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Abstract: We consider an isotropic homogeneous cosmological model with five interacting elements:
first, the dynamic aether presented by a unit timelike vector field; second, the pseudoscalar field
describing an axionic component of the dark matter; third, the cosmic dark energy, described by a
rheologic fluid; fourth, the non-axionic dark matter coupled to the dark energy; and fifth, the gravity
field. We show that the early evolution of the Universe described by this model can include two
specific epochs: the first one can be characterized as a super-inflation epoch; the second epoch is
associated with an oscillatory regime. The dynamic aether carries out a regulatory mission; the
rheologic dark fluid provides the specific features of the spacetime evolution. The oscillations of
the scale factor and of the Hubble function are shown to switch on the parametric (Floquet-type)
mechanism of the axion number growth.
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1. Introduction

The paper is dedicated to the memory of Steven Weinberg (AB: half a century ago,
the excellent book [1] predetermined my scientific life).

1.1. Motivation of the Work
1.1.1. Inflation vs. Super-Inflation

We live and work in a unique situation, when we obtain new sensational results of
observations made on the James Webb Space Telescope (JWST) practically in real time (for
information see, e.g., the official website webb.nasa.gov (accessed on 23 August 2023)).
These new data concern, in particular, the discovery of Mothra, an extremely magnified
monster star; estimations of the masses of warm dark matter particles and of axion dark
matter particles [2]; the abundance of carbon-containing molecules [3], etc. In addition,
starting from the discovery of gravitational waves in 2015 [4], when two black holes with
masses 36 MSun and 29 MSun collided, more than a hundred events of this type have been
recorded. These events are associated with the merger and collision of black holes, whose
masses are in the range from 20 to 90 solar masses.

Many of the data obtained by JWST and the LIGO–VIRGO collaboration are so unex-
pected that they make us think about the revision of the models of the early evolution of our
Universe. What is, from our point of view, the main element of such a revision? We think
that the starting period of the Universe evolution, when the size of the Universe does not
exceed the size of the region allowing macroscopic causal processes, has to be longer than
we think (of course, for comparison, we have to use the time scale that is predetermined by
the corresponding value of the effective Hubble function H associated with that epoch).
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Such a possibility appears, for instance, if we consider super-inflation. The term super-
inflation has been already used, e.g., in the model of Loop Quantum Cosmology [5], in
order to mark a specific episode of the Universe inflationary evolution, when the kinetic
energy of the scalar field is much more than the potential energy. Our goal is to consider
not approximate but exact solutions describing the super-inflation as an alternative to
standard inflation. Of course, the inflation scenario has already explained many details
of the early Universe evolution, and when we pose a question about a super-inflation,
we have to motivate this step. Keeping in mind this simple argument, we would like to
attract attention to one new fact only. The LIGO–VIRGO collaboration has proved that
black holes with intermediate masses (from 20 to 90 solar masses) do exist. Astrophysicists
are ready to theoretically explain the presence of black holes with masses of several solar
masses obtained in the scenario of a star collapse; also, one can explain the existence of
super-massive black holes. However, now there is no adequate theory for the formation
of the medium-sized black holes and super-massive stars. But if the causal period of
the early Universe evolution lasted longer than the inflation theory predicts, we have a
natural opportunity to explain the observed set of the black hole masses. We hope that a
corresponding model for the formation of medium-sized black holes will be formulated in the
near future: for example, similar to how the problem of the causal limit of the neutron star
maximum mass was solved in [6].

Mathematically, one can explain the mentioned idea by comparing two functions
y1 = eH(t−t0) and y2 = exp [α sinh H(t−t0)]. Both functions start with the same values
y1(t0) = 1 = y2(t0). The first function describes the standard inflation, and we can require
that at the moment t = t∗, the scale factor increased 1026 times, i.e., a(t∗)

a(t0)
= eH(t∗−t0) = 1026.

We obtain in this case the well-known 60 e-folds as follows: H(t∗−t0) = 26 ln 10 ≈ 60. If we
use the second function, which describes the so-called super-inflation, and again require that
a(t∗)
a(t0)

= exp [α sinh H(t∗−t0)] = 1026, we have to assume that α ≈ 120 · 10−26. Thus, for small
values of time H(t− t0)→ 0, we can decompose the mentioned functions as y1 ≈ 1+ H(t−t0)
and y2 ≈ 1+120 · 10−26H(t−t0). Finally, we compare the time moments t1 and t2 for which
the sizes of the expanding Universe become of the same order as the causal domain size Lcausal.
We obtain that t1−t0 = 120 · 10−26(t2−t0), or equivalently, t2−t0 ∝ 1024(t1−t0). This means
that the super-exponential growth, on the one hand, guarantees that at t = t∗ the Universe
expanded 1026 times as due to the standard inflation; on the other hand, the causal period of
the Universe evolution lasts much longer, ensuring the development of causal phenomena,
which could be associated, for example, with the formation of proto-galaxies, proto-stars,
medium-sized black holes, etc.

Super-inflation can be described, in particular, as the exact solution of the set of master
equations in the framework of models with a dark fluid of rheological type. In the works [7,8],
we obtained the super-inflationary solution assuming that the equation of state of dark energy
contains the convective derivative of the pressure; we also assumed that the dynamics of
the dark matter particles is under control of the Archimedean-type force induced by dark
energy. In the work [9], the super-inflationary solution appears as the exact solution of the
dark fluid model with the kernel of contact interaction of the integral Volterra type. In the
work [10], the mentioned solution appeared when we used the integral representation of
the equations of state of the dark energy and dark matter. In other words, the solutions of
the super-inflationary type seem to be typical ones for the rheological models of the cosmic
dark fluid.

In this work, we consider again the rheological models for the dark fluid; however, now,
we assume that the dark matter is a multi-component substratum [11]. We separate the axionic
component of the dark matter [12] and consider axions on the language of field theory as a
pseudoscalar field with modified periodic potential. Other components of the dark matter
(WIMPs, ALPs, warm and hot dark matter parts, etc.) are unified and described as a dark
medium with rheological properties.
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1.1.2. Dynamic Aether as a Guiding Element of the Cosmic Evolution

The concept of the dynamic aether [13–16] gives the theorist a unique tool for modeling
the process of controlling cosmic expansion. The dynamic aether is described by the unit-time-
like global vector field, which is associated with the aether velocity four-vector U j and realizes
the idea of a privileged frame of reference [17,18].

In addition to the geometric aspects of control, the dynamic aether can control the rhythm
of life in the Universe. The fact is that the scalar of expansion defined as the divergence of
the velocity four-vector Θ=∇kUk coincides with the tripled Hubble function Θ = 3H, when
the Universe is isotropic and homogeneous. Thus, for the spacetimes of the FLRW type, the
scalar T = 3

Θ predetermines the typical time scale of the Universe evolution. Traditional
history of the Universe is written using energy units and the equivalent temperature: the
main stages of the Universe evolution are tied to some milestones associated with breaking
of symmetry of fundamental interactions. However, for many purposes, we need to link the
energy scale (or temperature scale) with the appropriate time scale. Clearly, requirements
of the covariant approach do not give us possibility to use time-dependent parameters of
equations of state or the time-dependent cosmological constant directly. Of course, one needs
to introduce appropriate scalars, associated with some field, to solve the dynamic equation for
this field and then to reconstruct the required guiding scalar. In this sense, the unit vector field
U j is well suited for this role, since the evolution of this field is well described by the Jacobson
equations [13–15], and the basic scalar Θ=∇jU j can be associated with the cosmological
time scale.

Keeping in mind this idea we introduced in [19], the mechanism of the aetheric control
on the axion field evolution is through introduction of the guiding function Φ∗(Θ) into the
axion field potential V(φ, Φ∗(Θ)). Such a modification of the periodic axion potential led to
the emergence of a concept of equilibrium states in the axion containing systems, for which
the axion field φ takes the values φ=nΦ∗ with an integer n [20]. In this context, the value of
the expansion scalar Θ predetermines the position and depth of minima of the axion field
potential. The extension of this approach has shown that for cosmological and astrophysical
applications, it would be interesting to enlarge the number of guiding functions, which could
be constructed using the covariant derivative of the aether velocity four-vector. For instance,
when we deal with cosmological models of the Bianchi types, we cannot ignore the fact that
in addition to the expansion scalar, we can use the non-vanishing symmetric traceless shear
tensor describing the aether flow, σmn, in the theory. Correspondingly, the new geometric
aspects of the Einstein–Maxwell–aether theory can be associated with the term σmnFmpF p

n
in the modified Lagrangian; the new geometric aspect of the Einstein–aether–axion theory
can be connected with additional part of the axion kinetic energy σmn∇mφ∇nφ. As for the
description of the aetheric control over the axion system, one can add the square of the
shear tensor σ2 = σmnσmn as an argument of the guiding function Φ∗(Θ, σ2). For the static
spherically symmetric model, the square of the acceleration four-vector a2 may be in demand;
the square of the antisymmetric vorticity tensor ω2 = ωmnωmn could appear as an argument
of the guiding function in the model of Gödel type, describing the rotating Universe.

1.1.3. Interaction of the Dynamic Aether with Dark Fluid

All the mentioned extensions of the Einstein–aether theory are formulated in the language
of field theory. The description of the dark fluid is made in terms of relativistic phenomenolog-
ical hydrodynamics of two-component fluids. In order to realize the idea of aetheric control
over the dark fluid, we suggest to include the scalars Θ, σ2, a2, and ω2 into the Lagrangian
L(DF) of the dark fluid. Such an approach can be indicated as the semi-phenomenological one.
In this work, we restrict ourselves by the ansatz that the function L(DF) has a multi-step struc-
ture. This representation is based on the Heaviside step functions, arguments of which contain
the expansion scalar Θ. Using this approach, we assume that the aether divides the history
of the Universe evolution into episodes, which can be indicated as inflation, super-inflation,
oscillatory stage, etc. In this division into episodes, some critical values of the expansion
scalar appear, Θ(1)

∗ , Θ(2)
∗ , Θ(3)

∗ , etc., which are assumed to play roles analogous to the roles of
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critical temperatures T(1)
∗ , T(2)

∗ , and T(3)
∗ in the series of phase transitions associated with the

Universe restructuring.

1.1.4. The Role of Axionic Dark Matter in Our Approach

We support the point of view that the axionic component is the key constructive element
of the multi-component dark matter. The history of investigations (theoretical and experimen-
tal) of the axionic dark matter phenomenon (see, e.g., [21–29]) hints to us that the anomalous
growth of the axion number in the early Universe could take place (the so-called “axionization”
of the Universe); now, these relic axions form the basic part of cold dark matter. Following this
idea, we consider two mechanisms of instability in the axion system provoked by the dark
fluid controlled by the dynamic aether. The first mechanism can be realized in the scheme
of super-inflationary expansion of the Universe. The second mechanism can be switched on
at the oscillatory stage of the Universe evolution; it can be associated with the parametric
instability described by the Floquet theorem for the Hill equation with periodic coefficients.

1.2. The Structure of the Work

The paper is organized as follows. In Section 2, we describe the mathematical formalism
and derive the master equations of the presented theory. In Section 3, we consider applications
of this theory to the model of evolution of the isotropic homogeneous Universe filled with
the dynamic aether, two-component dark fluid, and axion field. In Section 3.1, we reduce
the basic master equations to the chosen spacetime symmetry and find the exact solution
to the equations for the unit vector field (aether velocity). In Section 3.2, we focus on the
super-inflationary scenario of the Universe evolution; we find exact solutions for the scale
factor and Hubble function, and we reconstruct the state functions for the rheologically
active dark energy and non-axionic dark matter; in Section 3.2.3, we consider the problem
of instability in the axion system controlled by the dynamic aether. In Section 3.3, we study
the oscillatory episode of the Universe evolution; we again find the exact solution for the
geometric quantities and for the dark fluid state functions; in Section 3.3.3, we focus on the
analysis of the parametric mechanism of the axion generation. Section 4 includes discussion
and conclusions.

2. The Formalism
2.1. The Total Action Functional

We consider the extension of the Einstein–aether–axion model and add the term associ-
ated with the dark fluid L(DF) to the total Lagrangian. The total action functional

−S(EA) =
∫

d4x
√
−g
{

1
2κ

[
R+2Λ+λ(gmnUmUn−1)+Kab

mn∇aUm∇bUn
]
+

1
2

Ψ2
0

(
V−∇kφ∇kφ

)
+L(DF)

}
(1)

contains the standard Einstein–Hilbert term with the determinant of the metric g, the covariant
derivative ∇k, the Ricci scalar R, the cosmological constant Λ, and the Einstein constant
κ = 8πG

c4 . The unit-time-like vector field U j is associated with the velocity four-vector of the
dynamic aether (see, e.g., [13–16] for history, mathematical details, and definitions); the term
with the Lagrange multiplier λ in front is introduced to provide the normalization of the
vector field, UkUk = 1. The constitutive tensor

Kab
mn = C1gabgmn+C2δa

mδb
n+C3δa

nδb
m+C4UaUbgmn (2)

contains four phenomenological constants C1, C2, C3, and C4. The pseudoscalar field φ stands
to describe the axionic part of the dark matter; the term V describes the potential of the axion
field; the parameter Ψ0 relates to the coupling constant of the axion–photon interaction gAγγ,

1
Ψ0

= gAγγ. The potential of the axion field

V(φ, Φ∗) =
m2

AΦ2
∗

2π2

[
1− cos

(
2πφ

Φ∗

)]
(3)
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is periodic since it inherits the discrete symmetry 2πφ
Φ∗ →

2πφ
Φ∗ + 2πn (n is an integer). Also,

this potential can be indicated as modified periodic potential since it contains the guiding
function Φ∗, which describes an averaged value of the pseudoscalar field; generally, this
guiding function depends on coordinates via the scalars associated with the model as a whole
(see, e.g., [19]). This periodic potential has its minima at φ = nΦ∗; for these values of the axion
field, the potential and its first derivative vanish, V|φ=nΦ∗ = 0, ∂V

∂φ |φ=nΦ∗
= 0. We indicate

the states φ = nΦ∗ as the equilibrium state. Near the minima, when φ→ nΦ∗+ψ and
∣∣∣ 2πψ

Φ∗

∣∣∣
is small, the potential takes the standard form V → m2

Aψ2, where mA is the axion rest mass.
The integer n describes the level on which the axion field is fixed; when n = 1, we deal with
the basic level; when n = 0, we assume that the axions are absent.

If the guiding function Φ∗ is constant, the more convenient term can be used for this
quantity, namely, the vacuum expectation value. In this regard, it is important to mention
that, unlike the axion theory, the standard theory of the dynamic aether does not contain an
appropriate vector field potential. In this sense, the vacuum expectation value of the vector
field does not appear in the standard version of this theory; thus, there is no fixed direction in
the space, and the spatial isotropy violation can not take place.

The term L(DF) describes the dark fluid, which indicates two interacting cosmic substrates:
the dark energy and the non-axionic dark matter.

2.2. Auxiliary Elements of Analysis

Based on the velocity four-vector of the aether U j, we decompose all the tensor quan-
tities highlighting the longitudinal and transversal components. In particular, the covariant
derivative can be decomposed as follows

∇k = UkD +
⊥
∇k , D = Us∇s ,

⊥
∇k = ∆j

k∇j , ∆j
k = δ

j
k −U jUk . (4)

∆j
k is the projector. The covariant derivative∇kUj can be decomposed in the standard sum

∇kUj = UkDUj + σkj + ωkj +
1
3

∆kjΘ , (5)

where the acceleration four-vector DUj, the symmetric traceless shear tensor σkj, the skew-
symmetric vorticity tensor ωkj and the expansion scalar Θ are presented by the well-
known formulas

DUj = Us∇sUj , σkj =
1
2

(⊥
∇kUj+

⊥
∇jUk

)
−1

3
∆kjΘ , ωkj =

1
2

(⊥
∇kUj−

⊥
∇jUk

)
, Θ = ∇kUk . (6)

Using the decomposition (5) we form one linear and three quadratic scalars

Θ = ∇kUk , a2 = DUkDUk , σ2 = σmnσmn , ω2 = ωmnωmn . (7)

Generally, the guiding function Φ∗ is assumed to be the function of all four scalars,
Φ∗(Θ, a2, σ2, ω2), and we prepare the basic formulas for the general case. But below, we
consider the application of the theory to the spatially isotropic homogeneous model, for which
DU j = 0, σmn = 0, ωmn = 0; naturally, we will focus on the case when the guiding function de-
pends on the expansion scalar Θ only, i.e., Φ∗ = Φ∗(Θ). The scalarK ≡ Kabmn(∇aUm)(∇bUn)
can also be expressed via the mentioned invariants as follows:

K = (C1+C4)DUkDUk+(C1+C3)σikσik+(C1−C3)ωikωik+
1
3
(C1+3C2+C3)Θ2 . (8)

Clearly, for the spatially isotropic and homogeneous model, this term reduces to
K = 1

3(C1+3C2+C3)Θ2.
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2.3. Master Equations of the Model
2.3.1. Master Equations for the Unit Vector Field

Variations of the action functional (1) with respect to the Lagrange multiplier λ and to
the four-vector Ui give the following set of equations, respectively:

gmnUmUn = 1 , (9)

∇aJ a
j = λUj + C4DUm∇jUm +

1
2

κΨ2
0

δV
δU j + κ

δL(DF)

δU j . (10)

The tensor J a
j is of the form

J a
j = Kab

jn∇bUn = C1∇aUj + C2δa
j Θ + C3∇jUa + C4UaDUj . (11)

The variational derivatives in (10) can be represented as follows:

1
2

κΨ2
0

δV
δU j ⇒ −∇j

(
Ω

∂Φ∗
∂Θ

)
− 2DUjD

(
Ω

∂Φ∗
∂a2

)
−∇n

(
2Ω

∂Φ∗
∂σ2 σjn

)
+∇n

(
2Ω

∂Φ∗
∂ω2 ωjn

)
+

+2Ω
∂Φ∗
∂a2

[
DUk∇jUk −ΘDUj −D2Uj

]
− 2Ω

∂Φ∗
∂σ2 DUnσjn − 2Ω

∂Φ∗
∂ω2 DUnωjn ,

(12)

κ
δL(DF)

δU j ⇒ κ

{
−∇j

(
∂L(DF)

∂Θ

)
− 2DUjD

(
∂L(DF)

∂a2

)
−∇n

(
2

∂L(DF)

∂σ2 σjn

)
+∇n

(
2

∂L(DF)

∂ω2 ωjn

)
+

+2
∂L(DF)

∂a2

[
DUk∇jUk −ΘDUj −D2Uj

]
− 2

∂L(DF)

∂σ2 DUnσjn − 2
∂L(DF)

∂ω2 DUnωjn

}
.

(13)

Here, we used the convenient definition

Ω =
1
2

κΨ2
0

∂V
∂Φ∗

=
κΨ2

0m2
A

2π2

{
Φ∗

[
1− cos

(
2πφ

Φ∗

)]
− πφ sin

(
2πφ

Φ∗

)}
. (14)

The Lagrange multiplier can be formally presented as the sum λ = λ(U)+λ(V)+λ(DF),
where

λ(U) = U j∇aJ a
j −C4DUmDUm , λ(V) = −

1
2

κΨ2
0U j δV

δU j , λ(DF) = −κU j δL(DF)

δU j . (15)

Using (12) and (13), we obtain immediately

λ(V) = D
(

Ω
∂Φ∗
∂Θ

)
− 2Ωσ2 ∂Φ∗

∂σ2 − 2Ωω2 ∂Φ∗
∂ω2 − 4Ωa2 ∂Φ∗

∂a2 , (16)

λ(DF) = κ

{
D
(

∂L(DF)

∂Θ

)
− 2σ2 ∂L(DF)

∂σ2 − 2ω2 ∂L(DF)

∂ω2 − 4a2 ∂L(DF)

∂a2

}
. (17)

When we deal with the spatially isotropic homogeneous model, only the first terms in the
right-hand sides of the Equations (16) and (17) are non-vanishing. In the state of the axionic
equilibrium, when φ = nΦ∗, we obtain that Ω = 0.

2.3.2. Master Equation for the Axion Field

Variation of the total action functional with respect to the axion field yields

∇k∇kφ +
m2

AΦ∗
2π

sin
(

2πφ

Φ∗

)
= 0 . (18)
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If we deal with the basic equilibrium state of the axion field and put φ = Φ∗ into (18),
we can conclude that the guiding function Φ∗ satisfies the massless Klein–Gordon equation

∇k∇kΦ∗ = 0 . (19)

2.3.3. Master Equations for the Gravitational Field

Variation with respect to the metric gives the gravity field equations:

Rik −
1
2

Rgik −Λgik = T(U)
ik + κT(A)

ik + κT(DF)
ik . (20)

The first term in the right-hand side of (20) is the standard stress–energy tensor associated
with the aether flow [13–15]:

T(U)
ik =

1
2

gik Kabmn∇aUm∇bUn+λ(U)UiUk+ (21)

+∇m
[
U(iJk)m−Jm(iUk)−J(ik)Um

]
+

+C1[(∇mUi)(∇mUk)−(∇iUm)(∇kUm)]+C4DUiDUk .

The parentheses symbolize the symmetrization of indices. The term λ(U)UiUk is included

into T(U)
ik since λ(U) (see (15)) contains the aether velocity and its derivatives only. The second

term

κT(A)
ik = κΨ2

0

[
∇iφ∇kφ +

1
2

gik(V −∇sφ∇sφ)

]
+λ(V)UiUk − gik(D + Θ)

(
Ω

∂Φ∗
∂Θ

)
+ (22)

+2Ω
∂Φ∗
∂a2 DUiDUk + 2∇s

{
Ω

∂Φ∗
∂a2

[
DUsUiUk − 2UsU(iDUk)

]}
−

−2∇s

[
Ω

∂Φ∗
∂σ2 Usσik

]
− 4Ω

∂Φ∗
∂σ2

[
DUnσn

(iUk) + σn
(iωk)n

]
+

+4∇s

[
Ω

∂Φ∗
∂ω2 U(iω

s
k)·

]
− 4Ω

∂Φ∗
∂ω2

[
DUnU(iωk)n + σn

(iωk)n

]
describes the contribution of the axion field coupled to the aether. The term λ(V)UiUk is
included into this part of the total stress–energy tensor, since it describes the interaction of the
aether with the axion field. The stress–energy tensor of the dark fluid T(DF)

ik is presented by
two terms:

T(DF)
ik =

1
κ

λ(DF)UiUk +
(−2)√−g

δ

δgik

[√
−gL(DF)

]
. (23)

The first term 1
κ λ(DF)UiUk (see (15)) is the last element of the total term λUiUk, and the sec-

ond one is given by the standard variation formula. This last construction can be decomposed
algebraically using the aether velocity four-vector U j,s and we obtain

T(DF)
ik =

[
1
κ

λ(DF) +W
]

UiUk + qiUk + qkUi +Pik . (24)

Here,W denotes the total energy density of the dark fluid; qj is the heat-flux four-vector,
and Pik is the pressure tensor; these quantities are defined in the standard way:

1
κ

λ(DF) +W = UiT(DF)
ik Uk , qj = ∆i

jT
(DF)
ik Uk , Pik = ∆p

i T(DF)
pq ∆q

k . (25)

When we deal with the isotropic homogeneous cosmological model, we have to put
qj = 0 and Pik = −P∆ik. We assume thatW = W+E is the sum of the energy densities of
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the dark energy and of the non-axionic dark matter; similarly, P = P+Π is the sum of the
corresponding scalars of pressure.

2.3.4. Bianchi Identity and Conservation Law

The Bianchi identity requires that

∇k
[
T(U)

ik + κT(A)
ik + κT(DF)

ik

]
= 0 . (26)

We would like to emphasize two important details. First, since we included the term
λ(U)UiUk into the stress–energy tensor T(U)

ik , we have guaranteed that ∇kT(U)
ik = 0 on the

solutions of the master Equation (10). Second, the presence of the term λ(V)UiUk in the stress–

energy tensor T(A)
ik guarantees that∇kT(A)

ik = 0 on the solutions of the master Equation (18).

Thus, the equality∇kT(DF)
ik = 0 is the consequence of the Bianchi identity on the one hand,

and it gives the evolutionary equation for the state functions of the dark fluid on the other
hand.

3. Application to the Spatially Isotropic Homogeneous Cosmological Model
3.1. The Spacetime Platform and Reduced Master Equations

We work below with the spacetime of the FLRW type with the metric

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

. (27)

The symmetry of the model hints that one can search for the velocity four-vector of the
aether in the form U j = δ

j
0. It is well known that for this metric, the covariant derivative of

the vector field
∇kUi =

1
2

ġik (28)

is symmetric, and we see explicitly that DUj = 0, σmn = 0, ωmn = 0. The expansion scalar is
non-vanishing

Θ = 3
ȧ
a
= 3H(t)⇒ ∇kUi = ∆ikH(t) . (29)

Here, H(t) = ȧ
a is the Hubble function, and the dot denotes, as usual, the derivative with

respect to the cosmological time t (here and below c = 1).

3.1.1. Solution to the Equations of the Vector Field

When we start to analyze the reduced Equations (10) and (11), we have to emphasize
the following circumstance. The sum of the coupling constants C1 + C3 can be estimated as
−6× 10−15 < C1 + C3 < 1.4× 10−15, and below, we put C1 + C3 = 0. This estimation is
based on the result of observation of the binary neutron star merger (the events GW170817
and GRB 170817A [30]), which has shown that the ratio of the velocities of the gravitational
and electromagnetic waves satisfies the inequalities 1− 3× 10−15 <

vgw
c < 1 + 7× 10−16),

while according to [15], the square of the velocity of the tensorial aether mode is equal to
S2
(2) =

1
1−(C1+C3)

. Keeping in mind that DUj = 0, σmn = 0, and ωmn = 0, we find that (11)
converts into

Ja
j = C2Θδa

j , (30)

and the equations for the unit vector field (10) now takes the form

C2∇jΘ = λUj −∇j

(
Ω

∂Φ∗
∂Θ

)
− κ∇j

(
∂L(DF)

∂Θ

)
. (31)
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Clearly, the set of Equation (31) contains only one non-trivial equation, which gives,
in fact, the solution for the Lagrange multiplier λ:

D
(

C2Θ + Ω
∂Φ∗
∂Θ

+ κ
∂L(DF)

∂Θ

)
= λ . (32)

3.1.2. Reduced Equation for the Axion Field

For the fixed spacetime symmetry, the Equation (18) takes the form

φ̈ + 3Hφ̇ +
m2

AΦ∗
2π

sin
(

2πφ

Φ∗

)
= 0 . (33)

Let us imagine that the axion field φ is frozen in the first minimum of the axion potential;
it coincides with the guiding function, and thus, it follows the variations of Φ∗(t). Then, we
put φ = Φ∗ into (33), and we have to admit that the axion field remains in the first minimum
if the guiding function Φ∗ satisfies the equation

Φ̈∗ + 3HΦ̇∗ = 0 . (34)

Our ansatz is that (34) defines the missing master equation for the guiding function Φ∗
in the framework of the established model.

Clearly, the Equation (34) admits the first integral

Φ̇∗(t) =
const
a3(t)

= Φ̇∗(t0)

[
a(t0)

a(t)

]3

. (35)

Here and below, the parameter t0 describes the time moment, starting from which our
semi-phenomenological model is valid. We assume that t0 > tquantum, so that the results of
evolution on the stage associated with the quantum description of the Universe are fixed in
the initial data, e.g., in Φ̇∗(t0).

3.1.3. Key Equations for the Gravity Field

Solving the Einstein equations for the isotropic homogeneous cosmological model, we
follow the standard scheme: we consider the gravity field Equation (20) for the indices i = 0,
k = 0, and the consequence of the Bianchi identity (26) for i = 0, thus obtaining the first
and second key equations of the model. Equation (18) for the axion field forms the third key
equation. The first key equation can be written as

3H2
(

1+
3
2

C2

)
−Λ = κ

(
∂L(DF)

∂Θ

)·
+

1
2

κΨ2
0

(
V + φ̇2

)
−ΩΘ

∂Φ∗
∂Θ

+ κ(W + E) . (36)

The second key equation is presented by the balance equation for the dark fluid

Ẇ + Ė + 3H(W + E + P + Π) = −κ

[(
∂L(DF)

∂Θ

)··
+ 3H

(
∂L(DF)

∂Θ

)·]
. (37)

3.2. Super-Inflationary Scenario of Early Universe Evolution

The novelty of our approach is associated with a multi-step-like structure of the function
L(DF). Let us explain this idea for the one-step function. We assume that

L(DF) = η(Θ∗ −Θ)L(1)
(DF) + η(Θ−Θ∗)L(2)

(DF) . (38)

Here, η(F) is the Heaviside function, which is equal to one if the argument F is positive,
F > 0, and is equal to zero when F < 0. The constant Θ∗ ≡ Θ(t∗) is the value of the expansion
scalar at some fixed time moment t∗ > t0. We assume that both functions L(1)

(DF) and L(2)
(DF)
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depend on time, but do not include Θ. Generally, L(1)
(DF)(t) 6= L(2)

(DF)(t); however, the continuity

condition is met, L(1)
(DF)(t∗) = L(2)

(DF)(t∗). This means that we have to solve the key equations
of the model for two intervals: t0 < t < t∗ and t > t∗ and sew the found state functions

at t = t∗. In fact, we guarantee that the derivative
(

∂L(DF)
∂Θ

)·
vanishes in both mentioned

intervals, as well as in the point t = t∗. To be more precise, we obtain

∂L(DF)

∂Θ
= δ(Θ−Θ∗)

[
L(2)
(DF) − L(1)

(DF)

]
= 0 , (39)

if the function Θ(t) is monotonic and the equation Θ(t∗) = Θ∗ has only one solution t∗.

3.2.1. Epoch of the Dark Fluid Domination

Let us assume that during the first episode of the Universe evolution, when t0 < t < t∗,
the axion field is absent, φ = 0; thus, Ω = 0 and V = 0, so the key equations of the model as a
whole are reduced to the following two equations:

H2 =
Λ∗
3

+
κ∗
3
(W + E) , (40)

Ẇ + Ė + 3H(W + E + P + Π) = 0 . (41)

Here, we used the definitions Λ∗ = Λ
1+ 3

2 C2
and κ∗ =

κ
1+ 3

2 C2
and assumed that C2 > − 2

3 .

The next convenient step is to introduce the new variable x = a(t)
a(t0)

, providing the following
relationships:

Ẇ = xH
dW
dx

, t− t0 =
∫ a(t)

a(t0)

1

dx
xH(x)

. (42)

In these terms, Equation (41) can be rewritten as

xW′ + 3(W + P) = −
[
xE′ + 3(E + Π)

]
. (43)

Following the idea of modeling of the so-called kernel of interaction Q (see, e.g., [31,32]),
we can rewrite (43) as a pair of equations

xW′ + 3(W + P) = Q(x) , xE′ + 3(E + Π) = −Q(x) . (44)

The next step is to propose the constitutive equations for dark energy and for non-axionic
dark matter and to formulate the structure of the kernel Q(x). We assume that during the first
episode of early Universe evolution, the following relationships are appropriate:

P = (Γ− 1)W , Π = (γ− 1)E , Q(x) = K0

∫ x

1

dy
y
[E(y)−W(y)] . (45)

Here, Γ, γ, and K0 are some phenomenological constants. The representation of the
kernel Q in the integral form was motivated in the work [9]. Using (45), we obtain the integral
equation of the Volterra type

xW′ + 3ΓW = K0

∫ x

1

dy
y
(E(y)−W(y)) , (46)

from which one can extract the energy density of the non-axionic dark matter

E(x) = W(x) +
1

K0

[
x2W′′ + xW′(1+ 3Γ)

]
. (47)
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Then, we put the function E(x) into (43) and obtain the Euler equation of the third order
for the function W(x):

x3W′′′ + 3x2W′′(1+ Γ + γ) + xW′[2K0 + (1+ 3Γ)(1+ 3γ)] + 3K0(Γ + γ)W = 0 . (48)

The characteristic equation for this differential Euler equation is of the form

σ3 + 3(Γ + γ)σ2 + σ(2K0 + 9Γγ) + 3K0(Γ + γ) = 0 . (49)

We are especially interested in the analysis of the case with the threefold degenerate root
σ1 = σ2 = σ3 = 0 of this characteristic equation. Clearly, such a situation takes place when

Γ + γ = 0 , K0 =
9
2

γ2 . (50)

For this special case, the solutions for W(x) and E(x) are of the form

W(x) = W(1)(1− 3Γ log x) +
9
4

Γ2[W(1) + E(1)] log2 x , (51)

E(x) = E(1)(1+ 3Γ log x) +
9
4

Γ2[W(1) + E(1)] log2 x . (52)

Here, we took into account the consequence of the integral relationship (46), which gives
W′(1) = −3ΓW(1) (similarly, we see that E′(1) = 3ΓE(1)). For the square of the Hubble
function, we obtain from (40)

3
κ∗

[
H2(x)− H2(1)

]
= 3Γ[E(1)−W(1)] log x +

9
2

γ2[W(1) + E(1)] log2 x , (53)

where the following definition was used:

H2(1) =
Λ∗
3

+
κ∗
3
[W(1) + E(1)] . (54)

3.2.2. Exact Explicit Solutions in the Model of Super-Inflation

One can obtain now the analytic formula which links the scale factor and the cosmological
time for arbitrary initial data W(1) and E(1). For illustration only, we put E(1) = W(1) and
obtain the integral

t− t0 = ±
∫ a(t)

a(t0)

1

dx

x
√

H2(t0) + 3κ∗γ2W(t0) log2 x
. (55)

We choose the sign plus in this formula, and direct integration gives the super-exponential
law of evolution of the scale factor

log
[

a(t)
a(t0)

]
=

H(t0)

γ
√

3κ∗W(t0)
sinh

[
γ
√

3κ∗W(t0)(t− t0)

]
. (56)

When W(t0) tends to zero, i.e., dark fluid is absent, this formula gives the de Sitter-type
law

lim
W(t0)→0

[
a(t)
a(t0)

]
= e

√
Λ∗
3 (t−t0) (57)

with the aetherically modified cosmological constant Λ∗ = Λ
1+ 3

2 C2
(see Figure 1 for illustration).
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Figure 1. Illustration of the behavior of the super-exponential function a(t)
a(t0)

= exp
{

1
ρ sinh ρH0(t−t0)

}
for four values of the dimensionless parameter ρ= 1

H0
γ
√

3κ∗W(t0). For illustration, we put H(t0) =

H0 = 1. The curve with ρ = 0 corresponds to the de Sitter type regime (inflation).

In terms of the cosmological time, the Hubble function H(t) is presented by the function

H(t) = H(t0) cosh
[

γ
√

3κ∗W(t0)(t− t0)

]
, (58)

which grows monotonically. The acceleration parameter is of the form

−q(t) ≡ ä
aH2 = 1+

γ
√

3κ∗W(t0)

H(t0)

 sinh
[
γ
√

3κ∗W(t0)(t− t0)
]

cosh2
[
γ
√

3κ∗W(t0)(t− t0)
]
 . (59)

The energy density scalars for the dark energy and for the non-axionic dark matter take
the form, respectively,

W(t) = W(t0)

{
1+

√
3H(t0)√
κ∗W(t0)

sinh
[

γ
√

3κ∗W(t0)(t−t0)

]
+

3H2(t0)

2κ∗W(t0)
sinh2

[
γ
√

3κ∗W(t0)(t−t0)

]}
, (60)

E(t) = W(t0)

{
1−
√

3H(t0)√
κ∗W(t0)

sinh
[

γ
√

3κ∗W(t0)(t−t0)

]
+

3H2(t0)

2κ∗W(t0)
sinh2

[
γ
√

3κ∗W(t0)(t−t0)

]}
. (61)

3.2.3. On the Stability of the Axion Field Configuration

We assumed above that the axion field is in the equilibrium state with n = 0. Since the
scale factor is found, we can calculate guiding function Φ∗(t) using (35), obtaining the formal
integral

Φ∗(t) = Φ∗(t0) + Φ̇∗(t0)
∫ t

t0

dτ exp

{
−
√

3H(t0)

γ
√

κ∗W(t0)
sinh

[
γ
√

3κ∗W(t0)(τ− t0)

]}
. (62)

This integral cannot be presented via elementary functions, but can be expressed via
incomplete modified Bessel functions [33]. Clearly, if we consider Φ̇∗(t0) = 0 and Φ∗(t0) = 2π,
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we obtain the potential V(φ) = 2m2
A[1− cos φ], which does not admit control over the axion

evolution carried out by the dynamic aether.
Now, we admit that a fluctuation occurs φ→ ψ 6= 0 with | 2πψ

Φ∗ | << 1, so that the master
equation for the pseudoscalar field converts into

ψ̈ + 3H(t)ψ̇ + m2
Aψ = 0 , (63)

where H(t) is given by (58). Using the replacement ψ→
[

a(t)
a(t0)

]− 3
2 Ψ, we obtain the so-called

modified Hill equation

Ψ̈ = J (t)Ψ , J (t) = −m2
A +

9
4

H2(t) +
3
2

Ḣ = (64)

=

[
9
8

H2(t0)−m2
A

]
+

9
8

H2(t0) cosh
[

2γ
√

3κ∗W(t0)(t− t0)

]
+

+
3
2

H(t0)γ
√

3κ∗W(t0) sinh
[

γ
√

3κ∗W(t0)(t− t0)

]
.

This terminology is based on the idea that if we replace the hyperbolic functions cosh
and sinh by the trigonometric cos and sin, we obtain the standard Hill equation with periodic
Hill potential. The Hill potential J (t) (64) is monotonic; thus, there exists a moment t = t+,
so that J (t > t+) > 0. In other words, when t > t+, the Hill potential is positive, meaning
that the term Ψ̈

Ψ is also positive (see (64)). This means that if Ψ(t+) > 0, the function Ψ

grows exponentially, while the factor
[

a(t)
a(t0)

]− 3
2 means that the function ψ = Ψ

[
a(t)
a(t0)

]− 3
2

decreases super-exponentially. Clearly, the function ψ(t) grows; then, it reaches the maximum
at t = tmax and then decreases inevitably under the influence of the Universe expansion. One
can use the following estimation of the behavior of this perturbation:

ψ(t) ∝ cosh
[

2γ
√

3κ∗W(t0)(t−t0)

]
exp

{
−
√

3H(t0)

2γ
√

κ∗W(t0)
sinh

[
γ
√

3κ∗W(t0)(t−t0)

]}
. (65)

We deal with the instability in the axion field behavior on the interval t+ < t < tmax.
Indeed, when W(t0) 6= 0, the function ψ(t) starts to grow and reaches the maximal value, with
the height of the maximum determined by the initial value W(t0) (see Figure 2 for illustration).

The special case W(t0) = 0 relates to the case of constant Hubble function H > 0,
for which Equation (63) converts into the differential equation with constant coefficients,
and the set of solutions of the corresponding characteristic equation

k1,2 = −3
2

H±
√

9
4

H2 −m2 (66)

do not contain real positive roots.
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Figure 2. Illustration of the behavior of the axion field perturbation ψ(t), which satisfies Equation (63),
when the Hubble function describing the super-inflationary regime is given by (58).

3.3. Periodic Episode of the Early Universe Evolution
3.3.1. Modifications of the Model

Now, we assume that on the quantum stage of the Universe evolution, which corresponds
to the time interval 0 < t < t0, standard inflation already led to the expansion characterized
by 60 e-folds. We expect that the oscillatory regime of the Universe evolution will be switched
on; however, in itself, such an event is unlikely. But, the aether, which controls the behavior of
the dark fluid, is able to organize a fine-tuning to provide such an opportunity. Indeed, let
us consider the following composite dark fluid model: first, during the interval t0 < t < t∗,
the dark fluid is described in the same way as in the previous section; but, at the moment
t = t∗, the aether organizes the restructuring of the equations of state for the dark energy and
non-axionic dark matter. Now, we deal with Γ = 0 for typical dark energy, and γ = 1 for
typical dust. Also, we assume that the kernel of the contact interaction in the dark fluid is
of the local type, but the dark energy now possesses self-interaction of the rheological type
(see [10] for details). Mathematically, this means that we use the replacements

Q(x) = K0

∫ x

x∗

dy
y
[E(y)−W(y)] ⇒ Q̃(x) = ω0[E(x)−W(x)] , (67)

P(x) = (Γ− 1)W(x) ⇒ P̃(x) = −W + K1

∫ x

x∗

dy
y

(y
x

)ν
W(y) . (68)

Here, x∗ = a(t∗)
a(t0)

. Then, instead of (44) with (45), we consider the modified coupled
balance equations

xW′ + 3K1

∫ x

x∗

dy
y

(y
x

)ν
W(y) = ω0(E−W) , xE′ + 3E = ω0(W − E) . (69)

One can derive the key differential equations of the third order for E(x) from the pair of
the integro-differential Equations (69) if we extract W(x) from the second Equation (69), put it
into the first one, and fulfill the appropriate differentiation. The key equation has the form of
the Euler equation
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x3E′′′+x2E′′(6+ν+2ω0)+xE′(3K1+4+5ω0+4ν+2νω0)+3E[K1(3+ω0)+νω0] = 0 . (70)

The corresponding characteristic equation

σ3 + σ2(3+ ν + 2ω0) + σ(3K1 + 3ω0 + 3ν + 2νω0) + 3[K1(3+ ω0) + νω0] = 0 (71)

has three coinciding roots σ1 = σ2 = σ3 = 0, when

ν = −(3+ 2ω0) , K1 =
ω0(3+ 2ω0)

(3+ ω0)
, (72)

and ω0 satisfies the following cubic equation:

4ω3
0 + 15ω2

0 + 27ω0 + 27 = 0 . (73)

This equation has only one real root ω0 ≈ −2.06. This unique set of parameters gives us
the submodel with the following functions E(x) and W(x):

E(x) = E(x∗) + x∗E′(x∗) log
(

x
x∗

)
+ C̃3 log2

(
x
x∗

)
, (74)

W(x) = W(x∗) + x∗W′(x∗) log
(

x
x∗

)
+ C̃3

(3+ ω0)

ω0
log2

(
x
x∗

)
. (75)

The modified initial data at t = t∗ (x = x∗) can be obtained from (69); they now have the
form:

x∗W′(x∗) = ω0[E(x∗)−W(x∗)] , x∗E′(x∗) = ω0W(x∗)− (3+ ω0)E(x∗) , (76)

so that the constant C̃3 can be presented in two equivalent versions:

2C̃3 = ω0x∗W′(x∗)−(3+ω0)x∗E′(x∗) = E(x∗)
[
ω2

0+(3+ ω0)
2
]
−ω0W(x∗)(3+2ω0) . (77)

The square of the Hubble function can be presented as follows:

3
κ∗

[
H2(x)− H2(x∗)

]
=

−3E(x∗) log
(

x
x∗

)
+

(
3+2ω0

2ω0

)[
E(x∗)

(
2ω2

0+6ω0+9
)
−W(x∗)ω0(3+2ω0)

]
log2

(
x
x∗

)
, (78)

where we used the following definition:

H2(x∗) =
Λ∗
3

+
κ∗
3
[W(x∗) + E(x∗)] . (79)

The principal detail of our model is that the aether fixes the moment t∗ (and thus the
value x∗) so that the coefficient in front of log2

(
x
x∗

)
in Formula (78) is negative. Keeping in

mind that E(x∗) and W(x∗) are fixed by the Formulas (61) and (60) with t = t∗, respectively,
we see that this is possible when

0.41 <

√
3H(t0)√
κ∗W(t0)

sinh
[

γ
√

3κ∗W(t0)(t∗−t0)

]
< 4.91 . (80)

(Here, we used ω0 ≈ −2.06). Since the hyperbolic sinus is the monotonic function,
we can find the appropriate value t∗ > t0 for every set of parameters H(t0) > 0, κ∗ > 0,
W(t0) > 0, and γ > 0.
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3.3.2. Exact Solutions in the Periodic Model

In order to find the scale factor and the Hubble function for the mentioned case, we can
use the simplified method. We introduce the auxiliary definitions

α2 = −κ∗

(
3+2ω0

6ω0

)[
E(x∗)

(
2ω2

0+6ω0+9
)
−W(x∗)ω0(3+2ω0)

]
, 2β = κ∗E(x∗) , (81)

and search for the a(t) and H(t) in the form

a(t) = aX exp {hX sin [α(t− t∗)+ϕ]} , aX = a(x∗) exp
(
− β

α2

)
, (82)

H(t) =
ȧ
a
= αhX cos [α(t− t∗)+ϕ] . (83)

Then, we put these quantities into (78) and obtain the relationship between the introduced
parameters

α2h2
X = H2(t∗) +

β2

α2 . (84)

The last point is to find the auxiliary parameter ϕ which plays the role of a phase of the
metric oscillations. We require that at t = t∗, the following initial condition takes place

a(t∗) = aX exp [hX sin ϕ] , H(t∗) = αhX cos ϕ , (85)

and thus

sin ϕ =
β

hXα2 ≤ 1 , cos ϕ =
H(t∗)
αhX

≤ 1 ⇒ tan ϕ =
β

H(t∗)α
. (86)

Illustration of the behavior of the scale factor is presented on Figure 3.
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Figure 3. Illustration of the behavior of the scale factor during the periodic episode of the Universe
evolution. The interval of time t < t0 relates to the epoch of the quantum regime of the expansion; near
the moment t = t0, the ratio a(t0)

a(0) reached the value of the order 1026. During the interval t0 < t < t∗, the
fine-tuning provided by the dynamic aether took place, and at t > t∗, we deal with the oscillatory regime.
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This exact solution demonstrates that the Hubble function is periodic with a period
T = 2π

α ; the parameter α plays the role of the frequency of the oscillations of the spacetime.
The energy densities of the non-axionic dark matter and dark energy are also periodic:

E(t) = EX +
6ω0α2hX

κ∗(3+ 2ω0)2 sin [α(t− t∗)+ϕ]−
3ω0α2h2

X
κ∗(3+ 2ω0)

sin2 [α(t− t∗)+ϕ] , (87)

W(t) = WX −
6ω0α2hX

κ∗(3+ 2ω0)2 sin [α(t− t∗)+ϕ]−
3α2h2

X(3+ ω0)

κ∗(3+ 2ω0)
sin2 [α(t− t∗)+ϕ] . (88)

Here, for the sake of convenience, we marked the values of the energies at the moment
when the argument of sinus takes a zero value by EX and WX. The energy densities of the
dark energy (88) and of the non-axionic dark matter (87) describe oscillations not only with
the frequency α, but also with the double frequency 2α.

Finally, one can find the guiding function Φ∗(t) in the integral form

Φ∗(t) = Φ∗(t∗) + Φ̇∗(t∗)
1
α

e
3β

2α2

∫ τ2

τ1

dτe−
3
2 hX cos τ , (89)

where

τ2 = τ1 + α(t− t∗) , τ1 = arctan
[

β

αH(t∗)

]
− π

2
. (90)

Keeping in mind the representation of the complete Bessel function of the imaginary
argument (see Section 6.22 (4) of the book [33]).

I0(z) =
1
π

∫ π

0
dξez cos ξ , (91)

we could rewrite the integral in (89) as∫ τ2

τ1

dτe−
3
2 hX cos τ = Ĩ0

(
−3

2
hX, τ2

)
− Ĩ0

(
−3

2
hX, τ1

)
, Ĩ0(z, τ) =

1
π

∫ τ

0
dξez cos ξ , (92)

using the incomplete Bessel function Ĩ0(z, τ). However, these mathematical details are out
from the frame of this article.

3.3.3. Parametric Generation of the Axion Field

Let us return to the perturbed equations for the axion field evolution (see (63) and (64)),

but now, we use the periodic Hubble function (83) and the transformation ψ→
[

a(t)
a(t∗)

]− 3
2 Ψ

based on the scale factor (82). Now, we deal with the standard Hill equation

Ψ̈ = J (t)Ψ , (93)

with the periodic Hill potential

J (t) =
[

9
8

H2(tX)−m2
A

]
− 3

2
αH(tX) sin [α(t− t∗)+ϕ] +

9
8

H2(tX) cos [2α(t− t∗) + 2ϕ] . (94)

The Hill potential is characterized by the period T = 2π
α . The Wronsky determinant for

the Equation (93) is equal to a constant. As usual, we work with the reduced dimensionless
time variable τ = α(t− t∗) + ϕ and consider the starting point to be τ = 0. In these terms, the
Hill potential possesses the period 2π. It is convenient to consider the fundamental solutions
Ψ1(τ) and Ψ2(τ) which satisfy the initial data

Ψ1(0) = 1 , Ψ′1(0) = 0 , Ψ2(0) = 0 , Ψ′2(0) = 1 , (95)
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where the prime denotes the derivative with respect to τ. For such fundamental solutions, the
Wronsky determinant is equal to 1. If Ψ1(τ) and Ψ2(τ) satisfy the Hill equations, the functions
Ψ1(τ + 2π) and Ψ2(τ + 2π) are also the solutions to the Hill equation with the Hill potential
possessing the property J (τ + 2π) = J (τ). According to the Floquet theorem [34], we
know that for the periodic Hill potential, there exists the so-called normal solution ΨN, which
satisfies the rule ΨN(τ + 2π) = σΨN(τ). The parameter σ is the solution to the characteristic
equation

σ2 − 2Aσ + 1 = 0 ⇒ 1
2

(
σ +

1
σ

)
= A , (96)

where 2A denotes the trace of the Wronsky matrix calculated at the end of the first period

A =
1
2
[
Ψ1(2π) + Ψ′2(2π)

]
. (97)

Then, we represent the characteristic number σ as an exponent σ = e2πµ providing the
characteristic equation to have the form cosh 2πµ = A. Clearly, whenA > 1, there are two
real solutions to the characteristic equation

σ1 = A+
√
A2−1 = e2πµ , σ2 = A−

√
A2−1 = e−2πµ , σ1σ2 = 1 , (98)

2πµ = log (A+
√
A2 − 1) . (99)

Finally, the equation ΨN(τ + 2π) = e2πµΨN(τ) can be rewritten as

e−µ(τ+2π)ΨN(τ + 2π) = e−µτΨN(τ) , (100)

and we see that e−µτΨN(τ) is a periodic function, and thus ΨN(τ) = eµτY(τ), where Y(τ)
denotes a periodic function. Thus, following the idea of the Floquet theorem, we obtain that
one of the solutions to the Hill equation grows exponentially, if the characteristic Equation (96)
has two different real roots. The periodic function Y(τ) can be obtained as follows. We put
the function ΨN(τ) = eµτY(τ) into the Equation (93) and obtain the equation for Y(τ) in the
form

Y′′ + 2µY′ =
(
J
α2 − µ2

)
Y . (101)

Then, we search for periodic function Y(τ) in the form of trigonometric series

Y(τ) = f0 +
∞

∑
k=1

[ fk sin kτ + gk cos kτ] . (102)

It is convenient to use now the auxiliary terms

F0 =
9H2(tX)

8α2 −
m2

A
α2 − µ2 , F1 = −3H(tX)

2α
, F2 =

9H2(tX)

8α2 , (103)

in order to formulate the recurrent relations between the coefficients f0, fk, and gk. These
recurrent relations contain four subgroups: for k = 0, k = 1, k = 2, and k ≥ 3:

k = 0 ⇒ F0 f0 +
1
2

F1 f1 +
1
2

F2g2 = 0 , (104)

k = 1 ⇒ f0F1 + f1

(
1+ F0 −

1
2

F2

)
− 2µg1 −

1
2

F1g2 +
1
2

F2 f3 = 0 , (105)

k = 1 ⇒ g1

(
1+ F0 +

1
2

F2

)
+ 2µ f1 +

1
2

F1 f2 +
1
2

F2g3 = 0 , (106)



Symmetry 2023, 15, 1824 19 of 24

k = 2 ⇒ f2(4+ F0)− 4µg2 +
1
2

F1(g1 − g3) +
1
2

F2 f4 = 0 , (107)

k = 2 ⇒ g2(4+ F0) + 4µ f2 + F2 f0 +
1
2

F1( f3 − f1) +
1
2

F2g4 = 0 , (108)

k ≥ 3 ⇒ (k2 + F0) fk + 2µkgk +
1
2

F1(gk−1 − gk+1) +
1
2

F2( fk+2 + fk−2) = 0 , (109)

k ≥ 3 ⇒ (k2 + F0)gk − 2µk fk +
1
2

F1( fk+1 − fk−1) +
1
2

F2(gk+2 + gk−2) = 0 . (110)

Clearly, there is the consistent sequential procedure: we extract gk+2 from (110), fk+2
from (109), g4 from (108), f4 from (107), g3 from (106), f3 from (105), and g2 from (104), thus
allowing the coefficients f2, g1, f1, and f0 to remain arbitrary. As an illustration of the instable
solution, we can put g1 = 0, f2 = 0 and express all the coefficients via the parameters f0 and
f1. The corresponding decomposition has the form

ΨN(τ) = eµτ

{
f0+ f1 sin τ− 1

F2
(2F0 f0+F1 f1) cos 2τ−

− 2
F2

[
F1 f0

(
1+

F0

F2

)
+ f1

(
2+ F0−

1
2

F2

)]
sin 3τ−4µ

F2
f1 cos 3τ+...

}
. (111)

The coefficients f0 and f1 can be formally found from the initial data

ΨN(0) = f0 +
∞

∑
k=1

gk , Ψ′N(0) = µΨN(0) +
∞

∑
k=1

k fk . (112)

To conclude, during the episode of the Universe evolution, when the scale factor is
the periodic function (82), one of the solutions to the perturbed equation for the axion field
behaves as

ψ(τ) = Y(τ) exp
{

µτ− 3
2

hX sin τ

}
. (113)

The envelope function exp
{

µτ− 3
2 hX sin τ

}
is the sinusoidally deformed exponent which

grows during the periodic episode of Universe evolution (see Figure 4 for illustration). We
deal with the instability of the axion field, which allows us to speak about an “axionization”
of the Universe in analogy with the process indicated as scalarization in the work [35].

Figure 4. Illustration of the behavior of the axion perturbation function ψ(τ) in the regime of parametric
excitation.
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3.4. Remark about the Post-Inflationary Stage of the Universe Evolution

When we consider the model of aetheric control over the dark fluid evolution, we assume
that there exists a critical value of the expansion scalar, say, Θ∗∗ = 3H(t∗∗), so that for t > t∗∗,
the rheological interactions in the dark fluid happen to be switched off, and we deal with
the post-inflationary epoch. For this epoch, the dark energy and non-axionic dark matter
are assumed to be characterized by the standard equations of state P = −W and Π = 0,
respectively. Also, ω0 = 0, and the dark matter interacts with dark energy via the gravity
field only. The conservation laws for the dark energy and non-axionic dark matter become
decoupled, and we now have

Ẇ = 0 , Ė + 3HE = 0 ⇒W = const = W(t∗∗) , E(t) = E(t∗∗)
[

a(t∗∗)
a(t)

]3

. (114)

As for the axion field, we assume that during the period of instability, this field reached
the maximal value at t = t(max), and at the moment t = t∗∗ > t(max), two parameters,
φ(t∗∗) and φ̇(t∗∗), start to play the roles of the initial data for the master equations in the
post-inflationary period. Clearly, we can recover all the specific details of the standard post-
inflationary epochs, but here, we mention two interesting cases of the axion field behavior at
t > t∗∗.

3.4.1. Frozen Axion Field with Non-Vanishing Effective Cosmological Constant

If the value φ(t∗∗) happens to be close to one of the minima of the axion field potential,
i.e., φ(t∗∗)→ n∗∗Φ∗ with some integer n∗∗ and thus V → 0, we obtain the situation analogous
to the one described in [36], when the large kinetic energy of axions dominates its potential
energy, so the axion field evolves as a stiff matter. Now, one can see that the contribution of
the derivative of the potential also is small, and the equation of axion dynamics (33) admits
the integral

φ̇ = φ̇(t∗∗)
[

a(t∗∗)
a(t)

]3

. (115)

Thus, the key equation of the gravity field takes the form

3H2
(

1+
3
2

C2

)
= Λ + κW(t∗∗) +

1
2

κΨ2
0(φ̇(t∗∗))

2
[

a(t∗∗)
a(t)

]6

+ κE(t∗∗)
[

a(t∗∗)
a(t)

]3

. (116)

If the effective cosmological constant Λ+κW(t∗∗) is non-vanishing, we can rewrite this
equation in terms of auxiliary variable x = a(t)

a(t∗∗)
as

H2 = H2
∞

[
1+ 2M1x−3 +M2x−6

]
, (117)

where the following auxiliary parameters are introduced:

H2
∞ =

Λ+κW(t∗∗)
3
(
1+ 3

2 C2
) , 2M1H2

∞ =
κE(t∗∗)

3
(
1+ 3

2 C2
) , M2H2

∞ =
κΨ2

0(φ̇(t∗∗))
2

6
(
1+ 3

2 C2
) . (118)

The solution to the equation

H∞(t− t∗∗) =
∫ a(t)

a(t∗∗)

1

dx

x
√

1+ 2M1x−3 +M2x−6
(119)

can be presented in the form

a(t)
a(t∗∗)

=

{
(1+M1) cosh [3H∞(t−t∗∗)]−M1)+

√
1+2M1+M2) sinh [3H∞(t−t∗∗)]

} 1
3

. (120)
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In the asymptotic regime t→ ∞, we obtain that H → H∞ and a(t) ∝ eH∞t, i.e., we deal
with the de Sitter type asymptote.

3.4.2. Frozen Axion Field with Vanishing Effective Cosmological Constant

When Λ+κW(t∗∗) = 0, we use another re-parametrization of the key equation for the
gravity field:

H2 = ρ1x−3 + ρ2x−6 , ρ1 =
κE(t∗∗)

3
(
1+ 3

2 C2
) , ρ2 =

κΨ2
0(φ̇(t∗∗))

2

6
(
1+ 3

2 C2
) . (121)

The solution for the scale factor is now of the form

a(t)
a(t∗∗)

=

[
1+ 3

√
ρ1 + ρ2(t− t∗∗) +

9
4

ρ1(t− t∗∗)2
] 1

3
. (122)

In the asymptotic regime, we obtain the power-law behavior of the scale factor, a(t) ∝ t
2
3 .

4. Discussion and Conclusions

Starting from 1996, cosmologists use specific terminology which is associated with
the spontaneous growth of fields and particle numbers in the early Universe. These terms
are spontaneous scalarization (see, e.g., [35,37,38]), vectorization [39,40], tensorization [41],
and spinorization [42]. Thinking along this line, we pose the question: when and why did
the axionization of the Universe occur? In other words, we are interested to elaborate upon
the models of spontaneous growth of axions which form the main part of the cosmic dark
matter. There are two mechanisms of such spontaneous growth: the first one is associated
with axion production due to the decay of gauge fields (see, e.g., [43]); the second (the most
known) mechanism is connected with the instability of the axion system. In this work, we
consider models of the second type and assume that the origin of the axion instability is
connected with the rate of the Universe evolution. We can explain the idea using a few
examples. The first example relates to standard inflation, when the scale factor is described
by the de Sitter law a(t) ∝ eH0(t−t0) with H(t) = H0 = const. Equation (63) is now a
differential equation of second order with constant coefficients, and we conclude that both
fundamental solutions to this equation do not increase; the model is stable with respect to
perturbations. The second example is connected with the power-law behavior of the scale
factor a(t) ∝ tξ (it can be obtained, e.g., for the Universe filled with matter with the equation of
state P = (Γ−1)W). Equation (63) can be now reduced to the Bessel equation, and if Γ ≤ 2, the
fundamental solutions to this equation also do not increase, so the model is stable. The third
example is the super-inflationary solution obtained in this work. As we see from Formula
(65) and from Figure 2, there exists the interval of the cosmological time when the axion field
increases, such that the axion system should be considered instable. The fourth example is
the model with periodic behavior of the scale factor (see (82)). Now, we see from (113) and
from Figure 4 that the perturbations of the axion field grow during the episode of periodic
evolution of the Universe. Again, we deal with axionic instability, and thus, we can speak
about Universe axionization.

To conclude, we have to say that at present, we do not know certainly that the super-
inflationary and/or oscillatory periods took place in the history of the early Universe. System-
atic analysis of observational data is necessary to clarify this question, and we hope to take
part in the detailed discussions. As a first step, one could try to think about imprints that were
left by the oscillations of the scale factor in the early-time and late-time stages of Universe
evolution. For sure, the main features relate to the axion field growth in the early Universe
and formation of the cold dark matter from these relic axions in our epoch. Of course, it would
be important to consider a model which unifies these features along the lines elaborated,
e.g., in [44–47]; we hope to present this work in our next papers.
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The mechanism of the axion field growth described by the periodic model can be in-
dicated as the parametric mechanism of the Floquet type; this mechanism is well known
in nonlinear mechanics. In the work [48], the parametric generation of the scalar field was
studied in the case when the oscillations of the scalar field are intrinsic, i.e., they are connected
with the properties of the scalar field potential. Our approach is based on the idea that just
the oscillations of the gravity field are the cause of parametric instability of the pseudoscalar
axion field. As for the model of super-inflation studied in this work, the mechanism of
axion instability can be indicated by a generalized parametric model, since instead of the
standard Hill equation, we use the generalized Hill equation for the analysis, replacing the
trigonometric functions with hyperbolic ones.

We have to emphasize that in all the stages of the Universe evolution, Peccei–Quinn
symmetry is assumed to be non-violated; the discrete symmetry φ→ φ+mΦ∗ with integer m
is supported in our model due to the specific periodic structure of the axion field potential (3).

The last point of our discussion is the status of two exact solutions to the master
equations of the presented model: the super-inflationary and the periodic solutions. These
exact solutions appear in the model with rheologically active dark fluid consisting of
coupled dark energy and non-axionic dark matter. These solutions are marked in the
catalogs presented in [9,10] as the ones corresponding to the triple degenerate roots of the
characteristic equation. In this paper, we considered both solutions in detail and studied a
new composite model in which the super-inflationary behavior of the Universe performs
a fine-tuning step, allowing the start of the periodic regime. In this context, we have to
emphasize that such a behavior of the expanding Universe is possible due to the aetheric
guidance, which is described in our model by inclusion of the expansion scalar Θ into
the axion field potential and into the Lagrangian of the dark fluid. Also, we believe that
namely the dynamic aether predetermines the milestone values of the cosmological time t0,
t∗, as well as the time moment t∗∗, when the periodic episode of the Universe evolution
finishes and the standard cosmological expansion starts.
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