.308, 0.316∼0.328, 0.356∼0.368,
0.396∼0.408, respectively. All values of δ in the table are greater than the bound of de
Weger [6] using continued fractions, Equation (1). This means that the proposed method
using continued fractions and 20 cores succeeded to extend the bound of d. Furthermore,
the results in the table show that δ is in the range of de Weger’s results [6] using lattice,
Equation (2) The parallel (multicore) implementation of the attack speeds up the sequential
implementation by 18.1 on average.

Table 1. Performance of the first attack (p1 − p2 = nβ and d = nδ) using 20 cores where t is the
average of execution time (seconds) and l is the ceiling of the average number of test points.

β δ
Nu. One Thread 20 Threads Speedup

Samples (in Time)

0.5

0.256 100 t = 0.043, l =94 t = 0.002, l = 4 21.5
0.26 100 t = 7.77, l = 15877 t = 0.42, l = 856 18.5

0.264 100 t = 2002.6, l = 3097665 t = 111.7, l = 112900 17.9
0.268 20 - t = 39739.6, l = 500482

0.46

0.296 100 t = 0.063, l = 118 t = 0.003, l = 7 21
0.3 100 t = 10.854, l = 23867 t = 0.5781, l = 1153 19

0.304 100 t = 3296.8, l = 3660146 t = 173.93, l = 137063 18.9
0.308 20 - t = 57539.5, l = 555210

0.44

0.316 100 t = 0.031, l = 63 t = 0.002, l = 4 15.5
0.32 100 t = 5.22, l = 11104 t = 0.28, l = 576 18.6

0.324 100 t = 1000.23, l = 1406319 t = 56.68, l = 57944 17.6
0.328 20 - t = 13288.79, l = 172930

0.4

0.356 100 t = 0.034, l = 71 t = 0.002, l = 4 17
0.36 100 t = 5.024, l = 12147 t = 0.28, l = 574 17.9

0.364 100 t = 1926.7, l = 2158924 t = 115.7, l = 85716 16.6
0.368 20 - t = 10148.54, l = 130304

0.36

0.396 100 t = 0.069, l = 68 t = 0.004, l = 3 17.25
0.4 100 t = 5.37, l = 12993 t = 0.29, l = 605 18.5

0.404 100 t = 1319.3, l = 2102342 t = 77.32, l = 79480 17.0
0.408 20 - t = 17501.6, l = 222104

The Second Attack: We consider the second attack in Section 3. We assume that e ≈ n,
d = nδ and 2p2 − p1 ≤ nθ , i.e., φ(n) ∈ [n + 1− 3

√
2

2
√

n, n + 1− 3
√

2
2
√

n + n2θ−0.5+ε]. Based
on Equation (3), we study the performance of using multicore systems to attack RSA when
θ in the range 0.36 ∼ 0.46. For each selected values of θ, we study the possibility of attack
for different values of δ.

Table 2 shows the average execution time and the (ceiling of the) average number of
tested points of running the attack using single core and 20-cores. For θ = 0.46, 0.44, 0.4,
and 0.36, we study δ in the ranges 0.296∼0.308, 0.316∼0.328, 0.356∼0.368 and 0.396∼0.408,
respectively.

All values of δ in the table are greater than the bound of Maitra-Sarkar [9] using
continued fractions, i.e., δ < 3/4− θ − τ. This means that the proposed method using
continued fractions and 20 cores succeeded to extend the bound of d. The parallel (multicore)
implementation of the attack speeds up the sequential implementation by 17.3 on average

The Third Attack: we consider the third attack in Section 3. We assume that an
approximation p0 of p1 is obtained where |p0 − p1| < 1

2 nα, i.e.,

φ(n) ∈ [n + 1− (p0 +
n
p0

)− 1
2

nα, n + 1− (p0 +
n
p0

) +
1
2

nα].

We study the performance of using multicore systems to attack RSA when α > 0.25, and
and δ as in Equation (4). We choose α in the range 0.36∼0.46. For each selected value of α,
we study the possibility of the attack for different values of δ.
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Table 2. Performance of the second attack (2p2 − p1 = nθ and d = nδ) using 20 cores where t is the
average execution time (seconds) and l is the ceiling of the average number of test points.

θ δ
Nu. One Thread 20 Threads Speedup

Samples (in Time)

0.46

0.296 100 t = 0.035, l = 53 t = 0.002, l = 4 17.5
0.3 100 t = 3.69, l = 6639 t = 0.23, l = 486 16.0

0.304 100 t = 973.7, l = 394798 t = 61.38, l = 15819 15.8
0.308 20 - t = 20716.3, l = 266455

0.44

0.316 100 t = 0.020, l = 38 t = 0.001, l = 2 20
0.32 100 t = 1.91, l = 4488 t = 0.10, l = 207 19.1

0.324 100 t = 543.2, l = 213884 t = 30.19, l = 7812 17.9
0.328 20 - t = 7901.3, l = 101421

0.4

0.356 100 t = 0.019, l = 34 t = 0.001, l = 2 19
0.36 100 t = 1.50, l = 3096 t = 0.09, l = 202 16.6

0.364 100 t = 501.4, l = 220657 t = 27.43, l = 7077 18.2
0.368 20 - t =6355.7 l = 82008

0.36

0.396 100 t = 0.019, l = 37 t = 0.001, l = 2 19
0.4 100 t = 1.52, l = 2551 t = 0.10, l = 203 15.2

0.404 100 t = 464.9, l = 311345 t = 32.83, l = 8331 14.1
0.408 20 - t = 4624.7, l = 58978

Table 3 shows the average execution time and the (ceiling of the) average number of tested
points of running the attack using single core and 20-cores. For α = 0.46, 0.44, 0.4, and 0.36 we
study δ in the ranges 0.274∼0.286, 0.284∼0.296, 0.304∼0.316, and 0.324∼0.336, respectively.

All values of δ in the table are greater than the bound of Equation (4) using continued
fractions. This means that the proposed method using continued fractions and 20 cores
succeeded to extend the bound of d. The parallel (multicore) implementation of the attack
speeds up the sequential implementation by 14.9 on average.

Table 3. Performance of the third attack ( p2 < p1 < 2p2, |p0 − p1| = 1
2 nα and d = nδ) using 20 cores

where t is the average of execution time (seconds) and l is the ceiling of the average number of
test points.

α δ
Nu. One Thread 20 Threads Speedup

Samples (in Time)

0.46

0.274 100 t = 0.013, l = 26 t = 0.001, l = 2 13
0.278 100 t = 0.44, l = 1121 t = 0.03, l = 53 14.6
0.282 100 t = 91.64, l = 57602 t = 5.189, l = 1342 17.6
0.286 20 - t = 966.6, l = 13539

0.44

0.284 100 t = 0.012, l = 21 t = 0.001, l = 2 12
0.288 100 t = 0.28, l = 610 t = 0.02 l = 35 14
0.292 100 t = 250.3, l = 144888 t = 13.49, l = 3480 18.5
0.296 20 - t = 3324.8, l = 41458

0.4

0.304 100 t = 0.015, l = 31 t = 0.001, l = 2 15
0.308 100 t = 0.50, l = 1441 t = 0.03, l = 71 16.6
0.312 100 t = 144.0, l = 97241 t = 8.39, l = 2185 17.1
0.316 20 - t = 1818.5, l = 24390

0.36

0.324 100 t = 0.012, l = 25 t = 0.001, l = 2 12
0.328 100 t = 0.27, l = 515 t = 0.02, l = 34 13.5
0.332 100 t = 58.12, l = 36556 t = 3.81, l = 997 15.2
0.336 20 - t = 4342.7, l = 52888

Table 4 shows the upper bound of δ for the proposed attacks and previous attacks [6,9,14]
using continued fractions. The proposed attack raises the previous bound of δ by η. As we
can see from Tables 1–3, the value of η depends on the number of generated test points in I.
The execution times required to complete the attacks depend on the number of cores, type
of attack, and η. For example, if η = 0.016, then the execution time to find the private key
for the third attack (Table 3) is 44 min on average, while the execution times are 7.67 h for
the first attack (Table 1) and 2.7 h for the second attack (Table 2).
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Table 4. Comparison in the upper bound of δ between the proposed and previous attacks using
continued fractions, where η is a small positive number.

Conditions of Attacks Bound of δ Our Result

|p1 − p2| ≤ nβ [6]
0.25 ≤ β ≤ 0.5 δ < 3/4− β δ < 3/4− β + η

|2p2 − p1| ≤ nθ [9]
0.25 ≤ θ ≤ 0.5 δ < 3/4− θ δ < 3/4− θ + η

p0 ≥
√

n is an approximation for p1 [14]
|p1 − p0| ≤ 1

8 nα, α ≤ 1
2 δ < 1−α

2 δ < 1−α
2 + η

6. Complexity Analysis

Let m0 be an approximation for φ(n). In the following lemma, we show the relationship
between the difference m0 − φ(n) and the upper bounds of e and d.

Lemma 2. Let n be a positive composite integer, e = nξ , d = nδ and e, d < φ(n), where
ed = 1 + kφ(n). If |m− φ(n)| = nγ and 8(1 + ε) < n2−(ξ+γ+2δ) where m, φ(n) > n/2, then
k/d is a convergent of CF (e/m), i.e., ∣∣∣∣ e

m
− k

d

∣∣∣∣ < 1
2d2

Proof. We have ∣∣∣∣ e
m
− k

d

∣∣∣∣ = ∣∣∣∣1 + kφ(n)− km
md

∣∣∣∣
<

∣∣∣∣2k(nγ + 1)
nd

∣∣∣∣ (5)

Also, we have k = ed−1
φ(n) < 2ed

n , k < 2nξ+δ−1. Therefore, Equation (5) leads to∣∣∣∣ e
m
− k

d

∣∣∣∣ < 4nξ−2(nγ + 1)

< 4(1 + ε)nξ+γ−2

<
1
2

n−2δ =
1

2d2

Suppose that φ(n) is in an interval [a, b], i.e., a ≤ φ(n) ≤ b. We show, in the following
theorem, the relationship between the length b− a of this interval and the running time to
retrieve the private exponent d.

Theorem 5. Let (n, e = nξ) be a public key of RSA and d = nδ be the corresponding private
exponent. Suppose that we can estimate φ(n) ∈ [a, b] for two known values a and b and we divide
[a, b] into S− 1 subintervals of the same size such that

b− a
S
≤ 1

4(1 + ε)
n2−(ξ+2δ)

for a small value ε. Then d can be obtained in time in l log n.
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Proof. Let {m1, m2, · · · , mS} be points of a subdivision for the interval [a, b] where mi+1 −
mi = b b−a

S c for i = 1, 2, . . . , S− 1. We test for every mi whether k/d is a convergent of
CF (e/mi). Let mi0 satisfies that∣∣mi0 − φ(n)

∣∣ ≤ |mi − φ(n)|, 1 ≤ i ≤ S.

Thus, |mi0 − φ(n)| ≤ b b−a
2S c. Thus, we have

|mi0 − φ(n)| ≤ b− a
2S

≤ 1
8(1 + ε)

n2−(ξ+2δ)

Let b−a
2S = nγ, for some real number γ. Then, we have 8(1+ ε) < n2−(ξ+γ+2δ). By Lemma 2,

k/d is a convergent of CF (e/mi0). Since computing CF (e/mi) takes a polynomial time in
log n, so to test all e/mi, i = 1, 2, · · · , S, we need a time of order S log n.

Theorem 5 shows that the complexity of the proposed method depends on the size of
S besides the length of I.

7. Conclusions and Future Works

The RSA cryptosystem is used in the most popular security products and protocols
in use today. We have presented a new technique to improve a small private exponent
attack on RSA. We have successfully raised the upper bound of the private exponent d by
η = 0.016 using continued fractions and multicore systems for three small private exponent
attacks in RSA: de Weger [6], Maitra-Sarkar [9], and Nassr et al. [14]. The average execution
times for the attacks are 7.67 h, 2.7 h, and 44 min, respectively. These results were obtained
using 20 cores and for n with 1024 bits. The execution time and the value of η can be
improved by

1. Finding a shorter interval for φ(n),, i.e., finding better lower and upper bounds of
φ(n). In particular, when the prime factors p1 and p2 satisfy some conditions as in the
three attacks.

2. Improving test points generation to find a value close to φ(n). We have presented a
new strategy (Algorithm 1) to generate such points.

3. Increasing the number of cores.

Increasing the number of cores is necessary to complete the attack in a reasonable time,
but it is expected that increasing the number of cores only will not increase η dramatically
since the proposed interval for φ(n) is not small.

The results presented in the paper can be extended to different variations of RSA
such as [25–30]. The results can also be applied to different attacks [4,31] on the private
exponent of RSA that use lattices instead of continued fractions. It is also possible to use
cloud systems (with thousands of cores) to implement the attacks.

Thus, interesting research questions raised by this study are (1) how to get better lower
and upper bounds of φ(n)? (2) how to improve test point generation.
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