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Abstract: Microgrid operations planning is one of the keys to ensuring the safe and efficient outputs of
distributed energy resources (DERs) and the stable operation of a power system in a microgrid (MG).
In this study, for the symmetry in renewable energy and microgrid systems, and coordinated control
based on a storage battery system, an MG dispatching model with DER conditions and integrated
costs is established in grid-connected mode, on the basis of MG operation costs, interaction costs,
and pollutant emissions costs. Moreover, an optimization objective for minimizing integrated costs is
established. Therefore, based on the original whale optimization algorithm (WOA), an improved
whale optimization algorithm (IWOA) with adaptive weight strategy and Levy flight trajectory
is proposed in this paper, to solve the optimal operations planning problem of MGs. Finally, in
computing comparisons with methods such as the genetic algorithm (GA), particle swarm algorithm
(PSO), WOA, wild horse optimizer (WHO), and enhanced whale optimization algorithm (EWOA),
the results show that the IWOA computation had lower integrated costs and higher operational
efficiency. Moreover, it is verified that the IWOA performed better in solving the MG operations
planning problem.

Keywords: adaptive weight strategy; Levy flight trajectory; whale optimization algorithm; microgrid;
system operations planning

1. Introduction

In recent years, along with the increasingly severe fossil fuel energy crisis and envi-
ronmental pollution pressure, clean energy generation has become one of the priorities for
future development in various countries. While vigorously developing wind, solar, and
other renewable energy sources as important power sources, their inherent random and
intermittent energy generation also introduces problems, such as excessive system power
fluctuations, insufficient scheduling capacity, and power quality disturbances [1–4]. To ef-
fectively use primary energy such as wind and solar energy, microgrid technology has come
into being, which consists of DERs, energy storage systems, loads, and monitoring [5,6]. A
microgrid has independent power generation, transmission, and distribution capabilities,
and can operate either in grid-connected or islanded mode, with regional energy balance
and strong dispatchability [7,8]. Microgrid technology can not only improve the quality of
the power supply in remote areas, such as mountainous areas and islands but can also effec-
tively prevent large-scale power outages that are caused by accidents and disasters [9,10].
However, with the widespread integration of clean energy power generation technology,
the composition and structure of the power supply will become more complex and diversi-
fied, posing challenges to the reactive power balance and power quality of the entire power
generation system [11].

Optimal operations planning of a microgrid power supply system will bring bet-
ter economy, security, and reliability, as well as lower pollution [12]. For a large grid
(LG), traditional optimization methods are not effective, due to the impact of their more
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complex calculations [13]. Therefore, the emergence of meta-heuristic algorithms can
effectively solve these traditional optimization method problems for LG systems [14,15].
Most meta-heuristic algorithms are inspired by physical phenomena or natural species and
are designed by related scholars [16]. Meta-heuristic algorithms have simple parameters
and convenient implementation, are easy to understand and can solve related problems
using iterative procedures that simulate the evolution of natural processes for objective
optimization [12].

Many experts and scholars have used meta-heuristic algorithms for solving microgrid
operations planning problems. Bahmani et al. [17] noticed a significant use of renewable
energy sources (RESs) in microgrids and, therefore, a dramatic increase in the use of
energy storage systems. For this reason, they introduced a bat algorithm to perform a
corrective strategy for minimum-cost dispatch. Mohamed et al. [18] noticed an application
of permanent magnet synchronous generators (PMSGs) in advanced wind systems. They
introduced maximum power point tracking (MPPT) control methods and the latest trends
in PMSG wind system components to assist researchers in pushing the grid integration in
modern power systems. Abbasi et al. [19] used the flower pollination algorithm (FPA) in
demand side management (DSM) to schedule appliances to meet consumer load demands.
In addition, they emphasized reducing the peak-to-mean ratio and the cost of electricity.
Zhang et al. [20] introduced a method that helps to schedule microgrid resources. For
this purpose, they proposed a hybrid optimization algorithm. Muhammad et al. [21]
introduced an architecture with integrated RESs. This approach classified different users,
and assigned priority according to energy demand, which reduced the costs of electricity
consumption and improved user comfort. Sukumar et al. [22] introduced a mixed-mode
energy management strategy, and proposed a battery selection method to reduce the costs of
microgrid operation. Askarzadeh et al. [23] used a memory-based genetic algorithm (MGA)
to optimize an islanded microgrid system and reduce the costs of generating electricity
from the islanded microgrid system. Gholami et al. [24] used an improved personal
optimal particle swarm optimization algorithm to minimize the generation costs of an
isolated microgrid system that contained three wind motors, two photovoltaic systems,
and a combined heat and power cogeneration (CHP) system that was connected to an
IEEE 37 node feeder. Nadimi-Shahraki et al. [25] studied the optimal power flow (OPF)
problem. They proposed an effective hybridizing of WOA and a modified moth-flame
optimization algorithm (MFO) named WMFO to reduce the costs of ten different OPF
problems. Lahon et al. [26–28] studied the optimal power dispatch for the cooperative
operation of multiple coupled microgrids, where a contribution level-based scheme was
considered, to provide power exchange between microgrids. The expected profit of each
microgrid was maximized by stimulating the energy transfer between the microgrids.
Trivedi et al. [29] implemented an internal search algorithm (ISA) to perform penalty
factor-based combined economic emission dispatch (CEED), on a three-unit microgrid
system consisting of wind motors and photovoltaic systems. Motevasel et al. [30] proposed
a microgrid system with reduced net emissions and generation costs to enhance system
stability, but they did not consider a mechanism to reduce PAR. Tahmasebi et al. [31]
proposed an optimal operations management model for a stand-alone microgrid that
considered demand response (DRP). They used a whale optimization algorithm to minimize
the operating and emissions costs, arguing the importance of demand response systems
(DRPS). Khodaei et al. [32] introduced the concept of a temporary microgrid, proposed a
new optimal dispatch model, and demonstrated the advantages of this new microgrid. The
implications of this concept were further used in planning the next generation of smart and
sustainable integrated grids [33].

Current research on the optimal operations planning strategy of microgrids focuses
on improving the efficiency of renewable energy use, and on reducing the operations and
pollutant emissions costs. The research on reducing the interaction with a large grid in
grid-connected mode is insufficient. Under grid-connected operation, reducing the amount
of microgrid interaction with a larger grid can improve the robustness and safety of the
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microgrid power supply. Moreover, meta-heuristic algorithms mainly feature low accuracy
and slow response in solving optimal microgrid operations planning problems. Therefore,
to increase the proportion of clean energy generation, reduce the degree of interaction
between the microgrid and large grid, and ensure the security between DERs and the stable
operation of the whole power system, this paper proposes an improved whale optimization
algorithm (IWOA), based on adaptive weight strategy and Levy flight trajectory. It was
used to solve the optimal operations planning problem of a grid-connected microgrid under
the optimal output condition of DERs. Aiming at the economic operation and environmen-
tal protection of the microgrid, to ensure the symmetry in renewable energy and microgrid
systems, the mathematical model and optimization objective function of each power gen-
eration unit in the microgrid were established by considering the differences between
influencing factors, such as load demand, time-sharing tariff, and pollutant emissions.

In the next sections, the objective function and DERs generating model are established
for grid-connected microgrid operations planning problems. Moreover, WOA‘s location
update equations are introduced, and based on this, the location update equations of IWOA
are proposed by introducing an adaptive weight strategy and Levy flight trajectory to
enhance WOA’s global search capability. Finally, on the basis of grid-connected microgrid
operations data, using IWOA to solve the objective function to obtain the minimized
operation cost and ensure the symmetry in renewable energy and microgrid systems. To
verify the effectiveness of IWOA, the result is also compared with the results solved by GA,
PSO, WHO, WOA, and EWOA.

2. A Microgrid Optimizing Model

The grid-connected microgrid structure consists of two major parts: the power supply
system and the loads, where the power supply system consists of DERs that include wind
turbines (WTs), photovoltaics (PVs), diesel engines (DEs), fuel cells (FCs), and batteries
(BATs). In addition, a microgrid will interact with a large grid. Figure 1 shows a typical
structure of a grid-connected microgrid.

Figure 1. A typical structure of a grid-connected microgrid.

A grid-connected microgrid needs to meet the dynamic power balance, and ensure
the stable operation of the power supply system. Based on satisfying this condition, this
study set its research objectives to increase the proportion of RES generation, reduce the
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degree of interaction between the microgrid and the large grid, and reduce the microgrid
operations costs and pollutant emissions costs. The relevant system models and objective
functions are described in the following subsections.

2.1. Objective Function

The objective of optimal microgrid operations planning in grid-connected mode is
to minimize the integrated costs, including the microgrid operations costs and pollutant
emission costs, as shown in Equation (1):

min F = ω1 · f1 + ω2 · f2 (1)

where F is the integrated cost of the microgrid, f1 is the operation cost function, and f2 is the
pollutant emissions cost function. ω1 and ω2 are the weighting coefficients of each function,
which specify the optimization priority. The operation cost function f1 is defined by
Equations (2) and (3). The pollutant emissions cost f2 is defined by Equations (4) and (5).

f1 is composed of the operation costs of each DER and the costs of the microgrid inter-
acting with the larger grid. Its mathematical expressions are shown in Equations (2) and (3):

f1 =
T

∑
t

(
Cgrid(t) + CBE(t) + CWT(t) + CPV(t) + CDE(t) + CFC(t)

)
(2)

Cgrid(t) = Cbuy(t) + Csell(t)
Cbuy(t) = cb(t)Pb(t)
Csell(t) = cs(t)Ps(t)

(3)

where Pb(t) and Ps(t) are the power that is purchased and sold by the microgrid to the large
grid at time t, respectively. Cbuy(t) and Csell(t) are the costs of electricity purchased and
sold by the microgrid to the large grid at time t, respectively. cb(t) and cs(t) are the prices
of electricity purchased and sold by the microgrid to the large grid at time t, respectively.
An MG cycle dispatching model with DER conditions and integrated costs was established.

F2 is generated by the penalty costs that are caused by polluting the environment.
During microgrid operation, the generator units that rely on non-renewable energy sources
produce a certain amount of pollutants, including CO2, SO2, CO, and NOx. f2 is defined
according to Equation (4). Equation (5) determines the average cost of each type of pollutant
that is emitted by DEs and FCs.

f2 =
T

∑
t
(CDE.en(t) + CFC.en(t)) (4) CDE.en(t) =

(
EDE

CO2
+ EDE

SO2
+ EDE

NOx
+ EDE

CO

)
· PDE(t)

CFC.en(t) =
(

EFC
CO2

+ EFC
SO2

+ EFC
NOx

+ EFC
CO

)
· PFC(t)

(5)

where CDE.en(t) is the pollutant emissions cost of a DE at time t, and CFC.en(t) is the
pollutant emissions cost of an FC at time t. PDE(t) and PFC(t) are the powers that are
output by the DE and the FC, respectively, at time t.

2.2. Distributed Energy Resources Model

A WT is a power generation technology that converts mechanical energy into electrical
energy via wind-driven fan blade rotation. The mathematical expression of wind turbine
output power [34] is shown in Equation (6):

PWT =


0, 0 ≤ v ≤ vci
Pr(v−vci)

vr−vco
, vci ≤ v ≤ vr

Pr, vr ≤ v ≤ vco

0, vco ≤ v

(6)
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where PWT is the output power of the WT, pr is the rated power of the WT, v is the actual
wind speed, vr is the rated wind speed, vci is the cut-in wind speed, and vco is the cut-out
wind speed.

A PV is a power generation technology that converts light energy directly into elec-
tricity, through the photovoltaic effect, at the semiconductor interface. The output power
of a PV is affected by factors such as light intensity and the temperature of the PV panel
surface, and its mathematical expression [35] is shown in Equation (7):

PPV = PSTC
G

GSTC
[1 + δ(Ten − tSTC)] (7)

where PPV is the actual output power of the PV, and PSTC is the output power of the
PV under standard test conditions. G is the light intensity, GSTC is the light intensity
under standard test conditions, δ is the temperature power coefficient, TEN is the ambient
temperature, and TSTC is the temperature under standard test conditions.

A DE is a power generation technology that uses diesel fuel and a diesel engine
as the prime mover to drive the generator components and generate electricity. It has
the advantages of providing stable power generation, being generally free from external
interference, and having high reliability. When the output power of renewable energy
generation is insufficient, a DE is connected to the microgrid as a supplementary energy
source to meet the load demand. The mathematical expression of its power generation cost
is shown in Equation (8):

CDE. f uel = k1 + k2PDE + k3P2
DE (8)

where CDE. f uel is the fuel cost of the DE, and PDE is the output power of the DE. k1, k2, and
k3 are the fuel cost coefficients.

An FC is a power generation technology that directly converts chemical energy into
electrical energy without intermediate processes, i.e., no Gibbs-free energy losses. Com-
pared with traditional fossil fuel power generation, an FC is more efficient. It produces
less pollution, and the relationship between its efficiency and output power is shown
in Equation (9); the mathematical expression of its power generation costs is shown in
Equation (10):

λFC = −0.0023PFC + 0.6735 (9)

CFC = cFC · Trun ·
1

LHV ∑
t

PFC(t)
λFC(t)

(10)

where PFC is the fuel cell output power, λFC is the fuel cell power efficiency, CFC is the fuel
cell power cost, cFC is the fuel price, Trun is the operation time, PFC(t) is the fuel cell output
power at time t, and λFC(t) is the fuel cell efficiency at time t. LHV is the low heating value
of the fuel.

Storage battery system plays the role of maintaining the power supply’s balance
and energy buffer and is used for the coordinated control of the microgrid to regulate
the symmetry in renewable energy and microgrid systems. State of charge (SOC) is an
important technical index to measure the state of charge of the battery, and its mathematical
expression is shown in Equation (11):

SOC(t) =

{
SOC(t− 1) + 1

µ− PBE(t), PBE(t) ≤ 0
SOC(t− 1) + µ+PBE(t), PBE(t) > 0

(11)

where SOC(t) is the remaining capacity of the battery at time t. PBE(t) is the charge and
discharge power of the battery at time t; when it is positive, it means discharge, while
negative means charge. µ+and µ− are the charge and discharge efficiencies, respectively.
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2.3. Constraints

In designing the microgrid optimization model, which is influenced by the equip-
ment’s parameters and other factors, each power generation unit needs to meet certain
constraints, to ensure that the system works stably and safely when outputting electricity.

The microgrid must meet the power balance constraints that occur during operation
to ensure the normal operation of the system. The constraint expression is shown in
Equation (12):

PLoad(t) = Pgrid(t) + PBE(t) + PWT(t) + PPV(t) + PDE(t) + PFC(t) (12)

where PLoad(t) is the load power of the microgrid at time t.
The power output of each DER in the microgrid cannot exceed its respective upper

and lower limits, and its constraints are shown in Equation (13):

Pmin
i ≤ Pi(t) ≤ Pmax

i (13)

where Pi(t) is output power of the i-th controllable generator set at time t. Pmax
i and

Pmin
i are the upper and lower limits of the output power of the i-th controllable generator

set, respectively.
Each DER in the microgrid has a certain limit on the power increase or decrease rate,

i.e., the climbing constraint. This constraint is shown in Equation (14):

Pi(t)− Pi(t− 1) ≤ pi∆t (14)

where pi is the maximum climb rate of the i-th controllable generator unit. ∆t is the
increment in operation time.

There is also a limit on the microgrid interacting with the larger grid, and the constraint
is shown in Equation (15):

Pmin
grid ≤

∣∣∣Pgrid(t)
∣∣∣ ≤ Pmax

grid (15)

where Pmax
grid and Pmin

grid are the upper and lower limits of power for the interaction between
the microgrid and the large grid, respectively.

During the regular operation of a battery, there are charge and discharge power limits
and capacity limits. These constraints are shown in Equation (16):{

Pmin
BE ≤ PBE(t) ≤ Pmax

BE
SOCmin(t) ≤ SOC(t) ≤ SOCmax(t)

(16)

where Pmax
BE and Pmin

BE are the upper and lower limits of battery capacity, respectively; a
positive value means that the battery is discharging, while a negative value means that the
battery is charging. SOCmax(t) and SOCmin(t) indicate the upper and lower limits of the
battery’s capacity at time t, respectively.

3. Optimization Methods

Microgrid operations planning is a complex problem that involves optimizing the out-
put of DERs while minimizing operation costs. Solving this problem with meta-heuristic
algorithms can significantly improve the quality of solution results. This section proposes an
improved whale algorithm (IWOA) based on adaptive weight and opposition-based learning.

3.1. Whale Optimization Algorithm

The whale optimization algorithm (WOA) was proposed by Mirjalili [36], it simulates
the predation behavior of humpback whales, and searches for an optimal solution location
based on three search mechanisms: envelope predation, bubble predation, and random
search during the predation process. In the search phase, each individual searches for
prey in the entire search space, which is a global search process. The better the global
search capability and population diversity, the less risk there is of the algorithm falling
into local convergence. In the predation phase, each individual is guided by the optimal
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global individual to rapidly cluster and contract toward that individual, and search for the
existence of higher-quality individuals in the local search space. At this time, the algorithm
converges faster, but the search effort decreases, and the algorithm may prematurely
converge to local extremes.

The assumption is that the current optimal candidate solution is the target prey location
or the location closest to the target prey. After recording the optimal candidate location,
other whales will approach this location using the encircling predation mechanism of the
WOA. The position update formula at this time is shown in Equation (17):

X(titer + 1) = X∗(titer)− A · D
D = |C · X∗(titer)− X(titer)|
A = 2a · r1 − a
C = 2r1

a = 2
(

1− titer
Tmax

) (17)

where X∗(titer) is the optimal individual of the current population, namely, the location of
the optimal candidate solution; x(titer + 1) is the location of the next generation population
individual, and x(titer) is the location of the current population individual. D denotes the
distance between the current population optimal individual and other individuals, A is the
convergence factor, C is the oscillation factor, r1 is a random number within (0, 1), and a is
the wandering factor.

In addition to encirclement predation, the local search stage uses spiral bubbles to
contract and encircle prey. The whale’s position is updated as it approaches its prey. This
method can speed up the local search, which belongs to the bubble predation mechanism
of the WOA. The position update equation at this time is shown in Equation (18):{

X(titer + 1) = D′ · ebr2 · cos(2πr2) + X∗(titer)
D′ = |X∗(titer)− X(titer)|

(18)

where D′ denotes the distance between the optimal individual of the current population
and the other individuals; b is the logarithmic spiral shape coefficient, usually taken as 1;
and r2 is a random number within [−1, 1].

The random search mechanism takes the value of the convergence factor A as the
judgment criterion. When |A| ≥ 1, the whale individual will deviate from the candidate
solution position for the global search of the algorithm, to improve the search capability of
the WOA and avoid the algorithm from falling into the local optimum. Its position update
formula is shown in Equation (19):{

X(titer + 1) = Xrand(titer)− A · D′′
D′′ = |C · Xrand(titer)− X(titer)|

(19)

where Xrand(titer) is the location of a random whale individual in the current population,
and d′′ denotes the distance between a random individual and other individuals in the
current population.

Each of the two mechanisms in the WOA local search phase has a 50% probability
of occurring during the search. Therefore, let p be a random number within (0, 1), add a
judgment criterion into Equations (17) and (18), and synthesize Equation (19) to obtain the
overall WOA location update formula, as shown in Equation (20):

X(titer + 1) =


X∗(titer)− A · D, p < 0.5, |A| < 1
Xrand(titer)− A · D′′, p < 0.5, |A| ≥ 1
D′ · ebr2 · cos(2πr2) + X∗(titer), p ≥ 0.5

(20)

Within the set number of iterations, based on the changes in the values of p and A, the
WOA uses the above three mechanisms to update the individual positions continuously,
and find the position of the feasible optimal solution to complete the optimization goal and
end the algorithm cycle. The WOA’s flow chart is shown in Figure 2.
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Figure 2. The WOA’s flow chart.

3.2. IWOA

The touring factor a in the original WOA tends to decrease linearly in the iterative
process. Inspired by previous experience [37], to make the WOA avoid the problem of
prematureness when dealing with high-dimensional complex problems, and balancing the
global and local search abilities, a nonlinear swimming factor formula was proposed in this
paper. Its expression is shown in Equation (21):

a = 2

(
1−

(
titer

Tmax

)3
)

(21)

The change curve of a’s value, before and after the improvement, is shown in Figure 3.
The change in swimming factor a determines the change in the convergence factor

A, as described above, coordinating the global and local searches of the WOA. As seen
in Figure 3, the improved a value is larger and decreases more slowly at the beginning,
which can improve the global search performance of the algorithm. The improved a
value decreases faster in the later stage, which improves the local search performance of
the algorithm.
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Figure 3. The value of a.

Introducing adaptive weight into the search phase of the algorithm can further enhance
the WOA’s search capability. The global search performance of the algorithm is stronger
when the value of the inertia weight is larger, and the local search performance of the
algorithm is stronger when the value of the inertia weight is smaller. Therefore, the global
and local search capabilities are dynamically adjusted by applying a nonlinearly varying
inertia weight with an increasing number of iterations. At the same time, the convergence
speed of the algorithm is accelerated, and the optimization-seeking accuracy is tuned by
drawing on the variation formula of the travel factor, as described in the previous section.
The expressions are shown in Equations (22)–(25).

X(titer + 1) = X∗(titer)−ω · A · D, p < 0.5, |A| < 1 (22)

X(titer + 1) = Xrand(titer)−ω · A · D′′, p < 0.5, |A| ≥ 1 (23)

X(titer + 1) = ω · D′ · ebr · cos(2πr) + X∗(titer), p ≥ 0.5 (24)

ω = 1− 2
(

titer
Tmax

)3
(25)

The parameters in Equations (22)–(24) are defined the same as those defined in
Equations (17)–(19), except the ω. The value of t at the beginning of the number of it-
erations is smaller, while the weight ω and the adjustment step of the algorithm are larger;
thus, the whale can search for the optimal solution in a larger area. As the number of
iterations t increases, the weight ω becomes smaller, as does the adjustment step of the
algorithm. At this time, the whales search more carefully in the optimal solution domain
space. Therefore, ω changes adaptively with the current population’s number of itera-
tions, improving the WOA’s search accuracy and accelerating its convergence speed. The
probability of finding food also increases accordingly.

Moreover, Levy’s distribution is a probability distribution proposed by the famous
French mathematician Levy. There are many flying animals in nature whose flight paths
follow Levy’s distribution. Based on Levy’s distribution, Levy’s flight was created. It is
a kind of flight mode with short and long steps. This random flight pattern makes the
trajectory of flying animals more extensive, and the probability of finding food increases
accordingly. The introduction of Levy flight trajectory for the position update formula is
shown in Equation (26).

X(titer + 1) = X(titer) + α⊕ Levy(β)⊕ X(titer) (26)



Symmetry 2023, 15, 36 10 of 20

where α is the step scale factor, taken as 0.01; Levy(β) represents a random number subject
to the Levy distribution with parameter β. Levy(β) is defined by Equation (27). Where u
and v are normally distributed; β taken as 1.5.

Levy(β) ∼ u

|v|
1
β

u ∼ N
(
0, σ2

u
)
, v ∼ N

(
0, σ2

v
)

σu =

 Γ(1+β)·sin
(

βπ
2

)
Γ
(

1+β
2 ·β·2

β−1
2

)
 1

β

, σv = 1

(27)

The pseudo-code of IWOA is summarized in Algorithm 1.

Algorithm 1 Pseudo-code of IWOA

1: Initialize the whales population Xi(i = 1, 2, 3, . . . , N)
2: Calculate the fitness of each search agent
3: Update X∗ if there is a better solution
4: t = 1
5: while t < maximum number of iterations do
6: for each search agent do
7: Update a, A, C, r1, r2 and p
8: if p < 0.5 then
9: if |A| < 1 then

10: Update the position of search agent by the Equation (22)
11: else if |A| ≥ 1 then
12: Update the position of search agent by the Equation (23)
13: end if
14: else if p > 0.5 then
15: Update the position of the search agent by the Equation (24)
16: end if
17: end for
18: Update the position of the search agent by the Equation (26)
19: Check if any search agent goes beyond the search space and amend it
20: Update X∗ if there is a better solution
21: t = t + 1
22: return X∗

23: end while

3.3. Testing Function Results

This subsection verifies the performance of the proposed method of the IWOA. Us-
ing eight selected testing functions from CEC2017 [38] to test the IWOA’s performance.
The experimental testing results of the IWOA are compared with the GA [39], PSO [40],
WHO [41], WOA, and EWOA [42]. Table 1 depicts the average outcomes of the IWOA
for 8 selected testing functions compared with the WOA, WOA based on adaptive weight
strategy (AWOA), and WOA based on Levy flight trajectory (Levy-WOA), respectively.

Figures 4–7 show the convergence curves of the IWOA compared with the WOA,
AWOA, and Levy-WOA on each right side of the subplots. They also show the func-
tion view spaces of the F3(x), F4(x), F5(x), and F9(x) from CEC2017 on each left side of
the subplots.
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Table 1. Comparison of average outcomes of the IWOA for 8 selected testing functions with the
WOA, AWOA, and Levy-WOA.

Algorithms WOA AWOA Levy-WOA IWOA

F1(x) 2.31× 10−14 4.39× 10−13 2.45× 10−54 1.81× 10−59

F2(x) 5.77× 10−25 1.09× 10−26 6.83× 10−59 6.18× 10−63

F3(x) 6.55× 101 3.25× 101 2.19× 101 1.58× 101

F4(x) 2.23× 102 1.92× 102 1.80× 102 1.81× 102

F5(x) 2.03× 10−2 3.16× 10−11 1.56× 10−8 2.70× 10−12

F9(x) 3.51× 10−2 4.39× 10−7 2.45× 10−9 3.46× 10−9

F11(x) 4.24× 10−1 4.53× 10−3 1.25× 10−3 3.33× 10−4

F13(x) 9.85× 100 6.10× 100 2.40× 100 4.06× 100

Figure 4. The evaluated experimental results of F3(x).

Figure 5. The evaluated experimental results of F4(x)
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Figure 6. The evaluated experimental results of F5(x).

Figure 7. The evaluated experimental results of F9(x).

The curve of the convergence of the IWOA observed in Figures 4–7 shows that the fast
one against the other algorithms belongs to the IWOA. It means that the convergence rate
of the IWOA is quick to find out the global optimization. Table 2 depicts the comparison of
the IWOA obtained results with the in pair compared to other algorithms in the literature.

Table 2. The obtained average results of the IWOA for the selected testing functions are compared
with the GA, PSO, WHO, and E-WOA.

Algorithms GA PSO WHO EWOA IWOA

F1(x) 6.92× 10−4 5.38× 10−11 6.89× 10−57 3.56× 10−50 1.81× 10−59

F2(x) 4.84× 19−9 9.27× 10−23 1.74× 10−61 5.72× 10−55 6.18× 10−63

F3(x) 1.08× 102 7.50× 101 1.44× 101 2.37× 101 1.58× 101

F4(x) 3.28× 102 2.13× 102 1.67× 102 1.87× 102 1.81× 102

F5(x) 8.39× 10−2 3.23× 10−2 4.48× 10−9 2.39× 10−11 2.70× 10−12

F9(x) 1.18× 10−1 7.46× 10−2 2.23× 10−8 7.14× 10−8 3.46× 10−9

F11(x) 3.72× 100 4.02× 10−1 7.07× 10−4 3.92× 10−3 3.33× 10−4

F13(x) 2.39× 101 1.25× 101 4.93× 100 4.76× 100 4.06× 100

Table 2 shows the experimental data of the obtained results of the IWOA compared
with the other methods. It can be seen that the IWOA produces the optimization results of
functions, e.g., F1(x), F2(x), F5(x), F9(x), F11(x), and F13(x) better than the other algorithms
in terms of the optimization accuracy, and the optimization results of all testing functions
of IWOA are improved compared with the original algorithm.
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4. Analysis of Calculation Cases

This section studies a low-voltage grid-connected microgrid system composed of
dispatchable and non-dispatchable distributed generation units; its optimal operations
planning problem was solved and analyzed by the IWOA. The dispatchable distributed
generation units included fossil fuel generators, batteries, and a large grid. The non-
dispatchable distributed generation units were renewable energy sources whose power
output could be controlled or dispatched. The structure of this low-voltage grid-connected
microgrid system is shown in Figure 8.

Figure 8. The structure of a low-voltage grid-connected microgrid system.

4.1. Relevant Arithmetic Data

According to the datasets given by [43,44], based on the real-time wind speed, ambient
temperature, and light intensity, combined with the mathematical model mentioned above,
the 24-h electricity load, PV, and WT output data for a typical day in summer at some sites
are shown in Figure 9.
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Figure 9. Fixed loads and power outputs from non-dispatchable generators.

According to the time-sharing tariff and renewable energy feed-in tariff, the peak
hours were 10:00–15:00 and 18:00–21:00; the weekdays were 07:00–10:00, 15:00–18:00, and
21:00–23:00; and the valley hours were 23:00–07:00. The purchase and sale prices for each
period time are shown in Table 3. The parameters, such as upper and lower limits of power
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output and O&M costs of DERs in the microgrid, are shown in Table 4. The parameters
related to the SOC of the battery are shown in Table 5. The pollutant emissions factors
during the operation of the FC and DE in the microgrid are shown in Table 6.

Table 3. Market price of electricity [45].

Types Price/[$·(kWh)−1]

Peak Period Normal Period Through Period

Buy 0.84 0.51 0.19
Sell 0.42 0.26 0.09

Table 4. Generation parameters of each DER in microgrid [45].

Types Minimum
Power/(kW)

Maximum
Power/(kW)

Maintenance
Costs/($/kW)

Climb
Rates/(kW/min)

WT 0 40 0.036 /
PV 0 50 0.012 /
FC 5 60 0.107 2
DE 6 80 0.205 3

BAT −30 30 0.005 /
Grid −60 60 0.001 /

Table 5. Battery charge-discharge parameters [46].

Parameters Value

Charge-discharge efficiency 0.9
Self loss rate 0.01

Maximum charge-discharge power/kW 30
Maximum state of charge 0.9
Minimum state of charge 0.2

Initial state of charge 0.6

Table 6. Pollutant emission factors for each DER in the microgrid.

Types of
Pollutant

Converted
Costs/($/kg)

Emission Factors/(kg/kWh)

DE FC

CO2 0.0052 0.542 0.635
SO2 0.693 0 0
NOx 1.19 3.1 × 10−5 2.3 × 10−5

CO 0.201 6.5 × 10−5 5.4 × 10−5

4.2. Analysis of Optimization Results of Grid-Connected Operation

In grid-connected operation, microgrid load is provided by DERs, which purchase
power from the large grid to compensate for load demands whenever microgrid power
output is insufficient. Moreover, the microgrid sells power to the large grid, to subsidize
generation costs whenever its power output is a surplus.

Figure 10 shows the output power of DERs other than PVs and WTs, and the purchased
and sold power that is generated by interactions with the large grid, after optimization using
the IWOA. Figure 11 shows the generation share of each DER in the day-ahead dispatch.
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Figure 10. The outputs of each DER in microgrid under grid-connected operation by running IWOA.

Figure 11. Percentages of outputs from each DER by running GA, PSO, WHO, WOA, EWOA, and
IWOA.

From Figure 10, we can see that from 00:00 to 07:00, microgrid load demand was
reduced, and the large grid was in the valley. The price of purchasing electricity from the
large grid was lower than the price of using DE and FC generation. Thus, the BAT was
charged as much as possible while meeting the load demand. From 07:00 to 10:00, the large
grid was in the normal period, and the price of purchasing and selling electricity from
the large grid was not much different from the price of DE and FC generation. Thus, the
system adjusted the output of the DE, FC, and BAT according to the load demand.

From 10:00 to 15:00, the load demand increased further, and it was during the peak
time of the large grid; the price of selling electricity to the grid was higher than the price of
using the DE and FC. PV output reached peak range at this time, and the system increased
the output of the BAT while selling surplus power to the large grid, to generate more
subsidies for its generation costs. From 15:00 to 18:00, the large grid was in the normal
period and the PV output began to decrease; the microgrid reduced the power sold to the
large grid, adjusted the DE and FC output, and charged the BAT.

From 18:00 to 21:00, the peak time of the whole day, the large grid was in the peak
period. During this time, the PV basically stopped generating power, and the DE, FC, and
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BAT were all at high generation levels; thus, when the load demand was met, the power
was sold to the large grid as much as possible. If the DERs still did not meet the load
demand, the microgrid made up for this by purchasing power from the large grid.

From 21:00 to 24:00, the large grid was in the normal period, and the load demand
began to decrease. Thus, the system reduced the power output of the BAT and changed
the power output of the DE, FC, and BAT, as well as the power purchased and sold by the
large grid, according to the load demand.

From Figure 11, we can see that by running IWOA, the WT and PV accounted for
about one-third of the total power generation in an entire day; meanwhile, the microgrid
purchased about 7% of the power from the large grid, the BAT discharged about 10%,
and DE and FC generation accounted for about 50%. From the perspective of microgrid
self-sufficiency, the system was less dependent on the large grid and operated more stably.

To verify the improvement of the IWOA, the model solution was compared with the
GA, PSO, WOA WHO, and the EWOA, which were all run 10 times, with the average
values selected for analysis. Using the objective function given by Equation (1), the worst
fitness curves obtained by running each algorithm 10 times are shown in Figure 12, and the
best fitness curves obtained by running each algorithm 10 times are shown in Figure 13.
The worst, best, and average objective function fitness values, which were obtained after 10
runs of each algorithm, are shown in Table 7.
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Figure 12. The worst operation cost curves of microgrid obtained by running GA, PSO, WHO, WOA,
EWOA, and IWOA.
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Figure 13. The best operation cost curves of microgrid obtained by running GA, PSO, WHO, WOA,
EWOA, and IWOA.

Table 7. The worst, best, and average of each algorithm run after 10 runs, respectively.

Types of
Algorithm

Cost/$

Worst Fitness Average Fitness Best Fitness

GA 851.6949 822.3026 791.2397
PSO 718.8405 703.6297 672.7780

WHO 644.8292 608.6623 574.1178
WOA 769.5022 691.2630 616.9936

EWOA 751.5720 686.7476 635.6775
IWOA 618.1832 580.8272 544.6443

Figure 11 shows that compared with the GA, PSO, WHO, WOA, and the WOA, the
calculated microgrid–large grid interactions are lower by about 4%, 1%, 1%, 1%, and 2%,
respectively; moreover, Table 7 shows that compared with the GA, PSO, WHO, WOA, and
the EWOA, the average cost of the IWOA calculation is lower by about 29%, 17%, 5%,
16%, and 15%, respectively. The results indicate that the IWOA proposed in this paper has
good optimization-seeking accuracy, which works well for solving the optimal operations
planning problem of this grid-connected microgrid.

5. Conclusions

In this study, a grid-connected microgrid generating model containing WT, PV, DE,
FC, and BAT was established with minimized operation costs as the objective function to
reduce microgrid pollution emissions. To better address this issue, an improved whale
algorithm based on adaptive weight strategy and Levy flight trajectory was proposed,
which further reduced the operating costs of the grid-connected microgrid. Using IWOA,
the output ratio of RESs increased, and the microgrid purchased less power from the large
grid. Moreover, with BAT as a power storage system and participating in coordinated
control, the quality of the microgrid power supply was effectively adjusted by BAT, which
guaranteed the symmetry in renewable energy and microgrid system.

In analyzing the output ratio of each DER to gross generation, the output ratio of
each DER calculated by IWOA was compared with that calculated by GA, PSO, WHO,
WOA, and EWOA. The results showed that the microgrid operations planning problems
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solved by IWOA is more effective in enhancing the independence of microgrid operations.
The increased ratio of RESs also further improved the environmental friendliness of the
microgrid. Moreover, in the scenario where the market price of electricity was considered,
the objective function was solved by GA, PSO, WHO, WOA, EWOA, and IWOA, and the
calculated results represented the operation costs. A comparison of the average operation
costs after running each algorithm ten independent times has been presented to prove the
capability of the IWOA proposed in this paper is better for solving microgrid operations
planning problems, which further reduces the microgrid operation costs and has good
application prospects.
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List of Symbols

t Index representing time
T Time period
Cgrid(t) The cost of microgrid interaction with the large grid
CBE(t), CWT(t), CPV(t) The maintenance costs of BAT, WT, PV
CDE(t), CFC(t) The maintenance costs of DE, FC
EDE

CO2
, EDE

SO2
, EDE

NOx
, EDE

CO The converted costs of various pollutants generated by DE
EFC

CO2
, EFC

SO2
, EFC

NOx
, EFC

CO The converted costs of various pollutants generated by FC
Pgrid(t) The power of microgrid interaction with the large grid
PWT(t), PPV(t), PDE(t), PFC(t) Power generation of WT, PV, DE, FC at time t
titer Index representing current iterations of the algorithm
Tmax Index representing maximum number of algorithm iterations
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