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Abstract: The process of computing correlation among attributes of an ordinary database is significant
in the analysis and classification of a data set. Due to the uncertainties embedded in data classification,
encapsulating correlation techniques using Pythagorean fuzzy information is appropriate to curb
the uncertainties. Although correlation coefficient between Pythagorean fuzzy data (PFD) is an
applicable information measure, its output is not reliable because of the intrinsic effect of other
interfering PFD. Due to the fact that the correlation coefficients in a Pythagorean fuzzy environment
could not remove the intrinsic effect of the interfering PFD, the notion of Pythagorean fuzzy partial
correlation measure (PFPCM) is necessary to enhance the measure of precise correlation between
PFD. Because of the flexibility of Pythagorean fuzzy sets (PFSs), we are motivated to initiate the study
on Pythagorean fuzzy partial correlation coefficient (PFPCC) based on a modified Pythagorean fuzzy
correlation measure (PFCM). Examples are given to authenticate the choice of the modified PFCM in
the computational process of PFPCC. For application, we discuss a case of pattern recognition and
classification using the proposed PFPCC after computing the simple correlation coefficient between
the patterns based on the modified correlation technique. To be precise, the contributions of the work
include the enhancement of an existing PFCC approach, development of PFPCC using the enhanced
PFCC, and the application of the developed PFPCC in pattern recognition and classifications.

Keywords: Pythagorean fuzzy partial correlation measure; pattern recognition; Pythagorean fuzzy
set; correlation analysis; Pythagorean fuzzy correlation measure

1. Introduction

The variety of human decision-making goals requires the adoption of a multi-criteria
decision making (MCDM) approach, especially in tasks relating to large-scale systems.
Essential for the construction of MCDM is the modeling of appropriate relationship be-
tween the diverse components criteria in decision-making process. Humans are adept in
linguistically expressing the appropriate relationship concerning the constituent criteria in
numerous circumstances. Notwithstanding, the conception of fuzzy sets [1] offers a better
setting for MCDM because of its capacity to provide a connection between mathematical
modeling and linguistic expression. On the other hand, it is enough to say that modeling
with fuzzy sets is insufficient since a fuzzy set considers merely the membership degree of
the data under consideration.

Atanassov [2] developed the construct of intuitionistic fuzzy sets (IFSs) to alleviate
the drawback of fuzzy sets in the modeling of practical problems. IFS is made up of
membership degree (MD) η and non-membership degree (NMD) θ with the likelihood
of hesitation margin (HM) $ where their aggregate is one and η + θ ≤ 1. IFSs have been
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applied to discuss some contemporary problems such as appointment procedures [3] and
emergency management [4]. Other assorted uses of IFSs are reported in [5–10]. Nonetheless,
IFS is insufficient to explain certain problems in decision theory anytime the aggregate
of MD and NMD exceeds one. As a result, Atanassov [11] developed IFSs of power 2
widely called Pythagorean fuzzy sets (PFSs) [12]. PFSs take a broad view of IFSs in which
the aggregate of MD and NMD could exceeds one, and η2 + θ2 ≤ 1. In short, every IFS
can be presented as a PFS, but the reverse is not binding. Some properties and power
average operators of PFSs were discussed in [13,14]. Due to the fact that PFS is more
flexible compared to IFS, it has been used to solve several practical issues such as decision-
making [15–21], pattern classifications [22–26], analysis of medical diagnostic process [27],
etc., with sufficient reliability. The notion of PFSs has been extended to Pythagorean fuzzy
soft sets and applied to sustainable supplier and decision making using operators such as
Einstein aggregation, Einstein ordered weighted average, and Einstein-ordered weighted
geometric [28–30].

In data analysis and classification, it is customary to deploy correlation measure
whenever researchers want to find how two data sets are associated with each other. In
the classical sense, the correlation coefficient is a useful tool to statisticians and other allied
professionals for measuring the linear connection between any two data sets. The value
of the correlation coefficient is positive every time two data sets are positively linearly
related, and it is negative when there is no positive linear relation. On the other hand,
every time the correlation coefficient is zero, it means there is no linear relationship, i.e.,
neither positive nor negative. Due to the complexities in ordinary data sets, the study if
fuzzy data sets, intuitionistic fuzzy data sets or Pythagorean fuzzy data sets has become
prominent, and as such, investigating such vague data sets is necessary. The discussions on
correlation in fuzzy domain have been carried out [31,32], which have values akin to the
correlation coefficient in the classical sense. Similarly, the idea of correlation measure in
the intuitionistic fuzzy domain has been buttressed [33–37]. In the same vein, Pythagorean
fuzzy correlation measures have been explored with some applications [38–41]. Among
the studies on Pythagorean fuzzy correlation measures, it is only the work by Thao [39]
that shows both linear relationship and direction of correlation; however, the study only
considered MD and NMD of PFSs without taking into account HM.

Though the concept of correlation coefficient for PFD is an applicable information
measure, its output is inaccurate as the measure cannot remove the intrinsic effect of other
interfering PFD. Partial correlation coefficient (PCC) between any two fuzzy sets while
keeping the other fuzzy sets constant has been studied in [42] using the correlation measure
in [31]. Albeit, Hung and Wu [43] introduced fuzzy partial correlation measure based
on empirical logit transformation. In addition, Hung [44] proposed PCC in intuitionistic
fuzzy domain via the same approach [43] by considering only MD and NMD of IFSs.
Partial correlation measure under Pythagorean fuzzy environment has not been studied.
Because correlation coefficients under Pythagorean fuzzy environment could not remove
the intrinsic effect of other PFD while measuring the correlation coefficient between two
PFD, the notion of PFPCC is required to enhance the measure of exact correlation between
PFD without interference. Sequel to this, we are motivated to develop partial correlation
measure for PFD based on a modified PFCC [39], because of the suitability of PFSs to model
uncertainties. To demonstrate the application of PFPCM, a case of pattern recognition of
building materials is considered based on the introduced partial correlation coefficient
between building patterns to enhance effective recognitions and classifications. To be
specified, the contributions of the work include;

• enhancement of an existing PFCC approach to be used for the development of PFPCC,
• development of PFPCC using the enhanced PFCC,
• theoretical descriptions of the PFPCC for the sake of validation, and
• the application of the developed PFPCC in pattern recognition.

We delineate the paper as follows: Section 2 presents the concept of PFSs and its
correlation coefficient measures, Section 3 discusses the PCC for PFD with some theoretical
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results, Section 4 addresses pattern recognitions and classifications via the proposed PCC
for PFD, and Section 5 concludes the findings.

2. Preliminaries

This segment introduces the ideas of PFSs, PFCC approaches in [35,37,39], and a novel
correlation coefficient measure.

2.1. Pythagorean Fuzzy Sets

Assume ℘ is a family of IFSs described within a non-empty set X.

Definition 1 ([2]). Assume C ⊆ ℘ is an IFS, then the structure of C is described by

C = {〈x, ηC(x), θC(x)〉 | x ∈ X},

where ηC, θC : X → [0, 1] are MD and NMD of x ∈ X for which

0 ≤ ηC(x) + θC(x) ≤ 1.

The hesitation margin for an IFS C in X is given by $C(x) = 1− ηC(x)− θC(x).

Take ` to be a Pythagorean fuzzy space defined in a non-empty set X such that ℘ ⊆ `.

Definition 2 ([12]). A PFS represented by C ⊆ ` is a construct

C = {〈x, ηC(x), θC(x)〉 | x ∈ X},

where ηC, θC : X → [0, 1] are MD and NMD of x ∈ X to C for which 0 ≤ η2
C(x) + θ2

C(x) ≤ 1.
The hesitation margin for a PFS C in X is given by

$C(x) ∈ [0, 1] =
√

1− [(ηC(x))2 + (θC(x))2].

Definition 3 ([12]). Assume C, D ⊆ `, then

(i) C = D iff ηC(x) = ηD(x) θC(x) = θD(x) for every x ∈ X.
(ii) C ⊆ D iff ηC(x) ≤ ηD(x), θC(x) ≥ θD(x) for every x ∈ X.
(iii) C = {〈x, θC(x), ηC(x)〉|x ∈ X}, D = {〈x, θD(x), ηD(x)〉|x ∈ X}.
(iv) C ∪ D = {〈x, max{ηC(x), ηD(x)}, min{θC(x), θD(x)}〉|x ∈ X}.
(v) C ∩ D = {〈x, min{ηC(x), ηD(x)}, max{θC(x), θD(x)}〉|x ∈ X}.

Definition 4 ([27]). Pythagorean fuzzy values (PFVs) also known as Pythagorean fuzzy pairs
(PFPs) are described by the system 〈x, y〉 where x2 + y2 ≤ 1 for x, y ∈ [0, 1]. PFVs weigh the PFS
in which x and y are taken to mean MD and NMD, respectively.

When the hesitation margins of PFSs are included in the PFVs of the PFSs, the PFVs
become Pythagorean fuzzy data (PFD).

2.2. Simple Correlation Measures in Pythagorean Fuzzy Domain

We recall some correlation coefficient measures presented in Pythagorean fuzzy do-
main [35,37,39]. The choice of these approaches is because they show both linear relation-
ship and direction of correlation. Suppose C, D ⊆ ` for X = {x1, x2, · · · , xn}, n ∈ (1, ∞)
and let σ(C, D) represents a PFCC of PFSs C and D. Then the definition of PFCC is
as follows:

Definition 5 ([39]). The correlation coefficient σ(C, D) is a function σ : PFS× PFS→ [−1, 1]
which satisfies the following axioms:

(i) σ(C, D) ∈ [−1, 1],
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(ii) σ(C, D) = σ(D, C),
(iii) σ(C, D) = 1 iff C = D.

When σ(C, D) reaches 1, it means that C and D are near perfect positive correlation,
and if σ(C, D) reaches −1 then C and D are near perfect negative correlation. Whereas
σ(C, D) = 1 and σ(C, D) = −1 indicate perfect positive correlation and perfect negative
correlation, respectively. The following are some PFCC techniques.

2.2.1. Thao’s Technique

The correlation coefficient σ(C, D) (as given in [39]) is

σ1(C, D) =
Σn

i=1di(C)di(D)(
Σn

i=1d2
i (C)Σ

n
i=1d2

i (D)
) 1

2
, (1)

in which the deviations of C and D are

di(C) = (η2
C(xi)− ηC

2)− (θ2
C(xi)− θC

2
)

di(D) = (η2
D(xi)− ηD

2)− (θ2
D(xi)− θD

2
)

, (2)

for the means

ηC, ηD =
Σn

i=1ηC(xi)

n
,

Σn
i=1ηD(xi)

n

θC, θD =
Σn

i=1θC(xi)

n
,

Σn
i=1θD(xi)

n

. (3)

2.2.2. Liu et al.’s Technique

The correlation coefficient σ(C, D) (as given in [35]) is

σ2(C, D) =
Σn

i=1di(C)di(D)(
Σn

i=1d2
i (C)Σ

n
i=1d2

i (D)
) 1

2
, (4)

where the deviations of C and D are

di(C) = (ηC(xi)− ηC)− (θC(xi)− θC)

di(D) = (ηD(xi)− ηD)− (θD(xi)− θD)

}
, (5)

in which the means are same as (3).

2.2.3. Thao et al.’s Technique

The correlation coefficient σ(C, D) (as given in [37]) is

σ3(C, D) =
φ(C, D)(

ψ(C)ψ(D)
) 1

2
, (6)

where

ψ(C) =
1

n− 1
Σn

i=1
(
(ηC(si)− ηC)

2 + (θC(si)− θC)
2)

ψ(D) =
1

n− 1
Σn

i=1
(
(ηD(si)− ηD)

2 + (θD(si)− θD)
2)
,

φ(C, D) =
1

n− 1
Σn

i=1
(
(ηC(si)− ηC)(ηD(si)− ηD)

+ (θC(si)− θC)(θD(si)− θD)
)
,
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in which the means are same as (3).
All these correlation measures discussed so far cannot provide a reliable interpretation

because they do not consider the conventional parameters of PFS viz; MD, NMD, and HM.
Thus, the need for an enhanced correlation measure.

2.2.4. Modified Technique

The modified version of (1) is

σ̃(C, D) =
φ̃(C, D)(

ψ̃(C)ψ̃(D)
) 1

2
, (7)

where ψ̃(C), ψ̃(D) are the variances of C and D defined by

ψ̃(C) =
Σn

i=1d2
i (C)

n− 1

ψ̃(D) =
Σn

i=1d2
i (D)

n− 1

, (8)

φ̃(C, D) is the covariance of (C, D) defined by

φ̃(C, D) =
Σn

i=1di(C)di(D)

n− 1
, (9)

in which the deviations of C and D are

di(C) = (η2
C(xi)− ηC

2)− (θ2
C(xi)− θC

2
)− ($2

C(xi)− $C
2)

di(D) = (η2
D(xi)− ηD

2)− (θ2
D(xi)− θD

2
)− ($2

D(xi)− $D
2)

, (10)

for the means

ηC, ηD =
Σn

i=1ηC(xi)

n
,

Σn
i=1ηD(xi)

n

θC, θD =
Σn

i=1θC(xi)

n
,

Σn
i=1θD(xi)

n

$C, $D =
Σn

i=1$C(xi)

n
,

Σn
i=1$D(xi)

n


. (11)

We have σ̃(C, D) = σ̃(D, C) because

σ̃(C, D) =
φ̃(C, D)

(ψ̃(C)ψ̃(D))
1
2
=

φ̃(D, C)

(ψ̃(D)ψ̃(C))
1
2

= σ̃(D, C).

Furthermore, ψ̃(C) = φ̃(C, C) and ψ̃(D) = φ̃(D, D). Certainly, (7) is more reliable than
(1), (4) and (6) because it takes into account all parameters of PFSs under consideration.

2.2.5. Comparison for the PFCMs

Some numerical examples are considered to justify the upper hand of the modified
PFCC technique in comparison to the existing PFCC techniques.

Example 1. Take C and D as PFSs in X = {x1, x2, x3} in which

C = {〈x1, 0.1, 0.2〉, 〈x2, 0.2, 0.1〉, 〈x3, 0.3, 0〉},

D = {〈x1, 0.3, 0〉, 〈x2, 0.2, 0.2〉, 〈x3, 0.1, 0.6〉}.
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By applying the correlation measures to find the PFCC between C and D, we obtain
the following results:

σ1 = −0.9080, σ2 = −0.9898, σ3 = −0.8800, σ̃ = −0.7021.

Example 2. Let C̈ and D̈ be PFSs in X = {x1, x2, x3}, where

C̈ = {〈x1, 0.8, 0.6〉, 〈x2, 0.3, 0.6〉, 〈x3, 0.4, 0.6〉},

D̈ = {〈x1, 0.54, 0.72〉, 〈x2, 0.54, 0.27〉, 〈x3, 0.54, 0.36〉}.

By applying the correlation measures to find the PFCC between C̈ and D̈, we obtain
the outputs as follows:

σ1 = −1, σ2 = −1, σ3 = 0, σ̃ = −0.3235.

These results are represented in Table 1.

Table 1. Results for Comparison.

PFCCs σ1 σ2 σ3 σ̃

Example 1 −0.9080 −0.9898 −0.8800 −0.7021
Example 2 −1.0000 −1.0000 0.0000 −0.3235

As seen in Table 1, it is certain that the PFCC methods satisfy the conditions of
Definition 5, which make them appropriate PFCC. However, the enhanced PFCC yields
outputs with better interpretations. From the results, the considered PFSs have weak corre-
lations between each other corroborating the actual relation since one cannot completely
establish either inclusive or equality properties between the PFSs. The modified technique
produces the most precise outputs compare to the outputs from the techniques in [35,37,39].
In Example 2, the techniques in [35,39] put forward that a perfect negative correlation
exists between the PFSs, whereas the modified technique stated otherwise because the
PFSs are not totally dissimilar. The unreliability of the techniques in [35,39] is due to the
omission of the $ parameter. Similar unreliable interpretation follows from the technique
in [37] for the same reason. However, the modified technique gives a reasonable value
which corroborates the actual relation between the PFSs in Example 2. The modified tech-
nique is adopted for the partial correlation coefficient of PFSs due to its reliability over the
techniques in [35,37,39].

3. Partial Correlation Coefficient of PFSs

Suppose we have random samples of three PFD C, D and E contain in `. It is easy
to find the relationship between C and D using (7). However, since C, D and E are PFD
drawn from the same space `, i.e., E could certainly impact the relationship between C and
D. Therefore, if one is interested in finding the true relationship between C and D, then the
influence of E must be kept constant just as in the case of implicit differentiation. To find
such relationship between PFSs C and D, we introduce PFPCC as follows.

3.1. First-Order PFPCC

Definition 6. The PFPCC for PFD C and D keeping PFD E constant is defined by

σ̃2(C, D|E) = (σ̃(C, D)− σ̃(C, E)σ̃(D, E))2

(1− σ̃2(C, E))(1− σ̃2(D, E))
(12)
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or

σ̃(C, D|E) = σ̃(C, D)− σ̃(C, E)σ̃(D, E)

((1− σ̃2(C, E))(1− σ̃2(D, E)))
1
2

, (13)

where σ̃(C, D), σ̃(C, E) and σ̃(D, E) can be computed by using (7).

We can say that the zero-order PCC of PFD is equivalent to simple correlation coeffi-
cient of PFD. Now, we consider some properties of first-order PCC of PFD as follows.

Theorem 1. Suppose C, D, E ⊆ ` are PFD drawn from X = {x1, . . . , xn}, n ∈]1, ∞[. Then
σ̃(C, D|E) = σ̃(D, C|E).

Proof. From (7), we see that σ̃(C, D) = σ̃(D, C), and so

σ̃(C, D|E) =
σ̃(C, D)− σ̃(C, E)σ̃(D, E)

((1− σ̃2(C, E))(1− σ̃2(D, E)))
1
2

=
σ̃(D, C)− σ̃(D, E)σ̃(C, E)

((1− σ̃2(D, E))(1− σ̃2(C, E)))
1
2

= σ̃(D, C|E).

The result follows.

Corollary 1. With the same condition in Theorem 1, if C and E have a perfect positive linear
relationship then σ̃(C, D|E) = σ̃(D, C|E) = ∞.

Proof. Suppose C and E have a perfect positive linear relationship, then σ̃(C, E) = 1. The
result follows by substitution. Similarly, if σ̃(D, E) = 1, the result also holds.

Proposition 1. With the same condition in Theorem 1, a partial correlation coefficient σ̃(C, D|E)
becomes a simple correlation coefficient σ̃(C, D) iff σ̃(C, E) = σ̃(D, E) = 0.

Proof. Clearly, if σ̃(C, E) = σ̃(D, E) = 0, then we have

σ̃(C, D|E) = σ̃(C, D) = σ̃(D, C) = σ̃(D, C|E).

The converse is straightforward.

Proposition 2. With the same condition in Theorem 1, the following statements are valid:

(i) If σ̃(C, E) = 0, then

σ̃(C, D|E) = σ̃(C, D)

((1− σ̃2(D, E)))
1
2
= σ̃(D, C|E).

Furthermore, if σ̃(D, E) = 0, then

σ̃(C, D|E) = σ̃(C, D)

((1− σ̃2(C, E)))
1
2
= σ̃(D, C|E).

(ii) If σ̃(C, D) = 0, σ̃(C, E) 6= 0 and σ̃(D, E) 6= 0, then

σ̃(C, D|E) = −σ̃(C, E)σ̃(D, E)

((1− σ̃2(C, E))(1− σ̃2(D, E)))
1
2

.

Proof. The proofs are straightforward.
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3.2. nth-Order PFPCC

Suppose we have random samples of more than three PFD, the idea of nth-order PF-
PCC is naturally needed to find the linear relationship among them. Let
C1, C2, · · · , Cr, Cr+1, · · · , Cr+s be PFD in X. Each of the PFD can be represented by

Ci = {〈x, ηCi (x), θCi (x)〉|x ∈ X},

where ηCi (x), θCi (x) : X → [0, 1] for i = 1, 2, · · · , r + s. We can also express Ci as

Ci = {〈xk, ηC1(xk), θC1(xk), ηC2(xk), θC2(xk) · · · , ηCr+s(xk), θCr+s(xk)〉|xk ∈ X}

for k = 1, 2, · · · , n.
We denote the covariances of PFD C1, C2 · · · , Cr, Cr+1, Cr+2, · · · , Cr+s as covariance

matrixM defined by

M = {φ(Ci, Cj)|i = 1, 2, · · · , r + s, j = 1, 2, · · · , r + s}, (14)

where

φ(Ci, Cj) =
Σn

k=1dk(Ci)dk(Cj)

n− 1
(15)

is the covariance of (Ci, Cj), in which

dk(Ci) = (η2
Ci
(xk)− ηCi

2)− (θ2
Ci
(xk)− θCi

2
)− ($2

Ci
(xk)− $Ci

2)

dk(Cj) = (η2
Cj
(xk)− ηCj

2)− (θ2
Cj
(xk)− θCj

2
)− ($2

Cj
(xk)− $Cj

2)

 (16)

are the deviations of Ci and Cj, respectively.

Definition 7. The PCC of (Ci, Cj), i, j = 1, 2, · · · , r by keeping Cr+1, Cr+2, · · · , Cr+s constant
can be derived as follows:

First, we partitionM into four parts,

M =

[
M11 M12
M21 M22

]
, (17)

whereM11 represents r× r covariance matrix of (Ci, Cj) for i, j = 1, 2, · · · , r,M12 represents
r× s covariance matrix of (Ci, Cj) for i = 1, 2, · · · , r, j = r + 1, r + 2, · · · , r + s,M21 represents
s× r covariance matrix of (Ci, Cj) for i = r + 1, r + 2, · · · , r + s, j = 1, 2, · · · , r,M22 represents
s× s covariance matrix of (Ci, Cj) for i, j = r + 1, r + 2, · · · , r + s. Certainly,M12 andM21
transposes each other.

By muting the effect of Cr+1, Cr+2, · · · , Cr+s, the PCC of (Ci, Cj) is defined by

σ̃((Ci, Cj)|(Cr+1, Cr+2, · · · , Cr+s)) =
φ((Ci, Cj)|(Cr+1, Cr+2, · · · , Cr+s))

(φ((Ci, Ci)|(Cr+1, Cr+2, · · · , Cr+s))φ((Cj, Cj)|(Cr+1, Cr+2, · · · , Cr+s)))
1
2

, (18)

where i, j = 1, 2, · · · , r and φ((Ci, Cj)|(Cr+1, Cr+2, · · · , Cr+s)) is the i, jth element of partial
covariance matrix ofM11|2 =M11 −M12M−1

22 M21.

It follows that

σ̃((Ci, Cj)|(Cr+1, Cr+2, · · · , Cr+s)) = σ̃((Cj, Ci)|(Cr+1, Cr+2, · · · , Cr+s))

sinceM11|2 is a symmetry matrix and

φ((Ci, Cj)|(Cr+1, Cr+2, · · · , Cr+s)) = φ((Cj, Ci)|(Cr+1, Cr+2, · · · , Cr+s)).
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Theorem 2. An nth-order PCC of PFD becomes a first-order partial correlation coefficient of PFD
if r = 2 and s = 1.

Proof. Suppose r = 2 and s = 1. Then we have PFD C1, C2 and C3. Our interest is to find
the linear relationship between C1 and C2 by muting the effect of C3. Since r = 2 and s = 1,
r + s = 3 and

M =

φ(C1, C1) φ(C1, C2) φ(C1, C3)
φ(C2, C1) φ(C2, C2) φ(C2, C3)
φ(C3, C1) φ(C3, C2) φ(C3, C3)

.

For simplicity sake, we writeM as

M =

φ11 φ12 φ13
φ21 φ22 φ23
φ31 φ32 φ33

,

which we partition into four parts as

M =

[φ11 φ12
φ21 φ22

] [
φ13
φ23

]
[φ31 φ32] [φ33]

.

Clearly,

M11 =

[
φ11 φ12
φ21 φ22

]
, M12 =

[
φ13
φ23

]
,

M21 =
[
φ31 φ32

]
, M22 =

[
φ33
]
,

whereM11 represents the covariance matrix of C1 and C2,M12 represents the covariance
matrix of C1 and C3,M21 represents the covariance matrix of C2 and C3, andM22 is the
variance C3.

Consequently, the PCC of C1 and C2 by keeping C3 constant is

σ̃((C1, C2)|C3) =
φ((C1, C2)|C3)

(φ((C1, C1)|C3)φ((C2, C2)|C3))
1
2

,

rewritten as

σ̃12|3 =
φ12|3

(φ11|3φ22|3)
1
2

,

in which φ12|3 is the element ofM11|2 =M11 −M12M−1
22 M21. Observe that

M12M−1
22 M21 =

[
φ13
φ23

][
φ33
]−1[

φ31 φ32
]

=


φ13

φ33
φ23

φ33

[φ31 φ32
]

=


φ13φ31

φ33

φ13φ32

φ33
φ23φ31

φ33

φ23φ32

φ33

.
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Thus,

M11|2 =

φ11 −
φ13φ31

φ33
φ12 −

φ13φ32

φ33

φ21 −
φ23φ31

φ33
φ22 −

φ23φ32

φ33

,

where
φ11|3 = φ11 −

φ13φ31

φ33
, φ12|3 = φ12 −

φ13φ32

φ33

φ21|3 = φ21 −
φ23φ31

φ33
, φ22|3 = φ22 −

φ23φ32

φ33
.

Therefore,

σ̃12|3 =
φ12|3

(φ11|3φ22|3)
1
2

,

becomes

σ̃12|3 =

φ12 −
φ13φ32

φ33((
φ11 −

φ13φ31

φ33

)(
φ22 −

φ23φ32

φ33

)) 1
2

=

1

(φ11φ22)
1
2
(φ12 −

φ13φ32

φ33
)

1

(φ11φ22)
1
2

((
φ11 −

φ13φ31

φ33

)(
φ22 −

φ23φ32

φ33

)) 1
2

=

φ12

(φ11φ22)
1
2
− φ13

(φ11φ33)
1
2

φ23

(φ22φ33)
1
2((φ11

φ11
− φ13φ31

φ11φ33

)(φ22

φ22
− φ23φ32

φ22φ33

)) 1
2

=

φ12

(φ11φ22)
1
2
− φ13

(φ11φ33)
1
2

φ23

(φ22φ33)
1
2((φ11

φ11
−

φ2
13

(φ2
11φ2

33)
1
2

)(φ22

φ22
−

φ2
23

(φ2
22φ2

33)
1
2

)) 1
2

=
σ̃12 − σ̃13σ̃23((

1− σ̃2
13

)(
1− σ̃2

23

)) 1
2

.

Alternatively, it can be written as

σ̃((C1, C2)|C3) =
σ̃(C1, C2)− σ̃(C1, C3)σ̃(C2, C3)

((1− σ̃2(C1, C3))(1− σ̃2(C2, C3)))
1
2

,

which is the first-order PCC of PFD as desired.

Remark 1. If r = 2 and s = 2, then the nth-order PCC of PFD becomes

σ̃((C1, C2)|(C3, C4)) =
σ̃((C1, C2)|C4)− σ̃((C2, C3)|C4)σ̃((C1, C3)|C4)

((1− σ̃2((C2, C3)|C4))(1− σ̃2((C1, C3)|C4)))
1
2

rewritten as

σ̃12|34 =
σ̃12|4 − σ̃23|4σ̃13|4((

1− σ̃2
23|4

)(
1− σ̃2

13|4

)) 1
2

.
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Certainly, σ̃12|34 = σ̃12|43 since

σ̃12|34 =
σ̃12|4 − σ̃23|4σ̃13|4((

1− σ̃2
23|4

)(
1− σ̃2

13|4

)) 1
2

=
σ̃12|3 − σ̃24|3σ̃14|3((

1− σ̃2
24|3

)(
1− σ̃2

14|3

)) 1
2

= σ̃12|43.

4. Applicative Example in Pattern Recognitions and Classifications

The concept of pattern recognition is central to the recognition of patterns with the
aid of a machine learning algorithm. The process of categorizing data using statistical
information extracted from pattern and/or their representation is called pattern recognition.
Alternatively, pattern recognition is a facility used to detect the classifications of data to
produce information about a given data set or system. Although pattern recognition is
applicable in diverse areas, the presence of fuzziness posed a huge setback. Consequently,
encapsulating the idea of pattern recognition in the domain of PFSs is a welcome adventure.

Case Study

Here, we recognize and classify patterns of building materials in five feature space
as random samples of PFAs using a Pythagorean fuzzy partial correlation measure. We
compute the zero-order PCCs of the patterns, vis-a-vis the first and second PCCs of the
patterns to determine the precise linear relationship among the building patterns.

Suppose the building patterns represented by PFAs Pi for i = 1, 2, · · · , n in the feature
space S = {s1, s2, s3, s4, s5} are contained in Table 2.

Table 2. Pythagorean fuzzy pattern representations.

Feature Space

PFS s1 s2 s3 s4 s5

ηP1
θP1

0.8000
0.1000

0.7000
0.2000

0.9000
0.0000

0.6000
0.3000

0.8000
0.1000

ηP2
θP2

0.9000
0.1000

0.8000
0.1000

0.8000
0.1000

0.5000
0.3000

0.7000
0.2000

ηP3
θP3

0.5000
0.3000

0.5000
0.2000

0.9000
0.0000

0.5000
0.4000

0.7000
0.1000

ηP4
θP4

0.7000
0.2000

0.5000
0.4000

0.9000
0.1000

0.6000
0.3000

0.8000
0.0000

The HMs of Pi’s can be calculated using the formula in Definition 2.
By applying (7) to find the correlation coefficient between the building patterns, we

obtain the Pythagorean fuzzy correlation coefficient matrix:

P1 P2 P3 P4


1 −0.1271 0.1004 0.1879 P1
−0.1271 1 −0.1361 −0.2556 P2
0.1004 −0.1361 1 0.2010 P3
0.1879 −0.2556 0.2010 1 P4

From this Pythagorean fuzzy correlation coefficient matrix, we observe that σ̃(P1, P1) =
1, σ̃(P2, P2) = 1, σ̃(P3, P3) = 1, and σ̃(P4, P4) = 1 in concord with Definition 5. Figures 1–4
are plotted from the Pythagorean fuzzy correlation coefficient matrix.
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Figure 1. Pattern P1 against other Patterns.

P1 P2 P3 P4

0

0.5

1

Patterns

P 2

Figure 2. Pattern P2 against other Patterns.
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P 3

Figure 3. Pattern P3 against other Patterns.
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P1 P2 P3 P4

0

0.5

1

Patterns

P 4

Figure 4. Pattern P4 against other Patterns.

From the correlation coefficient matrix and Figures 1–4, we observe that

σ̃P1P4 ≥ σ̃P1P3 ≥ σ̃P1P2 , σ̃P2P1 ≥ σ̃P2P3 ≥ σ̃P2P4 ,

σ̃P3P4 ≥ σ̃P3P1 ≥ σ̃P3P2 , σ̃P4P3 ≥ σ̃P4P1 ≥ σ̃P4P2 ,

which imply the following interpretations; pattern P1 can be classified with pattern P4 (since
the correlation coefficient σ̃P1P4 is the greatest), pattern P2 can be classified with pattern
P1 (since the correlation coefficient σ̃P2P1 is the greatest) and patterns P3 and P4 can be
classified with each other (since the correlation coefficients σ̃P3P4 and σ̃P4P3 are the greatest
in each cases). Certainly, the Pythagorean fuzzy correlation coefficient matrix is symmetric,
i.e., σ̃Pi Pi+1 = σ̃Pi+1Pi and each pattern is reflexive to itself, i.e., σ̃Pi Pi = σ̃Pi Pi = 1. The zero-
order partial correlation coefficient results show that the four patterns have positive linear
relationship with each other with the exceptions of σ̃P1P2 , σ̃P2P3 and σ̃P2P4 .

To obtain an exact correlation among the building patterns, the first-order PCCs of
Pis are computed. The following values of the first-order PCCs between two patterns by
muting the effect of another pattern are obtained by (12) using the corresponding zero-order
partial correlation coefficients:

σ̃P1P2|P3
= −0.1151, σ̃P1P2|P4

= −0.0833,

σ̃P1P3|P2
= 0.0846, σ̃P1P3|P4

= 0.0651,

σ̃P1P4|P2
= 0.1621, σ̃P1P4|P3

= 0.1721,

σ̃P2P3|P1
= −0.1250, σ̃P2P3|P4

= −0.0895,

σ̃P2P4|P1
= −0.2378, σ̃P2P4|P3

= −0.2352,

σ̃P3P4|P1
= 0.1864, σ̃P3P4|P2

= 0.1735.

By associating these results with the simple correlation coefficients, we surmise that by
removing the sway of another pattern from the simple correlation coefficients, the partial
correlation coefficients either increase or decrease. By removing the effect of a pattern from
the correlation between two patterns, it is observed that

(i) Pattern P1 has a negative sway on the correlation between patterns (P2, P3), (P2, P4)
and a positive effect on the correlation of (P3, P4).
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(ii) Pattern P2 only has a positive sway on the correlation between patterns (P1, P3),
(P1, P4) and (P3, P4).

(iii) Pattern P3 has a negative effect on the correlation between patterns (P1P2), (P2, P4)
and a positive effect on the correlation of (P1, P4).

(iv) Pattern P4 has a negative influence on the correlation between patterns (P1, P2), (P2, P3)
and a positive effect on the correlation of (P1, P3).

By removing the effect of a pattern from the first-order partial correlations between
patterns, we obtain:

σ̃P1P2|P3P4
= −0.0780, σ̃P1P3|P2P4

= 0.0581,

σ̃P1P4|P2P3
= 0.1502, σ̃P2P3|P1P4

= −0.0845,

σ̃P2P4|P1P3
= −0.2201, σ̃P3P4|P1P2

= 0.1625,

While matching these results with the first-order PCCs between patterns, it is observed
that when the impact of another pattern is muted from the first-order PCC, the second-order
PCC between the patterns either increase or decrease, and the influences are

(i) Pattern P1 has a negative effect on the first-order partial correlations σ̃P2P4|P3
, σ̃P2P3|P4

and a positive effect on σ̃P3P4|P2
.

(ii) Pattern P2 only has a positive effect on the first-order partial correlations σ̃P1P3|P4
,

σ̃P1P4|P3
and σ̃P3P4|P1

.
(iii) Pattern P3 has a negative impact on the first-order partial correlations σ̃P1P2|P4

, σ̃P2P4|P1
and a positive effect on σ̃P1P4|P2

.
(iv) Pattern P4 has a negative effect on the first-order partial correlation coefficients σ̃P1P2|P3

,
σ̃P2P3|P1

and a positive impact on σ̃P1P3|P2
.

It is fascinating to know that Pattern P2 possesses positive effect on both the simple
correlations and the first-order partial correlations of the patterns. Roughly speaking, the
index of a partial correlation coefficient of the patterns either increase or decrease when the
effect of other pattern(s) is/are removed depending on the direction of the correlation.

The negative nature of the partial correlation coefficients σ̃P1P2|P3P4
, σ̃P2P3|P1P4

and
σ̃P2P4|P1P3

suggest that the simple correlations between patterns (P1, P2), (P2, P3) and (P2, P4)
are really negative. Similarly, the positive nature of the partial correlation coefficients
σ̃P1P3|P2P4

, σ̃P1P4|P2P3
and σ̃P3P4|P1P2

suggest that the simple correlations between patterns
(P1, P3), (P1, P4) and (P3, P4) are actually positive.

5. Conclusions

In this paper, the Pythagorean fuzzy partial correlation measure is initiated for the
first time because of the flexibility of PFSs in decision-making. The concept of PCC for
random fuzzy data [42] was extended to random PFD by considering all the descriptive
parameters of PFSs. The simple correlation coefficient for PFD [39] was modified to include
all the descriptive parameters of PFSs, and used in determining the Pythagorean fuzzy
partial correlation coefficient between random PFD. Pythagorean fuzzy partial correlation
measure is significant because it removes the influence of interfering PFD when measuring
the correlation between any two random PFD. This ability of removing intrinsic influ-
ence of other PFD is beyond the capacity of a simple correlation coefficient for PFD. The
applicability of the Pythagorean fuzzy partial correlation measure in the recognition of
building patterns, where the patterns were represented by random PFD collected from
a hypothetical survey was considered. From the analysis, it was discovered that when-
ever the impact of another pattern is removed, the index of the Pythagorean fuzzy partial
correlation coefficient either increases or decreases subject to the linear relationship and
direction of the correlation between the muted pattern and the considered patterns. The
idea of PCC for PFD is beneficial because it shows the precise correlation between any
two random PFD, and expresses the effect of the interfering PFD on the relationship. In
future research, we could investigate the idea of Pythagorean fuzzy partial correlation
coefficient based on multivariate correlation coefficients for random PFD with application
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in problems involving multiple criteria decision-making. To the best of our knowledge, the
only limitation of the developed PFPCC is that it cannot be extended to some uncertain
settings that are described with more than three parametric features such as picture fuzzy
sets, spherical fuzzy sets, etc.
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