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Abstract: Inconsistent lighting phenomena in digital images, such as underexposure and overex-
posure, pose challenges in computer vision. Many studies have developed to address these issues.
However, most of these techniques cannot remedy both exposure problems simultaneously. Mean-
while, existing methods that claim to be capable of handling these cases have not yielded optimal
results, especially for images with blur and noise distortions. Therefore, this study proposes a system
to improve underexposed and overexposed photos, consisting of two different residual attention
convolution networks with the CIELab color space as the input. The first model working on the
L-channel (luminance) is responsible for recovering degraded image illumination by using residual
memory block networks with self-attention layers. The next model based on dense residual attention
networks aims to restore degraded image colors using ab-channels (chromatic). A properly exposed
image is produced by fusing the output of these models and converting them to RGB color space.
Experiments on degraded synthetic images from two public datasets and one real-life exposure
dataset demonstrate that the proposed system outperforms the state-of-the-art algorithms in optimal
illumination and color correction outcomes for underexposed and overexposed images.

Keywords: image enhancement; underexposed; overexposed; exposure correction; residual attention
convolution network

1. Introduction

The symmetry of illumination in digital and photographic images plays a significant
role in determining the quality of the resulting image. Generally, image exposure quality
decreases due to the limited capabilities of the device (camera) and the influence of am-
bient light. Underexposure and overexposure are two phenomena that often arise due
to lighting asymmetry. An underexposed image is produced when the camera sensor
only receives a small amount of reflected light from an object, which causes the image to
become dark and lose detailed information due to being immersed in its shadow. On the
other hand, overexposure is caused by too much reflected light from objects hitting the
camera so that detailed information is lost in the highlights, producing an overexposed
image [1]. Therefore, exposure correction techniques are needed to improve the quality of
the degraded image.

Over the last decade, a myriad of research has been conducted by scientists to deal
with exposure correction issues in digital imaging ranging from conventional methods
to deep learning algorithms. Exposure correction based on curve map estimations [2–5],
the probabilistic method [6], histogram equalization [7–9], wavelet transform [10–12],
and Retinex theory [13–17] are very popular conventional methods. Although these meth-
ods can overcome some light correction problems, their output still lacks image naturalness
and detail.

Currently, deep learning algorithms application to overcome this exposure problem is
an attractive option for some experts, along with the development of Graphics Processing
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Unit (GPU) technology that can compute large amounts of data. Two deep learning
architectural models are widely used in exposure correction: CNN-based models and
generative-based models such as Generative Adversarial Networks (GANs). Many experts
have successfully developed CNN-based models to restore underexposed images using
either pure CNN networks [18–20] or by combining several other techniques such as
discrete wavelet transform (DWT) [21], the Retinex model [22,23], and the estimation
curve [24]. In addition, Gao et al. [25] constructed a convolution network to recover a
single input image with overexposure defects. Several scientists have employed GAN-
based models to improve underexposed images [26–28] and overexposed images [29].
Unfortunately, the aforementioned methods only recover one of the two types of light
defects (underexposed or overexposed) in digital images. In recent years, several image
enhancement methods have emerged that can deal with underexposed and overexposed
images simultaneously. Some of them use traditional or estimation methods [30,31] or deep
learning-based solutions [32–36]. However, their performance still needs to be optimized
because sometimes unknown artifacts are still found (especially in the overexposed image),
and some methods have not been able to recover image with contrast exposure defects.

In this study, we design a novel CNN-based exposure restoration method for under-
exposed and overexposed images by separating the illumination correction process and
the color correction process through two different residual attention networks using the
CIELab color space to achieve optimal outcomes compared to previous works. Our model
uses a residual network due to its superior performance compared to the U-Net and fully
convolutional network (FCN) models [37,38]. The CIELab color space was selected because
it has an optimal output compared to the other color spaces in our experiments. The illu-
mination correction task was performed using a model called the illumination correction
attention network (ICANet), composed of residual memory blocks, each equipped with a
self-attention layer. These residual memory blocks are inspired by MemNet [39], which has
been successful in recovering image lighting defects [40]. Meanwhile, the color correction
job is handled by another model named the color correction attention network (CCANet),
which is constructed of a residual dense block (RDB) and a self-attention block. This RDB
was adopted from the residual dense network (RDN), which has been able to solve several
cases of color image restoration, such as image super-resolution, image artifact reduction,
image denoising, and image deblurring [41]. The addition of a self-attention layer in both
models is aimed at increasing the quality and accuracy of the output.

We conduct a series of comparative experiments with several advanced methods using
degraded image synthesis data from the MIT-Adobe FiveK [42] and PASCAL VOC2012 [43]
datasets, as well as the real-life exposure dataset used by Afifi et al. [36], to evaluate the
effectiveness of our algorithm. The results of our experiments show that our approach is
superior to those of existing works.

The contribution of our proposed method can be summarized as follows:

• We propose a novel illumination and color correction method, employing a dual con-
volution network based on dissimilar residual attention blocks to refine underexposed
and overexposed images.

• Our model offers a solution to optimize image restoration results by separating the
illumination and color correction processes through two convolution networks using
the CIELab color space.

• We propose to add a self-attention layer to all residual blocks in our system to enhance
system performance.

• We create a synthetic image dataset for underexposure and underexposure cases,
along with related ground-truth images, based on two public datasets for the
training process.

2. Related Works

Zhang et al. [30] describe the traditional methods for correcting underexposed and
overexposed images by blending the forward illumination estimation of the input image
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and the reverse illumination estimation of the inverted input image. Another traditional
approach to normalizing exposure defect images is to use a fusion-based method that
combines the reflectance and illuminance estimations of the input image developed by
Fu et al. [31]. Non-traditional solutions applying deep learning models have been employed
by several scientists, including Steffens et al. [32], who attempted to restore the contrast
and global luminance of over- and underexposed images employing a U-Net architecture-
based approach with a dilated convolution block. Another CNN-based method consisting
of twenty convolution layers to correct the illumination of color painting on a reflective
surface such as a notebook was constructed by Goswami et al. [33]. The application of
illumination correction was not only for photographs and paintings but has also been used
to improve the quality of scanned documents, as has been done by Li et al. [34] using a
patch-based CNN model. In addition, the implementation of Retinex propagation theory
in a dual-convolution network to address these exposure cases has also been proposed
by Ma et al. [35]. Lastly, Afifi et al. [36] provided a solution to fix these exposure issues
by applying a deep neural network with a Laplacian pyramid framework trained on
24,000 multi-exposure photos. All of the aforementioned algorithms have become state-of-
the-art in addressing the exposure correction on under- and overexposed images.

The main differences between the proposed model and previous studies in the case of
underexposed and overexposed image correction are shown in Table 1. ARPNet [35] and
our system both have two convolution networks but the ARPNet networks are composed
of identical structures and share weights between them, whereas our two networks are
built from different residual attention networks, as described in the previous paragraph.
Unlike IllNet [34] and ARPNet, our residual architecture is equipped with a self-attention
layer that is widely used by scientists [44–46] to improve system performance. In addition,
the number of residual blocks in our network is less than those in IllNet and ARPNet.
For skip connections, the remaining blocks in our method use dense and recursive skip
connections, whereas IllNet and ARPNet apply regular ones. Figure 1 illustrates the
differences between these skip connections. Furthermore, data processing in our network
is performed in the CIELab color space, unlike other models that typically use the RGB
color space. The advantage of using this color space is that there is a special channel for
setting the luminance (L) and a separate channel for adjusting the color (a and b). With the
appropriate adjustment of both channels, an output image with optimal lighting and
coloring will be obtained. A performance comparison of the proposed algorithm utilizing
the CIELab color space with other color spaces that support luminance and color settings is
discussed in the ablation study section.

Figure 1. Illustration of various skip connection schemes. (a) Regular skip connection. (b) Recursive
skip connection. (c) Dense skip connection.
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Table 1. Comparison of the proposed method with previous studies.

Method Number of
Networks Architecture Number of

Residual Blocks Type of Connection Color Spaces

DualIE [30] - Dual Illumination * - - RGB

FBEI [31] - Reflectance and
Illumination * - - RGB

ReExposeNet [32] 1 UNet - - RGB

FCN20 [33] 1 Fully Convolutional
Network - - RGB

IllNet [34] 1 Residual Network 5 Regular Skip RGB
ARPNet [35] 2 Residual Network 16 Regular Skip RGB
MSPEC [36] 1 UNet - - RGB

Ours 2 Residual Attention
Network 3 and 4 Recursive and Dense CIELab

* Non-Deep Learning.

3. Proposed Method

This section discusses the mechanisms of the proposed system, including the sys-
tem overview, ICANet architecture, self-attention mechanism, CCANet architecture, and
loss functions.

3.1. System Overview

The main architecture of our system is presented in the pipeline diagram shown
in Figure 2. Overall, this system can be divided into two sub-systems: the illumination
correction attention network (ICANet) and the color correction attention network (CCANet).
These two networks play different roles in recovering underexposed and overexposed
images. The main task of ICANet is to correct the illumination of images that suffer
from exposure defects by processing the luminance (L) channel of the input information.
Meanwhile, CCANet is responsible for refining the color of the incorrectly exposed image
by processing the incoming information using the chromatic channel (a, b). RGB input
images must be converted to the CIELab color space first before being processed in these
networks. Once the processing on this network is completed, the two network outputs are
combined and converted to the RGB color space to obtain the final image.

Figure 2. The overall pipeline diagram of the proposed model consists of an illumination correction
attention network (ICANet) to improve illumination issues and a color correction attention network
(CCANet) to handle color refinement in degraded underexposed and overexposed images.

3.2. ICANet Architecture

Figure 3 shows the ICANet architecture of the proposed method. The main structure
of this network consists of a feature extraction convolution layer ( fe) with 32 filters (n = 32),
a feature reconstruction convolution layer ( fr) at the end of the network, and three memory
attention blocks (MABs). All convolution layers in this network use 2D convolution plus a
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ReLU activation function with several parameters, such as the kernel size (k), stride size (s),
and padding size (p), set to 3, 1, and 1, respectively.

This network was designed with two skip connections, which connect the system
input to the output fr and from the output fe to the final MAB output through a summation
(+) operation. The construction of this MAB, inspired by the memory block of MemNet [39],
consists of three convolution layers triggered by the ReLU activation function using 32 fil-
ters; a self-attention layer with a block structure, as shown in Figure 4; and a gate unit that
will concatenate the output of the previous layer. Unlike the memory block in MemNet,
we removed batch normalization and added a self-attention layer to our memory block to
maintain output quality. In addition, we used three recursive units in our proposed block,
whereas the original MemNet block used five recursive units. This reduction was intended
to minimize processing time and information loss from our network. In addition, according
to research by Jin et al. [47], this recursive network can improve the performance of the
model. The ICANet was trained using the ADAM optimization algorithm and several
parameters such as epoch, batch size, learning rate, momentum, and weight decay with
values of 100, 1, 10−4, 0.9, and 0.9, respectively.

Figure 3. The ICANet architecture of our system consists of two feature convolution layers, known
as feature extraction ( fe) and feature reconstruction ( fr), and three memory attention blocks (MABs).

Figure 4. Block diagram of the self-attention layer applied to the proposed method.

3.3. Self-Attention Mechanism

Figure 4 shows the structure of the self-attention layer implemented in our method.
The self-attention mechanism applied to the generator module in the GAN model was
first introduced by Zhang et al. [44] and was used to help models drive long-distance
dependencies and produce fine detail in drawing generation tasks. This layer has two
output components: the feature map (Zi) from the preceding convolution layer and the self-
attention map (A). Zi is obtained by adding up the attention matrix value (Yi) multiplied
by the gamma parameter (γ) for the optimization process with data input (Xi) as residual
learning, which can be formulated as:

Zi = γYi + Xi, (1)

In the initial stage, γ is set to zero and is increased for optimization during network
training. The value of the attention matrix is the product of the multiplication between the
self-attention map (A) and the value of the input matrix (V(x)), which can be expressed
as (2), and by applying (3), we can obtain the value of A.

Yi = AV(x), (2)
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A = so f tmax(Q(x)TK(x)), (3)

where Q(x)T is the transpose matrix of the query from input X, and the key matrix of X is
denoted as K(x).

3.4. CCANet Architecture

The architecture of the CCANet, which is responsible for restoring the colors in
the exposure-degraded images, is shown in Figure 5. This network was constructed
by placing two feature extraction convolution layers ( fe1, fe2) at the beginning of the
network, two feature reconstruction convolution layers ( fr1, fr2) at the end of the network,
four residual dense attention blocks (RDABs) followed by a concatenated block (Concat)
with a 1 × 1 convolution located in the middle of the network, and a self-attention block in
the skip connection path, which has a multiplication operation at the end of the line. Here,
all feature extractions and reconstructions were 2D convolution layers, with no activation
function triggered. The structure of the RDABs can be seen in Figure 6. This residual block
was adopted from RDN [41] and contains three convolution layers with a ReLU activation
function and a concatenate layer with a 1 × 1 convolution. All convolution layers in this
network used several parameters, as well as the filter (n), kernel (k), stride (s), and padding
(p) with sizes of 32, 3, 1, and 1, respectively. We modified the residual block from RDN by
adding a self-attention (SA) layer after the concatenate layer and multiplying its outcome
with the output of the concatenate block in our network (see Figure 6). The construction and
mechanism of all SA layers in this network were similar to those in ICANet. This network
was also trained with the ADAM optimization algorithm and used training parameters
identical to those in ICANet.

Figure 5. The CCANet architecture of our model consists of two feature extraction convolution layers
( fe1, fe2), two feature reconstruction convolution layers ( fr1, fr2), four residual dense attention blocks
(RDABs), a merge block (Concat), and a self-attention (SA) block.

Figure 6. The structure of the residual dense attention blocks (RDABs) used in the CCANet
architecture.

3.5. Loss Function

In this work, we used two total loss functions in our model during the training phase.
The first total loss was for ICANet (LICANet) and was a combination of the L1 loss (Ll1) and
structural similarity (SSIM) loss (LSSIM). This total loss has been used in several systems
for the illumination problem [48,49] and can be expressed as:
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LICANet = αl1Ll1 + αSSIMLSSIM, (4)

where αl1 and αSSIM are the hyperparameters used to balance Ll1 and LSSIM, which have
values of 0.2 and 0.8, respectively. Ll1 or the mean absolute error (MAE), obtained from (5),
and LSSIM can be represented by (6).

Ll1 =
1
N

N

∑
i=1

∣∣∣y − yre f

∣∣∣, (5)

LSSIM = 1 − SSIM(y, yre f ), (6)

Here, y is the model output, the target output is denoted as yre f , and N is the total
number of data samples. SSIM(y, yre f ) is calculated with the following rules:

SSIM(y, yre f ) =
(2µyµyre f + c1)(2σyyre f + c2)

(µ2
y + µ2

yre f
+ c1)(σ2

y + σ2
yre f

+ c2)
, (7)

where µy and µyre f are the pixel samples of y and yre f , respectively; σ2
y and σ2

yre f
are the

variances of y and yre f , respectively; the cross-correlation between y and yre f is denoted as
σyyre f ; and c1 and c2 represent divisional stabilizing constants with weak dominators. We
obtain the values of c1 and c2 by applying c1 = (k1L)2 and c2 = (k2L)2. Moreover, L is the
dynamic range of the pixel values with default values of k1 = 0.01 and k2 = 0.03.

The other total loss used in the CCANet model (LCCANet) consists of the mean square
error (MSE) loss (LMSE) and the Huber loss function (LH). This total loss has been widely
used in image color enhancement [40,50,51] and can be formulated as follows:

LCCANet = αMSELMSE + αH LH , (8)

where αMSE and αH are hyperparameters that balance the sub-loss functions with values of
0.1 and 0.9, respectively. LMSE is calculated using (9), and LH can be obtained using (10).

LMSE =
1
N

N

∑
i=1

(
y − yre f

)2
, (9)

LH =

 0.5(y − yre f )
2 : i f

∣∣∣y − yre f

∣∣∣ ≤ δ

δ(
∣∣∣y − yre f

∣∣∣− 0.5δ) : otherwise
(10)

where δ is the threshold value that controls the transition change between the L1 loss and
the L2 loss function. We used the default value of δ = 1 in this implementation.

4. Experiments

All topics related to our experiments are presented in this section, beginning with
an explanation of the datasets and metrics, followed by an evaluation of the system’s
performance compared to other mainstream algorithms and an ablation study. As ad-
ditional information, we developed our model using the Pytorch framework in a Linux
environment, and we ran it on a computer with an Intel Core i7 processor utilizing an
NVIDIA GeForce GTX 1070 GPU.

4.1. Datasets and Metrics

In this experiment, our proposed algorithm was trained using a synthetic exposure
defect image dataset generated from the MIT Adobe FiveK dataset. This dataset is a paired
dataset consisting of 5000 good-quality photos in sRGB format, along with associated
images retouched by five experts [42]. This dataset has been widely used by scientists
for image enhancement problems [28,30,32,36]. The procedure for creating our training
synthesis dataset can be described as follows: First, a random sample of 800 images was
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selected from the MIT Adobe FiveK dataset and resized to 256 × 256 pixels. This resizing
was carried out due to hardware limitations and the large number of images used in the
training phase. The next step was to generate a new synthetic image by adding lighting
effects that varied with percentages of 30%, 50%, 70%, 100%, 130%, 150%, 170%, and 200%.
This step produced 6400 images that represented both underexposed and overexposed
images. Furthermore, we generated another new synthesized image representing low- and
high-contrast defects by adding a contrast variation effect with percentages similar to those
used in the previous step. So, we now had 12,800 degraded image data. To make our model
more robust, we built a new synthetic image dataset from previously generated images by
adding Gaussian noise and blur. Finally, the total synthesized image dataset resulting from
the above process contained 38,400 degraded images. Figure 7 shows some exemplary
synthetic images in our datasets.

Figure 7. Examples of synthetic illumination and synthetic contrast images in our proposed dataset,
with ground-truth (GT) image on the left.

Three different datasets were used in the evaluation phase, including two synthetic
exposure-degraded image datasets generated from the MIT Adobe FiveK [42] and PASCAL
VOC2012 [43] datasets and a test dataset used by Afifi et al. [36]. The generation of
the synthetic evaluation dataset based on the MIT Adobe Fivek and PASCAL VOC2012
datasets used the same procedure as the generation of the training dataset. Each dataset
was generated from 200 random samples of images and at the end of the process, each
dataset produced 9600 degraded images. VOC2012 contains images that differ in quality,
especially in terms of illumination and color, making it a suitable test dataset for our
algorithm. Meanwhile, the dataset by Afifi et al. is a collection of images that have been
rendered, imitating real exposure from digital cameras with different exposure values
(EV) of −1.5, −1, 0, +1, and +1.5. Thus, this dataset can simulate images with natural
exposure defects.

In this evaluation, we used several quantitative metrics based on image quality assess-
ment (IQA) with full-reference metrics, including the peak signal-to-noise ratio (PSNR),
structural similarity (SSIM) index [52], and visual saliency with color display and gradient
similarity (VCGS) [53]. The PSNR is used to measure the level of compression in decibels
(dB) between the reference image and the predicted image by comparing the pixel values.
It is calculated using the following rule:

PSNR = 10 ∗ log10

(
MAX2

MSE

)
, (11)

where MAX is the maximum pixel value in the grayscale image and MSE is the mean
square error between the reference image and the predicted image, which can be calculated
using (9).

SSIM is a full-reference metric that compares the luminance, contrast, and similarity
structure of the reference image and the degraded image. We used (7) to calculate this metric.
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The PSNR and SSIM index metrics are commonly used in IQA in image enhancement
models, including exposure correction cases [32,35,36].

To assess the color correction quality of the output image, this study used the reliable
VCGS metric as a full-reference IQA model for color images. This metric combines the
similarity of visual saliency with the color display (VC), gradient, and chrominance and
is suitable for measuring the color quality in degraded images. The VCGS metric can be
expressed as follows:

VCGS =
∑Ω Svc � (Sg)α � (Sc)β � VCmax

∑Ω VCmax
, (12)

where Ω is the spatial domain; Svc is the similarity of the visual saliency map with a color
appearance, which can be formulated using (13); the gradient similarity is denoted by Sg
and obtained using (14); Sc is chrominance elements’ similarity in the CIELab color space
(a-b channel), which can be expressed as in (15); α and β are the important relative features
among visual salience, structure, and chrominance; and VCmax is the maximum values
of two visual saliency maps (VC1 and VC2) that represent the reference image and the
predicted image in this case.

Svc =
2VC1.VC2 + Kvc

VC2
1 + VC2

2 + Kvc
, (13)

Sg =
2g1.g2 + Kg

g2
1 + g2

2 + Kg
, (14)

Sc =
2a1.a2 + Kc

a2
1 + a2

2 + Kc
.

2b1.b2 + Kc

b2
1 + b2

2 + Kc
, (15)

where Kvc, Kg, and Kc are numerical stability control parameters [52]; g1 and g2 are the
gradient magnitudes of the luminance channel (L) in CIELab color spaces, which are

calculated by g1,2 =
√

g2
x + g2

y, where gx and gy are the horizontal and vertical gradient
operators of an input image (X), respectively. The equations gx and gy can be written
as follows:

gx =
1
16

 3 0 −3
10 0 −10
3 0 −3

 ∗ X, (16)

gy =
1

16

3 10 −3
0 0 0
3 10 −3

 ∗ X, (17)

4.2. Performance Evaluation

To evaluate the reliability of the proposed approach, we performed benchmarking
experiments against other advanced methods that support both underexposed and overex-
posed image problems, including DualIllum [30], FBEI [31], ReExposeNet [32], FCN20 [33],
IllNet [34], ARPNet [35], and MSPEC [36]. These quantitative evaluations are summarized
in Table 2. All of these algorithms were tested using the MIT Adobe FiveK-based synthe-
sis dataset, the VOC2012-based synthesis dataset, and the Afifi et al. [36] test dataset. It
should be noted that the ground-truth images in the Afifi dataset are images corrected by
an expert photographer C (refer to [42]). In the results, it can be seen that the proposed
method outperformed other state-of-the-art algorithms, achieving the highest PSNR, SSIM,
and VCGS scores on all of the testing datasets.

A visual comparison of the output for underexposed input images with or without
noise and blur can be seen in Figure 8. Meanwhile, Figure 9 demonstrates a qualitative
comparison of all outputs for the overexposed input images. Based on these images, it



Symmetry 2023, 15, 1850 10 of 17

appears that our algorithm produced predictive outputs that were close to the ground-truth
images and achieved the highest scores across all IQA metrics.

Table 2. Quantitative comparison of the proposed system and other methods on different datasets.

Method
MIT-Adobe FiveK-Based PASCAL VOC2012-Based Afifi et al. [36]

PSNR SSIM VCGS PSNR SSIM VCGS PSNR SSIM VCGS

DualIE [30] 17.83 0.686 0.913 17.81 0.687 0.912 19.16 0.855 0.967
FBEI [31] 16.84 0.681 0.913 16.34 0.671 0.911 15.82 0.800 0.959
ReExposeNet [32] 13.44 0.544 0.892 13.05 0.537 0.896 15.11 0.596 0.909
FCN20 [33] 18.64 0.655 0.916 18.08 0.647 0.914 16.81 0.755 0.946
IllNet [34] 18.77 0.680 0.931 18.56 0.690 0.931 17.45 0.790 0.954
ARPNet [35] 18.67 0.673 0.926 18.34 0.675 0.925 17.35 0.785 0.954
MSPEC [36] 19.43 0.730 0.935 19.33 0.727 0.936 21.23 0.874 0.971
Ours 22.38 0.828 0.963 22.23 0.836 0.961 22.52 0.888 0.974

Figure 8. Qualitative comparison of all methods on underexposed images without noise and blur
defects (top), with noise defects (middle), and with blur defects (bottom).

Figure 9. Qualitative comparison of all methods on overexposed images without noise and blur
defects (top), with noise defects (middle), and with blur defects (bottom).
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In addition, an evaluation using low-contrast and high-contrast input images was
also applied to the models. This test aimed to determine the performance of the proposed
system against input images that have inappropriate exposure contrast. The qualitative
comparison of this evaluation is presented in Figure 10 (low-contrast exposed images)
and Figure 11 (high-contrast exposed images). In the visualization, it can be seen that the
proposed method has better corrected image quality compared to other advanced methods,
especially for images with low-contrast exposure. Moreover, the proposed method has
promising performance when recovering improperly contrast-exposed images with noise
and blur defects.

Figure 10. Qualitative comparison of all methods on low-contrast exposed images without noise and
blur defects (top), with noise defects (middle), and with blur defects (bottom).

Figure 11. Qualitative comparison of all methods on high-contrast exposed images without noise
and blur defects (top), with noise defects (middle), and with blur defects (bottom).

Figure 12 shows a qualitative comparison of the models tested against the sample of
the Afifi dataset representing natural exposure-degraded images, with overexposed images
(+1.5 EV) in the top row and underexposed images (−1.5 EV) in the bottom row. This figure
demonstrates that our algorithm’s output was the best, achieving the highest PSNR, SSIM,
and VCGS values across the real exposure-degraded images. In underexposed images,
our method was the best, with PSNR, SSIM, and VCGS values of 33.98, 0.981, and 0.993,
respectively, whereas in overexposed images, our proposed method achieved slightly
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higher metric values compared to the MSPEC method as its closest competitor, with PSNR,
SSIM, and VCGS values of 28.88 dB, 0.929, and 0.987, respectively.

Figure 12. Qualitative comparison of all methods on overexposed images (+1.5 EV) in the top row
and underexposed images (−1.5 EV) in the bottom row.

4.3. Ablation Study

The ablation study aimed to measure the effectiveness of the proposed method by
changing or eliminating several parameters such as the use of different color spaces in the
model, the use of self-attention layers in the network, and the use of mixed datasets (using
noise and blur samples) during model training.

Table 3 shows the comparative performance of our model with different types of color
spaces applied. The color space compared in this experiment is a color space that has
lighting channels (illumination) and chromatic color channels such as hue-saturation-value
(HSV), luminance-chroma blue-chroma red (YCbCr), luminance-green/red-blue/yellow
(Luv), and luminance-green/red-blue/yellow (Lab).

Table 3. Quantitative comparison of the proposed model using different color spaces on the synthe-
sis datasets.

Color Spaces
MIT Adobe FiveK-Based VOC2012-Based

PSNR SSIM VCGS PSNR SSIM VCGS

HSV 21.58 0.724 0.923 21.12 0.738 0.927
YCbCr 21.98 0.734 0.930 21.76 0.752 0.934
Luv 21.41 0.735 0.934 20.75 0.744 0.935
CIELab 22.38 0.828 0.963 22.23 0.836 0.961

In this test, the illumination channel was applied to the ICANet model, and the chro-
matic color channel was used in the CCANet model. As for the HSV color space, the V
channel is the intensity or illumination channel, while the rest are the chromatic colors.
In the YCbCr color space, the Y channel is the illumination channel or the light channel,
whereas the other channels are the color channels. As for Luv and Lab, the illumination
channel is the L channel (luminosity) and the other channels are the chromatic colors.
The entire training model used ADAM optimizations and the same configuration of pa-
rameters such as epoch, batch size, learning rate, momentum, and weight decay with
values of 100, 1, 10−4, 0.9, and 0.9, respectively. All of these color space tests were ap-
plied to two exposure-degraded image synthesis datasets, including those based on MIT
Adobe FiveK and PASCAL VOC2012 with the number of test samples for each dataset of
9600 images. It can be seen in Table 3 that the model with the Lab color space performed
the best compared to the other models that applied the HSV, YCbCr, and Luv color spaces
by achieving the highest PSNR, SSIM, and VCGS scores across all test datasets (marked
with values in bold). In addition, the model with the HSV color space did not perform well
in the similarity index and coloration assessment, as it achieved the lowest SSIM and VCGS
values across all the degraded image synthetic datasets.
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The model’s performance with various combinations of self-attention layers is pre-
sented in Table 4. In this experiment, the effectiveness of the self-attention (SA) layer of
the two residual models (ICANet and CCAnet) was tested by installing an SA layer (+SA)
or removing an SA layer (−SA) in each network. In this table, it can be seen that the best
configuration of the two residual networks is the model using the self-attention layer with
the highest assessment metric score (marked by the value in bold) for both the MIT Adobe
FiveK-based test dataset and the VOC2012-based dataset. In the table, it can also be seen
that the CANNet model with the SA (+SA) layer achieved better SSIM and VCGS values
compared to without using the SA (−SA) layer in both test datasets. In addition, the use
of the SA layer in the ICANet model increased the PSNR score. This can be seen from the
PSNR value in the MIT Adobe FiveK-based synthesis dataset, which obtained a score of
20.19 dB, and the VOC2012-based synthesis dataset, which obtained a score of 20.77 dB.

Table 4. Ablation study of the proposed model using different combinations of self-attention layers.

ICANet CCANet
MIT Adobe FiveK-Based VOC2012-Based

PSNR SSIM VCGS PSNR SSIM VCGS

−SA −SA 19.35 0.712 0.923 19.53 0.720 0.922
+SA −SA 20.19 0.732 0.926 20.77 0.738 0.926
−SA +SA 19.48 0.770 0.951 19.19 0.773 0.950
+SA +SA 22.38 0.828 0.963 22.23 0.836 0.961
−SA = without self-attention; +SA = with self-attention.

Figure 13 shows a comparison of the training performance of the two proposed
network models (CCANet and ICANet) using degraded image datasets with noise defects
and blurred images (w/mixed dataset) and without using noise and blurred images (w/o
mixed dataset). Both models were trained using the same dataset (FiveK-based) and the
same parameter configuration. In the CCANet training performance chart, the model
using a mixed dataset (red line graph) achieved a higher average score of about 1.18 dB
compared to the model without a mixed dataset (blue line graph). Meanwhile, the ICANet
model trained on a mixed dataset (red line graph) outperformed the ICANet model trained
using an unmixed dataset (blue line graph), with a difference in the average PSNR value
of 3.17 dB. A comparison of the loss graphs of our method both with and without mixed
datasets is shown in Figure 14. In the CCANet model, it appears that the model trained on
mixed datasets exhibited a slightly faster loss reduction (epoch ≤ 10) compared to other
models without mixed datasets, whereas in the ICANet model, the loss graph model trained
on mixed datasets was superior to the model not trained on mixed datasets. The loss value
dropped at epoch 8 for models with mixed datasets, whereas for models with non-mixed
datasets, the loss value dropped when the epoch reached 18. Based on these facts, it is
clear that the proposed model trained on a mixed dataset demonstrated better performance
compared to the model trained on an unmixed dataset.

Figure 13. The training performance graph of the proposed method with and without the mixed
dataset. (a) On CCANet training. (b) On ICANet training.
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Figure 14. The loss graph comparison of the proposed method with and without the mixed dataset.
(a) On CCANet training. (b) On ICANet training.

Furthermore, the performance of the proposed model was also evaluated against
other types of imagery such as satellite (remote sensing) [54], industrial applications
(visual inspection) [55], and biomedical imagery (human lung X-ray photos) [56]. These
experiments aimed to determine the reliability of the system when applied outside of
photographic image restoration. Figure 15 demonstrates the restoration results of all models
in other computer vision applications using the same parameters and trained models as
previous experiments (without training on new datasets). For satellite image restoration,
our model achieved the highest measurement metric values with a PSNR = 26.89 dB, an
SSIM = 0.933, and a VCGS = 0.969. Our system also outperformed other benchmark models
on PCB visual inspection image recovery with PSNR, SSIM, and VCGS values of 23.71 dB,
0.979, and 0.990, respectively. In biomedical image applications, the proposed method
achieved image quality assessment results above the average of the state-of-the-art model.
These evaluation results indicate that our approach is superior compared to competing
models for restoring exposure-degraded images and show that our proposed system can
be applied to restoration tasks for various types of images.

Figure 15. Qualitative comparison of all methods on degraded image samples for different application
datasets. The (top row) shows a satellite image [54], the (middle row) shows an image from an
industrial PCB inspection [55], and the (bottom row) shows an X-ray photo of human lungs in a
biomedical imaging application [56].

5. Conclusions

In this study, we propose a model to improve lighting and color problems in under-
exposed and overexposed images by separating the illumination correction process and
the color correction process using two residual attention-based convolution models imple-
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mented in the CIELab color space. The quantitative and qualitative evaluations on two
synthetic degraded image datasets and one real-life exposure image dataset demonstrated
the superiority of the proposed model over state-of-the-art methods. The ablation study
proved the effectiveness of our model using the CIELab color space as a color channel for
the input model, the utilization of self-attention layers within the network, and improved
model performance when using mixed image datasets (with image samples that have
noise defects and blur defects) during the training phase. In addition, testing on various
types of images, such as satellite images, industrial inspection images, and biomedical
images, showed that the proposed system could be applied to exposure-degraded images
beyond photographic images, even without retraining the model. However, the results
of this experiment could be optimized by retraining the model using additional datasets
appropriate to the desired restoration application object. In the future, we plan to improve
the generalizability of our method to various other image enhancement applications by
adding domain adaptation or domain generalization methods.
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