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Abstract: Two-dimensional quantum billiards are one of the most important paradigms for exploring
the connection between quantum and classical worlds. Researchers are mainly focused on nonin-
tegrable and irregular shapes to understand the quantum characteristics of chaotic billiards. The
emergence of the scarred modes relevant to unstable periodic orbits (POs) is one intriguing finding in
nonintegrable quantum billiards. On the other hand, stable POs are abundant in integrable billiards.
The quantum wavefunctions associated with stable POs have been shown to play a key role in ballistic
transport. A variety of physical systems, such as microwave cavities, optical fibers, optical resonators,
vibrating plates, acoustic waves, and liquid surface waves, are used to analogously simulate the wave
properties of quantum billiards. This article gives a comprehensive review for the subtle connection
between the quantum level clustering and the classical POs for three integrable billiards including
square, equilateral triangle, and circular billiards.

Keywords: integrable quantum billiards; classical periodic orbits; level clustering

1. Introduction

Harmonic oscillators are universally recognized as one of the most important paradigms
for exploring quantum-classical correspondence. Under the paraxial approximation, the
transverse part of the wave equation for spherical cavities can be mathematically analogous
to the Schrödinger equation for two-dimensional (2D) harmonic oscillators [1]. Accord-
ingly, various high-order transverse modes can be generated with the specially designed
spherical laser cavities to analogously manifest the quantum wave function. The eigenfunc-
tions of 2D quantum harmonic oscillators can be solved as the Hermite–Gaussian (HG)
functions in rectangular coordinates or the Laguerre–Gaussian (LG) functions in polar
coordinates [2]. The selectively diode-end-pumped solid-state lasers have been widely em-
ployed to generate both HG and LG functions from ground order to very high order [3–7].
Additionally, the same laser technology was exploited to generate the so-called geometric
modes in the degenerate cavities, which clearly revealed the ray-wave duality in the spatial
domain [8,9]. In mesoscopic quantum phenomena, the degeneracy of energy levels was
found to play an important role in the connection between the conductance fluctuation and
the classical periodic orbits (POs) [10]. Similarly, the emergence of geometric modes was
verified to originate from the degeneracy of eigenfrequencies in laser resonators [11,12].
The Lissajous stationary modes are one of the most remarkable geometric modes generated
from the astigmatic laser cavities. Theoretically, the Schrödinger coherent state for the
one-dimensional (1D) harmonic oscillator can be straightforwardly extended to the 2D
harmonic oscillator to obtain the stationary coherent states that exactly spatially correspond
to the Lissajous figures.
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Additionally, 2D quantum billiards are another pedagogical model for comprehend-
ing the connection between quantum and classical worlds. Various dynamical features
can be straightforwardly studied from the model of quantum billiards by changing the
geometry. One main branch of research on billiard systems is focused on nonintegrable and
irregular shapes to understand the characteristics in the field of quantum chaos [13–20].
Classically, the chaotic nature renders all the orbits in a chaotic system as being unstable.
An interesting finding in nonintegrable quantum billiards is the emergence of eigenstates
on unstable POs, called scarred modes [21–23]. Quantum scars have been searched and
analyzed in mesoscopic systems [24–34]. Due to the similarity of the equations for different
types of waves, scars have been observed in microwaves [35–41]. Quantum scars have not
only been confirmed from the accumulation of spin–orbit-coupled atomic gases for specific
energies [42] but also generated in the 2D harmonic oscillators with local impurities [43–45].
Furthermore, quantum many-body scars have been hypothesized to cause weak ergodicity
breaking and the unexpectedly slow thermalization of cold atoms [46–55]. The similar
phenomenon dynamical scar has also been experimentally found in a driven fraction sys-
tem [56]. Nevertheless, the overall number of scarred modes is quite few. The eigenstates
in nonintegrable billiards are mostly widely distributed in the coordinate space [13], often
exhibiting common features of quasi-linear ridge structures [57].

Compared with non-integrable billiards, stable POs are generally abundant in inte-
grable billiards with symmetrical shapes [11,16,58–75]. The quantum wavefunctions as-
sociated with stable POs have been found to play a key role in ballistic transport [76–79],
quantum pointer states and decoherence [80–95], universal conductance fluctuations [95–99],
and chaos-assisted quantum tunneling [100–104]. Ballistic transport means that the mean
free path of the particle is significantly longer than the size of the medium through which
the particle travels. In addition to microwave cavities, quantum billiards can be analogously
explored with the wave systems including optical fibers [105,106], optical resonators [107–116],
vibrating plates and acoustic waves [117–123], and liquid surface waves [123–128]. Notice-
ably, it has been confirmed that the vertical-cavity surface-emitting lasers (VCSELs) with a
unique longitudinal wave vector kz and the lateral oxide confinements can be modeled as
2D wave billiards with hard walls. To be brief, theoretical research on quantum billiards
was intensively performed in the last century, and later, some researchers’ interests shifted
to applied fields such as laser resonators.

The relationship between level dynamics and spectra of chaotic systems can be found
in a recent review given by Zakrzewski [129]. In this article, we thoroughly review the
subtle connection between the quantum level clustering and the classical POs for three
integrable billiards including square, equilateral triangle, and circular billiards. The equi-
lateral triangular billiard is the representative of non-separable systems, and the circular
billiard is the highest symmetry in polar coordinates. We systematically overview the direc-
tionally resolved energy spectra to manifest the phenomenon of quantum level clustering
in integrable quantum billiards. We numerically demonstrate that the superposition of
the eigenstates in the vicinity of level clustering can be exactly localized on the classical
PO. Furthermore, we review that the trajectory equations relevant to classical POs can be
analytically derived from the superposed quasi-stationary quantum states. In numerical
calculations, popular mathematical software packages such as MATLAB 6.0 R12, MATHE-
MATICA v.6 can help students easily compute the spatial patterns of mesoscopic quantum
states in this work.

Pedagogical descriptions of various one-dimensional (1D) quantum mechanical prob-
lems have been the fundamental ingredients in textbooks for understanding such topics
as transmission and reflection from square barriers and eigenstates in square wells. An
interesting extension should be the study of the energy eigenvalues and eigenfunctions
in integrable 2D billiard systems. Previously, Robinett [75] has given a review for the
time evolution of Gaussian wave packets in integrable 2D billiard systems to discuss the
existence of revivals and fractional revivals and the connection between classical period
and revival time in the energy eigenvalue spectrum. Nevertheless, the systematic reviews
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for the spatial distributions of mesoscopic quantum states relevant to classical POs have
never been given so far. The connections between the spatial distributions of mesoscopic
quantum states and the POs of classical billiards have become feasible not only with ob-
servations in ballistic microstructures but also with analogous observations in optical and
laser systems. This review provides the important manifestation of mesoscopic quantum
states relevant to classical POs in integrable billiard systems. More intriguingly, the relative
simplicity of quantum-classical connections can be easily placed in the undergraduate and
graduate curricula.

2. Quantum Billiards

The quantum analogy of a classical billiard is called a quantum billiard. For the
classical billiard with the 2D region denoted by R, the corresponding potential in quantum
mechanics is given as

V(x, y) =
{

0 in R
∞ otherwise

(1)

The time-independent Schrödinger equation for the potential defined in Equation (1)
can be expressed as the Helmholtz equation:{ (

∂2

∂x2 +
∂2

∂y2 + k2
)

ψ(x, y) = 0 in R
ψ(x, y) = 0 on the boundary of R

(2)

where k = (2µE/})1/2; E and µ are energy and mass of the particle, and } is the reduced
Planck’s constant. The homogeneous Dirichlet boundary condition is given due to the
condition of V = ∞. To be brief, quantum billiard is defined using the Helmholtz equation
in R with the Dirichlet boundary condition.

3. Square Billiard

The spatial distributions of quantum wave functions corresponding to classical POs [76–79]
have been an intriguing phenomenon in open ballistic cavities. Semiclassical PO theory has
been used to explain the scarred wave functions in chaotic billiards [21–23]. Nevertheless,
it is pedagogically useful for comprehending the quantum-classical correspondence in
mesoscopic physics to fully develop the connection between quantum eigenfunctions and
classical POs in integrable systems. One of the simplest integrable billiards is the square
billiard [11]. In a square billiard, each family of POs can be specified with three parameters
(p, q, and φ), where p and q are two positive integers describing the number of reflections
with the horizontal and vertical boundaries, and φ (−π < φ < π) is associated with the wall
positions of specular reflection points [11,65]. Alternatively, the parameter φ may also be
linked to the starting point of the classical particle. Figure 1 depicts some examples for POs
in a square billiard. The trajectory can be seen to constitute a single, non-repeated orbit
when p and q are co-prime. When p and q have a common factor m, the trajectory is an orbit
family that corresponds to m primitive POs with indices of (p/m, q/m, and φ/m).

For a square billiard with the region in 0 ≤ x, y ≤ a, the eigenfunctions are given as

ψm,n(x, y) =
2
a

sin
(mπ

a
x
)

sin
(nπ

a
y
)

(3)

where the quantum numbers m and n are positive integers. The eigenvalues corresponding
to the eigenfunctions ψm,n(x, y) are given using E(m, n) = }2k2

m,n/(2µ), where the wave
numbers km,n are expressed as

km,n =
π

a

√
m2 + n2 (4)
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Figure 1. Some examples of orbit families in square billiard.

Figure 2 shows the wave patterns |ψm,n(x, y)|2 for several sets of quantum numbers
(m, n). From Bohr’s correspondence principle, the classical limit of a quantum system
should be asymptotically obtained when the quantum numbers are sufficiently large.
However, the conventional eigenfunctions of a square billiard cannot reveal the features of
classical POs no matter how large the quantum numbers are. The quantum states relevant
to the classical POs have been verified to be the superpositions of the nearly degenerate
eigenstates. For a given central order (mo, no), the nearly degenerate condition can be
derived from the differential of the eigenvalue function E(m, n) given as

dE(m, n)|mo ,no
=
(

∂E/∂m|mo ,no

)
dm +

(
∂E/∂n|mo ,no

)
dn (5)

Setting dE(m, n)|mo ,no
= 0 leads the tangent of the constant-energy contour as

− dn
dm

=
∂E/∂m|mo ,no

∂E/∂n|mo ,no

=
mo

no
(6)
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M
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K M

x y e x y
M

φφ ψ + −
=−

Ψ =
+

  (7)

where φ   is the phase factor in the range of π φ π− ≤ ≤   and (2 1)M +   means the total 
number of the superposed eigenstates. Note that the parameter ϕ corresponds to the start-
ing point of the classical particle shown in Figure 1. Under the circumstance of N M>> , 
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N M x y φΨ  are evidently localized on the 
classical POs. The velocity direction of the trajectory can be straightforwardly determined 
with the relation of / / /x yk k m n q p= =  . By way of explanation, the wave function in 
Equation (7) is not a strictly stationary state since the eigenstate components are not ex-
actly degenerate for the Hamiltonian H. Nevertheless, /H HΔ < >  will rapidly approach 
to zero as N → ∞  for a small M. Therefore, the coherent state in Equation (7) can be re-
garded as a quasi-stationary state in the mesoscopic region. 

(m,n)=(1,1) (m,n)=(2,2) (m,n)=(3,3) (m,n)=(4,4)

(m,n)=(5,5) (m,n)=(6,6) (m,n)=(7,7) (m,n)=(8,8)
Figure 2. Wave patterns for eigenstates |ψm,n(x, y)|2 for several sets of quantum numbers (m, n) of
square billiard.
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Since both quantum numbers (m, n) are positive integers, the slope −dn/dm must be
a rational number. From Equation (6), the nearly degenerate condition can be generalized
as mo/no = q/p, where p and q are coprime positive integers. Figure 3 depicts the spectrum
km,n as a function of the ratio m/n for a square billiard with 1 ≤ m, n ≤ 700. The spectrum
conspicuously reveals that the eigenvalues are clustered in the vicinity of m/n = q/p to
form valley structures. Clustering means that levels with very different quantum numbers
have very similar energies. From the condition mo/no = q/p, the central eigenstate for the
coherent superposition can be in terms of a single parameter N as mo = qN or no = pN.
The slope −dn/dm = q/p signifies that the quantum numbers for the nearly degenerate
eigenstates around the central mode can be given using m = qN + pK and n = pN − qK
with the integer index K in a small range. Consequently, the coherent superposition of the
nearly degenerate eigenstates around the central mode can be generalized as

Ψ(p,q)
N,M(x, y; φ) =

1√
2M + 1

M

∑
K=−M

eiKφψqN+pK,pN−qK(x, y) (7)

where φ is the phase factor in the range of −π ≤ φ ≤ π and (2M + 1) means the total
number of the superposed eigenstates. Note that the parameter φ corresponds to the
starting point of the classical particle shown in Figure 1. Under the circumstance of
N >> M, the eigen-energies of the superposed eigenstates can be confirmed to be close to

a constant energy. Figure 4 illustrates the wave patterns
∣∣∣Ψ(p,q)

N,M(x, y; φ)
∣∣∣2 calculated using

Equation (7) with N = 100, M = 5, and φ = π/2 for eigenstates clustered around the indices

(p,q) shown in Figure 3. The wave patterns of
∣∣∣Ψ(p,q)

N,M(x, y; φ)
∣∣∣2 are evidently localized on the

classical POs. The velocity direction of the trajectory can be straightforwardly determined
with the relation of kx/ky = m/n = q/p. By way of explanation, the wave function in
Equation (7) is not a strictly stationary state since the eigenstate components are not exactly
degenerate for the Hamiltonian H. Nevertheless, ∆H/ < H > will rapidly approach to
zero as N → ∞ for a small M. Therefore, the coherent state in Equation (7) can be regarded
as a quasi-stationary state in the mesoscopic region.
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p
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p
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1

q
p
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1
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1

q
p

=
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Figure 3. Directionally resolved level distribution km,n as a function of the ratio m/n with 1 ≤ m, n ≤ 700
for manifesting the level clustering relevant to classical POs.
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Figure 4. Wave patterns for quasi-stationary coherent states
∣∣∣Ψ(p,q)

N,M(x, y; φ)
∣∣∣2 calculated using Equa-

tion (6) with N = 100, M = 5, and φ = π/2 for eigenstates clustered around the indices (p, q).

The trajectorial equations for POs can be derived from the quantum coherent state in
Equation (7) for the central maximum of the wave intensity. Using the identity
sin θ = (eiθ − e−iθ)/(2i), the representation of the coherent state in Equation (7) can be
organized as

Ψ(p,q)
N,M(x, y; φ) = 1

2a

[
eiNΘ−g (x,y)DM

(
Θ+

t (x, y) + φ
)
+ e−iNΘ−g (x,y)DM

(
Θ+

t (x, y)− φ
)]

− 1
2a

[
eiNΘ+

g (x,y)DM
(
Θ−t (x, y) + φ

)
+ e−iNΘ+

g (x,y)DM
(
Θ−t (x, y)− φ

)] (8)

where
DM(θ) =

1√
2M + 1

M

∑
K=−M

eiKθ (9)

Θ±g (x, y) = π(qx± py)/a and Θ±t (x, y) = π(px± qy)/a. The function DM(θ) in Equation
(9) is the Dirichlet kernel that exhibits the periodic maxima of the intensity at θ = 2nπ
for any integer n. Using the periodic maximal characteristic of the Dirichlet kernel, the

parametric equations for the central maxima of the intensity
∣∣∣Ψ(p,q)

N,M(x, y; φ)
∣∣∣2 can be gener-

alized as A x + B y± φ = 2nπ, where −A /B = η represents the slope. From Equation (8)
and Θ±t (x, y) = π(px± qy)/a, the slopes for all parametric equations can be found to be
two cases of η = ±p/q. Furthermore, all parametric equations can be confirmed to exactly
correspond to the trajectorial lines of classical POs in a square billiard. The initial position
(xo, yo) and the velocity (vx, vy) in classical dynamics can be linked to Equation (8) using
the condition of A xo + B yo ± φ = 2nπ as well as vy/vx = (dy/dt)/(dx/dt)|xo ,yo

= η.
From the result of η = ±p/q, the velocity (vx, vy) can be verified to be consistent with
the classical dynamics vy/vx = p/q. To sum up, the trajectorial equations for the classical
POs can be analytically extracted from the quantum coherent states in Equation (7). It is
worthwhile to mention that the lines of the phase functions Θ±g (x, y) and the lines of the
trajectorial functions Θ±t (x, y) in Equation (8) are mutually orthogonal.

4. Equilateral Triangular Billiard

Square billiard is a classically separable and integrable system, whereas the equilateral
triangle billiard is an integrable but non-separable system. In theory, the correlation
between the quantum level clustering and the classical POs was deeply discussed from the
representation of the quantum coherent states. In experiments, the oxide-confined VCSEL
devices were fabricated in the shape of an equilateral triangle to analogously manifest the
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quantum level distribution and the spatial features of the wave functions. For an equilateral-
triangular billiard with three vertices at (0, 0), (a/2,

√
3a/2), and (−a/2,

√
3a/2), the

eigenfunctions are given using [62,130]

ψ
(e)
m,n(x, y) =

√
16

a23
√

3

{
cos
[ 2π

3a (2m− n)x
]

sin
(

2π√
3a

ny
)

− cos
[ 2π

3a (2n−m)x
]

sin
(

2π√
3a

my
)

+ cos
[
− 2π

3a (m + n)x
]

sin
[

2π√
3a
(m− n)y

]} (10)

ψ
(o)
m,n(x, y) =

√
16

a23
√

3

{
sin
[ 2π

3a (2m− n)x
]

sin
(

2π√
3a

ny
)

− sin
[ 2π

3a (2n−m)x
]

sin
(

2π√
3a

my
)

+ sin
[
− 2π

3a (m + n)x
]

sin
[

2π√
3a
(m− n)y

]} (11)

where the quantum numbers m and n are nonnegative integers, and the superscripts (o) and
(e) denote the two types of degenerate modes with odd and even symmetries, respectively.
The eigenvalues corresponding to the eigenfunctions ψ

(e)
m,n(x, y) and ψ

(o)
m,n(x, y) are given

using E(m, n) = }2k2
m,n/(2µ), where the wave numbers km,n are expressed as

km,n =
4π

3a

√
m2 + n2 −mn (12)

Figure 5 shows the wave patterns of
∣∣∣ψ(e)

m,n(x, y)
∣∣∣2 for several sets of quantum numbers

(m, n). Since the wave patterns for
∣∣∣ψ(e)

m,n(x, y)
∣∣∣2 and

∣∣∣ψ(o)
m,n(x, y)

∣∣∣2 are the same in the

spatial patterns, only the case of
∣∣∣ψ(e)

m,n(x, y)
∣∣∣2 is presented in Figure 5. Due to the setting

of the equilateral triangle, all wave patterns can be found to be symmetric with respect
to the y axis. Like the results for a square billiard, the conventional eigenstates for an
equilateral-triangular billiard cannot exhibit the spatial properties of classical POs, even in
the correspondence limit of large quantum numbers.
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Figure 5. Wave patterns for eigenstates
∣∣∣ψ(e)

m,n(x, y)
∣∣∣2 for several sets of quantum numbers (m, n) in

equilateral triangle billiard.

The eigenfunctions ψ
(e)
m,n(x, y) and ψ

(o)
m,n(x, y) in Equations (10) and (11) are the standing-

wave representation. The traveling-wave representation is more convenient for construct-
ing the coherent states relevant to classical POs. In terms of ψ

(e)
m,n(x, y) and ψ

(o)
m,n(x, y), the

traveling-wave representation is given using ψ
(±)
m,n (x, y) = ψ

(e)
m,n(x, y)± iψ(o)

m,n(x, y) , where
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the symbols (+) and (−) denote the forward and backward characteristics, respectively.
Consequently, the wave functions for ψ

(±)
m,n (x, y) can be given using

ψ
(±)
m,n (x, y) =

√
16

a23
√

3

{
exp

[
± i 2π

3a (2m− n)x
]

sin
(

2π√
3a

ny
)

− exp
[
± i 2π

3a (2n−m)x
]

sin
(

2π√
3a

my
)

+ exp
[
∓ i 2π

3a (m + n)x
]

sin
[

2π√
3a
(m− n)y

]} (13)

Note that ψ
(+)
m,n and ψ

(−)
m,n form a conjugate pair with identical spatial patterns. Again,

the quantum coherent states related to the classical POs can be formed via superposition of
the nearly degenerate eigenstates. As discussed in the case of square billiard, the nearly
degenerate condition for equilateral triangle billiards with the central order (mo, no) can be
given using

− dn
dm

=
∂E/∂m|mo ,no

∂E/∂n|mo ,no

=
2mo − no

2no −mo
(14)

Since the slope−dn/dm needs to be a rational number, the nearly degenerate condition
in Equation (14) can be generalized as (2mo − no)/(2no −mo) = q/p with p and q being
coprime positive integers. Figure 6 depicts the spectrum km,n as a function of the ratio
(2m− n)/(2n−m) for an equilateral triangle billiard with 1 ≤ m, n ≤ 700. The eigenvalues
can be seen to be clustered in the vicinity of (2m − n)/(2n − m) = q/p to display the
valley structures. Obviously, the level clustering is certainly accompanied by the emergence
of the gap. From the condition (2mo − no)/(2no −mo) = q/p, the central eigenstate for
the coherent superposition can be given by mo = (2q + p)N and no = (2p + q)N with a
single parameter N. Combining with −dn/dm = q/p from Equation (14), the coherent
superposition of nearly degenerate eigenstates around the central mode can be expressed as

Ψ(±,p,q)
N,M (x, y; φ) =

1√
2M + 1

M

∑
K=−M

e±iKφψ
(±)
(2q+p)N+pK,(2p+q)N−qK(x, y) (15)

where φ is the phase factor in the range of −π ≤ φ ≤ π. Under the circumstance of
N >> M, the eigen-energies of the superposed eigenstates can be found to be nearly a
constant energy of

E(m, n) ≈ 9}2π2

8µa2

[
5(p2 + q2) + 8pq

]
N2 (16)
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Figure 7 illustrates the wave patterns of
∣∣∣Ψ(±,p,q)

N,M (x, y; φ)
∣∣∣2 calculated using Equation (15)

with N = 100, M = 5, and φ = π/2 for eigenstates with the indices (p, q) shown in Figure 6.

The wave patterns of
∣∣∣Ψ(+,p,q)

N,M (x, y; φ)
∣∣∣2 can be seen to be precisely concentrated on the

classical POs. Since Ψ(+,p,q)
N,M (x, y; φ) and Ψ(−,p,q)

N,M (x, y; φ) form a conjugate pair, the spatial
patterns are completely identical.
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Figure 7. Wave patterns for quasi-stationary coherent states
∣∣∣Ψ(±,p,q)

N,M (x, y; φ)
∣∣∣2 calculated using

Equation (15) with N = 100, M = 5, and φ = π/2 for eigenstates clustered around the indices (p, q).

The same as in the case of a square billiard, the trajectory equations for POs can
be derived from Equation (15) from the central maximum of the wave intensity. Using
sin θ = (eiθ − e−iθ)/(2i), the representation in Equation (15) can be organized as

Ψ(+,p,q)
N,M (x, y; φ)

=
√

16
a23
√

3
1
2i

[
eiNΘ+

g1(x,y)DM
(
Θ+

t1(x, y, φ)
)
− eiNΘ−g1(x,y)DM

(
Θ−t1(x, y, φ)

)
−eiNΘ+

g2(x,y)DM
(
Θ+

t2(x, y, φ)
)
+ eiNΘ−g2(x,y)DM

(
Θ−t2(x, y, φ)

)
+eiNΘ+

g3(x,y)DM
(
Θ+

t3(x, y, φ)
)
−eiNΘ−g3(x,y)DM

(
Θ−t3(x, y, φ)

)]
(17)

where
Θ±g1(x, y) =

2π

a

[
qx± (2p + q)√

3
y
]

(18)

Θ±g2(x, y) =
2π

a

[
px± (2q + p)√

3
y
]

(19)

Θ±g3(x, y) =
2π

a

[
−(p + q)x± (q− p)√

3
y
]

(20)

Θ±t1(x, y, φ) =
2π√

3a

[
(2p + q)√

3
x∓ qy

]
+ φ (21)

Θ±t2(x, y, φ) =
2π√

3a

[
−(2q + p)√

3
x± py

]
+ φ (22)

Θ±t3(x, y, φ) =
2π√

3a

[
(q− p)√

3
x± (p + q)y

]
+ φ (23)
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The representation for Ψ(−,p,q)
N,M (x, y; φ) can be given using the conjugate of Ψ(+,p,q)

N,M (x, y; φ).
Using the maximal feature of the Dirichlet kernel, the parametric equations for the central
maxima of

∣∣∣Ψ(+,p,q)
N,M

∣∣∣ can be deduced as Θ±t j(x, y, φ) = 2nπ with j = 1, 2, 3. Consequently,
the classical POs of the equilateral-triangular billiard can be confirmed to be constituted by
six independent line equations with different slopes. Using the form Ajx + Bjy + φ = 2nπ
to express the trajectory equations, the slopes can be generalized as −Aj/Bj = ±ηj with
η1 = (2p + q)/

√
3q, η2 = (p + 2q)/

√
3p, and η3 = (p− q)/

√
3(p + q). Similar to the

quantum coherent state for a square billiard, the lines of the phase functions Θ±g j(x, y) and

the lines of the trajectorial functions Θ±t j(x, y) in Equation (17) are mutually orthogonal for
j = 1, 2, 3, respectively.

5. Circular Billiard

Circular billiard is another pedagogical paradigm in classically separable and inte-
grable systems. The azimuthal and radial components of the eigenfunctions of a circular
billiard are the form of exp(imφ) and the Bessel function of the first kind, respectively. Heli-
cally phased light beams with the azimuthal phase form of exp(imφ) are well known to carry
an orbital angular momentum (OAM) of mη per photon, where m is an integer [131,132]. In
ray dynamics, the function of a circular billiard is the same as the transverse confinement
of a cylindrical waveguide for light. Consequently, the propagation-invariant solutions of
the Helmholtz equation in a cylindrical waveguide can be in terms of the Bessel beams
with well-defined OAM [133]. The OAM or optical vortex (OV) of light has been widely
used in numerous applications, such as generating OAM-entangled photon pairs [134,135],
trapping and rotating micron and submicron objects [136–138], generating astrophysi-
cal OAM light [139], assembling DNA biomolecules [140], OAM-based microscopy and
imaging [141], super-diffraction limit imaging [142], and optical communication [143].

The eigenstates in polar coordinates for a circular billiard with radius R are given using

ψm,n(r, θ) =

[
2

R2 J2
m+1(km,nR)

]1/2

Jm(km,nr)
1√
2π

eimθ (24)

where m ∈ Z, n ∈ N, and Jm(•) are the Bessel functions of the first kind with order m. The
quantum numbers m and n are the quantization of the azimuthal and radial oscillations,
respectively. The eigenvalues for ψm,n(r, θ) are given using km,n = xm,n/R with R = a/2,
where xm,n is the nth zero of Jm(x) and a is the billiard diameter. Figure 8 shows the wave
patterns for the function |Re[ψm,n(r, θ)]|2 with different quantum numbers (m, n). Here, the
real part of the eigenfunction ψm,n(r, θ) is purposely used for revealing the nodal structures
in the radial and azimuthal directions associated with the indices n and m, respectively.
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Unlike square and equilateral triangular billiards, the nearly degenerate condition
for a circular billiard cannot be straightforwardly derived from the eigenvalues km,n deter-
mined with Jm(km,nR). The Wentzel–Kramers–Brillouin (WKB) method was nicely used to
analytically obtain the nearly degenerate condition for a circular billiard. The eigenvalues
km,n derived from the WKB method is given using [144]√

k2
m,n(R2 − R2

o)−m cos−1
(

Ro

R

)
=

(
n +

3
4

)
π, (25)

where Ro is the shortest distance to the center for a wave inside the billiard. The relation-
ship between Ro and km,n can be connected from both the quantum and classical OAM
theories. From the quantum momentum }km,n, the semiclassical OAM can be expressed as
Lz = Ro(}km,n). On the other hand, the quantum OAM can be directly in terms of the
azimuthal quantum number as Lz = m}. Consequently, the relationship between Ro and
km,n can be given using Rokm,n = m. In classical ray dynamics, the distance Ro for a periodic
orbit with indices (p, q) can be found to be Ro = R cos(pπ/q), where q is the number of
turning points at the boundary during one period and p is the number of windings during
one period. Using Ro = R cos(pπ/q) and Rokm,n = m, Equation (25) can be rewritten as

km,nR sin(pπ/q) =
(

p
q

m + n +
3
4

)
π (26)

Equation (26) indicates that the eigenstates ψmo−qK,no+pK with K ∈ Z can constitute a
family of nearly degenerate states for mo >> |qK|. From Ro = R cos(pπ/q), Rokm,n = m,
and R = a/2, the relationship between the ratio p/q and km,n can be given using

1
π

cos−1
(

2m
km,na

)
=

p
q

(27)

In other words, the parameter π−1 cos−1[2m/(km,na)] can be used to manifest the
connection of the quantum level distribution and the classical POs. Figure 9 illustrates
the spectrum km,n versus the parameter π−1 cos−1[2m/(km,na)] for a circular billiard with
1 ≤ m, n ≤ 700. The spectrum km,n can be found to be clustered with the conditions
in Equation (27) to be satisfied. Just like square and equilateral triangle billiards, the
level clustering is certainly accompanied by the appearance of the level gap. Namely,
the eigenvalues km,n constitute the structure of energy shells in each neighborhood of the
central state with kmo ,no = mo/[R cos(pπ/q)], corresponding to the emergence of sharp
peaks in the density of states [145].
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Once again, the manifestation of classical POs in quantum systems can be fulfilled by
exploiting a coherent superposition of the eigenstates belonging to the same shell of the
spectrum. In terms of the nearly degenerate eigenstates ψmo−qK,no+pK and the phase factor
φ, the coherent states for circular billiards can be expressed as

Ψ(p,q)
mo ,M(r, θ; φ) =

1√
2M + 1

M

∑
K=−M

ei qK φ ψmo−qK,no+pK(r, θ). (28)

Figure 10 shows the wave patterns
∣∣∣Ψ(p,q)

mo ,M(r, θ; φ)
∣∣∣2 calculated with mo = 100, M = 2,

and the different sets of parameters (p, q) and φ = 0. As expected, all the wave patterns∣∣∣Ψ(p,q)
mo ,M(r, θ; φ)

∣∣∣2 of the coherent states are precisely concentrated on the classical POs.
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Figure 10. Wave patterns for quasi-stationary coherent states
∣∣∣Ψ(p,q)

mo,M(r, θ; φ)
∣∣∣2 calculated with mo = 100,

M = 2, and different sets of parameters (p, q) and φ = 0.

Logically, the trajectory equations for classical POs can be extracted from the quantum
coherent states in Equation (28). However, the extraction cannot be the same as the cases of
square and equilateral triangular billiards to be reached straightforwardly. The derivation
for the trajectory equations needs to be skillfully used for the integral representation,
the asymptotic form, and the boundary condition for the Bessel functions. The integral
representation for the Bessel functions of the first kind is given using [146]

Jm(ρ) =
1

2π

∫ π

−π
eiρ sin ϑe−imϑdϑ (29)

Using the boundary condition Jm(km,nR) = 0 and the asymptotic form Jm(z) ≈√
(2/πz) cos[z− (2m + 1)π/4] for z→ ∞ , the coefficient related to the normalization

constant in Equation (24) for high-order modes can be approximated as[
2

R2 J2
m+1(km,nR)

]1/2
1√
2π

=

√
km,n

2R
(30)

Substituting Equations (29) and (30) into Equation (24), the high-order eigenstates
ψm,n(r, θ) can be expressed as

ψm,n(r, θ) =

√
km,n

2R
1

2π

∫ π

−π
e i km,nr sin ϑeim(θ−ϑ)dϑ (31)
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Note that the eigenfunctions in Equation (31) are still exact for a circular billiard, and
the only one approximation is the normalization constant. In substitution of Equation (31)
into Equation (28), the quantum coherent states can be expressed as

Ψ(p,q)
mo ,M(r, θ; φ) =

√
km,n

2R
1

2π

[∫ π

−π
eikmo ,no r sin (ξ+θ−φ) e−imo(ξ−φ) DM(qξ)dξ

]
(32)

where the integration variable is changed to be ξ = ϑ− θ + φ, and DM(qξ) is the Dirichlet
kernel given using Equation (9). Since DM(qξ) is a periodic pulse function with period
2π/q for the variable ξ, the integration in Equation (32) on the range [−π, π] can be
divided into q segments with the integration interval shortened on the range [−π/q, π/q].
Consequently, the quantum coherent state in Equation (32) can be rewritten as

Ψ(p,q)
mo ,M(r, θ; φ) =

√
km,n

2R
1

2π

[
q−1

∑
s=0

∫ π/q

−π/q
eikmo ,no r sin (ξ+θ+ 2πs

q −φ) e−imo(ξ+
2πs

q −φ) DM(qξ)dξ

]
(33)

As long as (2M + 1)q >> 1, the DM(qξ) can display a narrow peak concentrated in a
small region of −∆ ≤ ξ ≤ ∆ with the effective width of ∆ = π/[q(2M + 1)]. By using the
small angle approximation, the sine term in Equation (31) can be given by

sin
(

ξ + θ +
2πs

q
− φ

)
≈ ξ cos

(
θ +

2πs
q
− φ

)
+ sin

(
θ +

2πs
q
− φ

)
(34)

From Equation (34) and the relation kmo ,no = mo/Ro, the quantum coherent state in
Equation (33) can be organized as

Ψ(p,q)
mo ,M(r, θ; φ) =

√
km,n

2R
1

2π

q−1

∑
s=0

[
e i moΘg,s(r,θ;φ)

∫ π/q

−π/q
e i mo ξ Θt,s(r,θ;φ) DM(qξ)dξ

]
(35)

where

Θg,s(r, θ; φ) =
r

Ro
sin
(

θ +
2πs

q
− φ

)
−
(

2πs
q
− φ

)
(36)

Θt,s(r, θ; φ) =
r

Ro
cos
(

θ +
2πs

q
− φ

)
− 1 (37)

To derive an analytical form, the kernel DM(qα) is further approximated as a gate
function whose values are unified in the interval [−∆, ∆] and vanish outside. Accordingly,
the integration in Equation (35) can be simplified as

Ψ(p,q)
mo ,M(r, θ; φ) =

√
mo

2(2M+1)RRoq2

×
q−1
∑

s=0
eimoΘg,s(r,θ;φ) sin c

[
mo π

q(2M+1)Θt,s(r, θ; φ)
] (38)

where sin c(χ) = sin(χ)/χ is the sinc function. Since the central maximum of the sin c(χ)
function occurs at χ = 0, the parametric equations for the central maxima of the quantum
coherent states in Equation (38) can be confirmed using Θt,s(r, θ; φ) = 0. Therefore, the
trajectory equations for classical POs of a circular billiard can be specifically given using
r cos(θ + θs − φ) = Ro with θs = 2πs/q and s = 0, 1, . . . , q− 1.

6. Conclusions

We systematically review the connection between the clustering of quantum levels and
the emergence of classical POs for three integrable billiards including square, equilateral
triangle, and circular billiards. The equilateral triangular billiard is the representative
of non-separable systems, and the circular billiard has the highest symmetry in polar
coordinates. One review is to demonstrate that the quantum level clustering can be
clearly manifested from the directionally resolved level distributions relevant to classical
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trajectories. Furthermore, we have overviewed that the superposition of the eigenstates
near the level clustering can lead quasi-stationary coherent states to be perfectly localized
on the classical POs for three integrable billiards. The process of extracting the trajectory
equations for classical POs from quantum coherent states has been thoroughly presented.
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