
Citation: Li, J.; Tang, W.; Zhang, D.;

Fan, D.; Jiang, J.; Lu, Y. Map

Construction and Path Planning

Method for Mobile Robots Based on

Collision Probability Model.

Symmetry 2023, 15, 1891. https://

doi.org/10.3390/sym15101891

Academic Editor:

Alexander Shelupanov

Received: 3 September 2023

Revised: 26 September 2023

Accepted: 29 September 2023

Published: 9 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Map Construction and Path Planning Method for Mobile
Robots Based on Collision Probability Model
Jingwen Li 1,2, Wenkang Tang 1, Dan Zhang 3, Dayong Fan 3, Jianwu Jiang 1,2,* and Yanling Lu 1,2

1 College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541004, China
2 Ecological Spatiotemporal Big Data Perception Service Laboratory, Guilin 541004, China
3 Guilin Agricultural Science Research Center, Guilin 541006, China
* Correspondence: fengbuxi@glut.edu.cn; Tel.: +86-15-677-061-712

Abstract: A map construction method based on a collision probability model and an improved A*
algorithm is proposed to address the issues of insufficient security in mobile robot map construction
and path planning in complex environments. The method is based on modeling the asymmetry
of paths, which complicates problem solving. Firstly, this article constructs a collision probability
function model, and based on this model it is fused with the obstacle grid map, which is based on
the grid method, to draw a collision probability grid map (CPGM) containing collision probability
information. Secondly, incorporating the collision probability values from the CPGM into the actual
cost function of the traditional A* algorithm improves the security of path planning in complex envi-
ronments. The experimental results show that the improved A* algorithm decreases the percentage of
dangerous nodes in complex environments by 69.23%, shortens the path planning length by 19.52%,
reduces the search time by 16.8%, and reduces the number of turns by 46.67%. Therefore, the method
in this paper solves the problem of traditional grid maps lacking security information and can plan a
path with higher security and which is smoother, improving the security and robustness of mobile
robot autonomous navigation in complex environments.

Keywords: mobile robot; collision probability; grid map; A* algorithm; path planning

1. Introduction

With the development of computer and intelligent robotic technologies, more and
more mobile robots have emerged in industrial production and daily life. They can
complete various tasks and reduce people’s labor burden. However, there are many
obstacles in complex indoor scenes (e.g., bedrooms, living rooms, etc.), which can eas-
ily lead to collisions between the mobile robot and the surrounding obstacle clusters,
affecting the autonomous navigation and work safety of the mobile robot. Therefore,
constructing an environmental map containing safety information and planning a safe and
collision-free path is an important prerequisite for achieving the autonomous navigation of
mobile robots.

The four steps of mobile robot navigation are perception, positioning, motion control,
and path planning [1–3]. Among them, the construction of environmental maps [4] and path
planning [5] are the most important factors for the navigation process. The construction of
environmental maps is a form of knowledge expression for external scene features after
mobile robots obtain and process environmental information. The environmental map
model must be easy for mobile robots to understand and calculate if mobile robots are
able to easily add new environmental information to the constructed map model when it
comes to unstructured environments. In robotics, environmental maps generally include
topology maps [6], feature maps [7], and grid maps [8]. A topology map is a map model
composed of nodes that have connection relationships which are based on the characteristic
positions or regions in the environment. Mobile robots can move from one node area to
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the other based on the connection information. Topology maps have advantages such as
strong robustness and good global coherence, but they cannot accurately identify specific
positions and are prone to collision with obstacles in complex scenes. Feature maps
represent the environment through various geometric prototypes such as points, lines,
and circles. They have the advantages of simplicity, low model data volume, and high
computational efficiency, making them suitable for well-structured environments. However,
the commonly used point features such as corner points or midpoints in feature maps
cannot fully express the details of the environment, making them difficult to directly use for
path planning. They are generally used in robot positioning algorithms. The environmental
model represented by grid maps is divided into several small grids, and the probability
of obstacles inside each unit is estimated using sensing information. However, grid maps
reflect a single piece of information about obstacles, which includes only obstacle grids and
idle grids, so although the mobile robot can plan a path to avoid obstacles, the planned path
may be close to obstacles, which is likely to cause the robot to collide with the obstacles. In
addition to this, the robot is unable to make good use of the environmental information in
the map to perceive its own collision probability with the surrounding obstacles during the
navigation process.

Path planning aims to find a feasible path from the initial position to the target position
in the configuration space without colliding with any obstacles through using planning
algorithms [9]. A good path planning algorithm can quickly plan the optimal path, improve
operational efficiency, and reduce robot wear. The algorithm based on graph search is
a deterministic search method to traverse, which is usually used in low-dimensional
spaces, such as two-dimensional space. Generally, the map is discretized into grid maps
and a search strategy is used to find the path at the lowest possible cost. Common path
planning algorithms encompass the Dijkstra algorithm [10], the A* algorithm [11], and
several enhanced variations of the A* algorithm. The Dijkstra algorithm, functioning as
a Breadth-First Search (BFS) algorithm, can ascertain the shortest path to the destination.
Nonetheless, it exhibits high computational complexity and suboptimal planning efficiency.
The A* algorithm is a commonly used path search and graph traversal algorithm, which
not only improves the efficiency of path search by utilizing heuristic functions but also
ensures that it does not expand more states than any other optimal algorithm given the
same information (i.e., it is the most effective). However, the real-time performance is poor,
and as the map or dimension increases, the planning time also increases exponentially. The
main purpose of the improved A* algorithm is to shorten the planning time of A*, but there
are still many planned path turning points that need to be smoothed.

The current studies are somewhat effective in avoiding complex obstacles, but these
studies have not taken into consideration factors such as the distance between the robot and
obstacles, the size of the robot itself, and the absence of collision probability information in
the navigation map. Therefore, the paths generated by mobile robot planning lack sufficient
safety assurance. In order to solve the problems of the lack of collision probability infor-
mation in the construction of mobile robot environment maps and the insufficient security
of the paths planned based on algorithms, this paper proposes a map construction and
path planning method based on collision probability models. This method first constructs a
collision probability function model that is based on the size of the robot and considers the
collision situation between the robot and the obstacle. Then, according to the grid method,
an obstacle grid map is constructed, and a collision probability function model is used
to assign collision probability information to idle grids on the basis of the obstacle grid
map, forming the CPGM. Secondly, we fully utilized the collision probability values in the
collision probability grid map and fused them into the actual cost function of the traditional
A* algorithm. Finally, the proposed method was simulated in MATLAB to effectively draw
a safe, efficient, and optimal navigation path for mobile robots, improving the safety and
robustness of autonomous navigation for mobile robots in complex environments. Our
main contributions are as follows:
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(1) A collision probability function model which is based on robot size and considers the
distance between robots and obstacles is proposed, providing a theoretical basis for
subsequent collision probability grid map construction and safe path planning.

(2) Based on the obstacle grid map and collision probability function model constructed
by using the grid method, a CPGM construction method is proposed. With this
method, a grid map containing collision probability information can be constructed,
which assigns collision probability information to all idle grids in the obstacle grid
map. This method not only solves the problem of the lack of collision probability
information in the construction of environment maps for mobile robots but also
provides safety information for the subsequent path planning problem.

(3) On the basis of the CPGM, we improve the A* algorithm by fully utilizing the collision
probability values of each grid in the CPGM and incorporating them into the actual
cost function of the A* algorithm. Our improved algorithm solves the problem of the
lack of security in the paths planned by the traditional A* algorithm and improves
the safety and robustness of mobile robots.

The rest of this article is organized as follows: The second section introduces the
related work of environmental map construction and path planning. The third section
introduces the proposed method, discusses the mathematical and theoretical basis of the
collision probability function model, and applies it to the construction of robot collision
probability grid maps and safe path planning. In the fourth section, relevant simulation
experiments were designed to demonstrate the effectiveness of the proposed method in
robot safety navigation. The fifth section is the conclusion of this article.

2. Related Works

The construction of CPGM and path planning can effectively find a safe, efficient,
and optimal path in complex environments, and apply them to specific research and
applications. This article establishes a collision probability function model to intuitively
represent the collision probability between robots and obstacles. Based on this, a CPGM is
constructed, and the A* algorithm is improved by adding collision probability values to
its original actual cost function. Finally, the improved algorithm is used for path planning
experiments to plan a safe and collision-free path.

This section reviews the literature related to the work of this article, including recent
research on environmental map construction methods and secure and collision-free path
planning methods.

2.1. Environmental Map Construction

For unstructured environments, mobile robots generally work in complex and un-
known environments, where complex groups of obstacles can affect the safe navigation
of robots, causing collisions between robots and obstacles. Mobile robots need to better
adapt to complex obstacle scenes through effective map construction methods. Scholars
have proposed different research methods to establish environmental models for mobile
robots. Reference [12] proposes an environmental modeling method that collects and
integrates obstacle information between the starting point and target through neural net-
works. Although modeling environmental models through neural networks is accurate,
information integration requires extensive training of neural networks, which may require
retraining when executing tasks on new maps. Therefore, this method requires a large
workload and is only suitable for high-precision moving positions, and is not suitable
for situations where the robot is in a stable map environment for a long time. Compared
with other environmental modeling methods, grid maps are easy to model, update, and
process, have advantages such as a simple structure and easy storage and calculation,
and can help mobile robots quickly read environmental information. Liu X. et al. [13]
used the grid method to establish a robot navigation map, but ignored the size of the
robot. Reference [14] considers the size of the robots and includes it in the size of obstacles
for environmental modeling based on grid maps to avoid collisions between robots and
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obstacles. Alireza M. et al. [15] constructed a grid-based map for path planning algorithms,
which can determine collision-free trajectories from the initial position to the target position.
Ali H. et al. [16] conducted path planning in a grid-based environment, which improved
the quality and efficiency of global path planning for mobile robots. However, they did
not consider the environmental information of collision probability between robots and
obstacles in the grid map, and ignored the safety of the path.

The current navigation maps that are constructed based on the grid method still have
the problem of lack of safety, and most of the grid maps lack the collision probability
information of the collision between the robot and the obstacles. Therefore, this paper uses
the grid method to model the environment and combines it with the collision probability
function to construct a collision probability grid map with safety information, and achieves
good results.

2.2. Path Planning

Path planning problems often use the A* algorithm, which is a heuristic search tech-
nique [17,18]. By analyzing the cost function of nodes, the optimal route to the destination
is determined [19], but traditional A* algorithms have many problems. Therefore, many
scholars have improved the A* algorithm to address its existing problems. Reference [20]
proposed an improved hybrid A* path planning method. This hybrid A* algorithm re-
duces the number of expansion nodes based on the minimum rotational area, improves
efficiency, and ensures the safety of the robot. Reference [21] proposes an improved A*
algorithm for path planning of spherical robots. The optimization goal of this algorithm
is to minimize the energy consumption and path length of the spherical robot as much as
possible. Huang et al. [22] introduced a unique search method, Lifetime Programming A*
(LPA*), which is a modified version of the A* algorithm. This method dynamically adjusts
according to constantly changing traffic conditions and uses previous search results to find
the shortest path between the moving object and its destination. Oluwaseun et al. [23] pro-
posed an improved multi-objective A* (IMOA star) algorithm that outperforms traditional
A* algorithms in processing time, path smoothing, and path length. Hong Y. et al. [24]
proposed an improved A* algorithm that combines minimum capture trajectory generation
to avoid collisions with obstacles by extracting basic nodes, and verified the algorithm
performance through simulation and real experiments. Lima et al. [25] proposed an A*
algorithm based on dynamic simplification for calculating the optimal path of mobile
robots under real-time constraints. Yue G. et al. [26] proposed a path planning strategy
based on the bidirectional smoothing A* algorithm, which improves real-time performance
by optimizing the cost function and smoothing the planning path, greatly improving the
correctness and feasibility of the algorithm. The above improved A* algorithm can to
some extent plan the optimal path and avoid collisions with obstacles, but it does not
consider the use of environmental map information for path planning. Therefore, some
scholars combine heuristic algorithms with information from environmental maps and
then carry out path planning. For example, reference [27] proposed a motion planning
method using Voronoi diagrams through line segment diagrams. Voronoi diagrams are
used to obtain waypoints from line segment-based maps, while Dijkstra’s algorithm is
used to obtain the shortest path on the roadmap. Reference [28] combines the improved
Ant Colony Optimization (M-ACO) algorithm with a Voronoi diagram to propose a path
planning method that achieves a safe shortest path through point-to-point motion planning.
Voronoi diagram is used to generate a roadmap, while M-ACO is used to generate a path.
ZHENG et al. [29] planned a safe path by introducing a region matrix and using the mid-
point between obstacles as a jump point to maintain a certain distance from the obstacles.
Chi et al. [30] introduced a heuristic path planning algorithm based on the Generalized
Voronoi Graph (GVD), which significantly improves the algorithm’s performance in maze
environments, but requires map preprocessing.

The current path planning methods can effectively avoid some obstacles from the
perspective of dynamics, but these studies have not improved the path planning algorithms
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from the perspective of map construction, which leads to the robot not being able to utilize
the safety information in the map for path planning. Therefore, in this paper, we fully
consider the safety information in the map of the grid environment and incorporate the
collision probability value to the actual cost function in the traditional A* algorithm, thus
planning a path with higher safety to avoid the robot colliding with obstacles.

3. CPGM Construction and Path Planning Method

The goal of this article is to construct an environmental map with collision probability
information and conduct path planning based on this in order to plan a path with high
security. Therefore, we have designed a map construction and path planning method based
on collision probability models. Figure 1 provides an overview of the process of planning a
secure path using the method presented in this article.
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This method is divided into three steps. (1) Construct a collision probability function
model that considers the size of the robot and the distance between the robot and the
obstacle. (2) Based on the grid method, an obstacle grid map is constructed, and on this
basis, a collision probability function model is used to assign values to idle grids, ultimately
forming a CPGM. (3) Based on the CPGM, the traditional A* algorithm is improved by
utilizing the collision probability information in the map, and a safe and optimal navigation
path for mobile robots is planned.

3.1. Collision Probability Function Model

In general path planning problems, mobile robots are often viewed as a particle.
Although the optimal running path is obtained, the size of the mobile robot itself and the
probability of collision with obstacles are not considered, making it easy for mobile robots
to collide with obstacles. We consider analyzing the collision probability of mobile robots
in the path planning process based on the size of the robot itself and the probability of
collision between the robot and obstacles.

3.1.1. Definition of Collision Probability

The collision situations of robots during autonomous navigation can be divided into
three states: fatal, dangerous, and safe [31], and the occurrence of these three states can be
described by collision probability. The collision probability is the probability of a collision
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occurring between the center of the grid occupied by the mobile robot and the center of the
obstacle. The grids in the grid map that are not occupied by obstacles are represented as
0, while the grids occupied by obstacles are represented as 1 [32]. Therefore, the range of
collision probability values in this article is also represented as 0–1.

Assuming the edge length of each grid in a grid map is Ra, the inscribed radius of the
contour projected by the mobile robot on the ground is Ri, the radius of the circumscribed
circle is Rw, and the distance between the center of the robot occupying the grid and the
center of the obstacle grid is DP, as shown in Figure 2, which shows the position relationship
between a mobile robot and obstacles while driving in a grid map.
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case where the robot collides with the obstacle, and the number 4 denotes the fourth case where the
robot collides with the obstacle.

From Figure 2, collision probability between the robots and obstacles can be divided
into the following two situations:

(1) When the distance between the center of the robot occupying the grid and the center of
the obstacle grid is less than the radius of the robot’s inscribed circle, that is, DP < Ri,
at this point the obstacle overlaps with the center of the robot, as shown in the first
scenario in Figure 2. When the center of the robot occupies a distance between the
grid and the center of the obstacle grid that is greater than the grid edge length and
less than the radius of the robot’s outer circle, that is, Ra ≤ DP < Ri, at this point
the obstacle is within the inscribed circle of the robot, as shown in the second case in
Figure 2, and is bound to collide. When the distance between the center of the robot
occupying the grid and the center of the obstacle grid is greater than the radius of
the inscribed circle and less than the radius of the robot’s circumscribed circle, that
is, Ri < DP ≤ Rw, at this point, the obstacle is located within the outer tangent circle
of its robot, as shown in the third scenario in Figure 2. It is at the collision threshold
and may not necessarily collide, but it is very dangerous. Therefore, the above three
situations are all marked as fatal zones, with a collision probability value range of 1.
The specific calculation method is shown in Formula (1).

Pro(x, y) = 1, DP ≤ Rw (1)

In Equation (1), Pro(x, y) is the collision probability of grid P(x, y).

(2) When the distance between the center of the robot occupying the grid and the center
of the obstacle grid is greater than the radius of the robot’s circumscribed circle, that is,
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α ∗ Rw ≤ DP < β ∗ Rw, at this point, the collision between the robot and the obstacle
is caused by α and β, the value of which is determined, as shown in the fourth case in
Figure 2, which is only an example of a collision situation. If α and β have a smaller
value, and if it is closer to the obstacle, then it is recorded as a danger zone; If α and β
have a larger value, and if it is farther away from the obstacle, then it is denoted as a
safety zone, and the range of collision probability values for its grid is e−(min(Dp)−Ri),
the farther away from the obstacle, the lower the probability of collision. The specific
calculation method is shown in Formula (2).

Pro(x, y) = e−(min(DP)−Ri), α ∗ Rw < DP ≤ β ∗ Rw (2)

In Equation (2), e−(min(Dp)−Ri) is a collision probability exponential descent function
constructed using the minimum Euclidean distance between the center of the grid occupied
by the robot and the center of the obstacle grid; min

(
Dp
)

is the minimum distance set from
the center of the grid occupied by the robot to the center of the obstacle grid.

The calculation method for the distance DP between the center of the robot occupying
the grid and the center of the obstacle grid is shown in Formula (3).

DP =

√
(Zx − Px)

2 +
(
Zy − Py

)2 (3)

In Equation (3),
(
Zx, Zy

)
is the grid coordinate of the obstacle center grid;

(
Px, Py

)
is

the grid coordinate where the robot occupies the center of the grid.

3.1.2. Expression of Collision Probability Function

After the detailed analysis and derivation in the above summary, the collision proba-
bility function model in this article can be summarized as Formula (4).

Pro(x, y) =
{

1, DP < Rw

e−(min(DP)−Ri), α ∗ Rw < DP ≤ β ∗ Rw
(4)

According to the collision probability function model, the probability of collision
between robots and obstacles can be summarized as shown in Figure 3.
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3.2. Construction of Collision Probability Grid Map

Establishing an environmental map is a prerequisite for path planning. This article
constructs an obstacle grid map containing obstacle information based on the grid method
and uses the collision probability values in the collision probability function model to fill
the grids around the obstacles based on the obstacle grid map so that these grids have
collision probability information, thus obtaining a CPGM. This solves the problem of the
simple structure of traditional grid methods in building navigation maps and the issue of
lack of security information.

3.2.1. Construction of Obstacle Grid Map

The process of converting an environmental model into a grid map mainly involves
dividing the environment into small square areas, called grids. Each grid represents a part
of the environment, and each grid is associated with the storage of environmental attributes
such as color, height, obstacles, etc. [33]. As shown in Figure 4, the environmental informa-
tion is simplified into two color grids, where the white grids represent the navigable area
of the robot, the black grids represent the non-navigable area (obstacle area), and obstacles
that do not occupy the complete grid are inflated. Transforming the key environmental
information into raster data can facilitate computer analysis and operation, and improve
the robot’s ability to perceive the environment. Therefore, this article uses the grid method
to generate a grid map of obstacles of 20× 20 size in MATLAB.
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3.2.2. Construction of CPGM

Based on the collision probability function model, we assign collision probability
values to the idle grids in the obstacle grid map except for obstacles, in order to obtain a
grid map containing collision probability information, so that the robot can avoid obstacles
to the maximum extent during subsequent path planning. The CPGM constructed is shown
in Figure 5.

In Figure 5, if the distance between the center of the robot occupying the grid and the
center of the obstacle grid is less than or equal to the radius of the robot’s circumscribed
circle, the collision probability value of the idle grid is assigned a value of 1, which is
a black grid representing the non-navigable area. If the distance between the center
of the robot occupying the grid and the center of the obstacle grid is greater than the
radius of the robot’s circumscribed circle, the idle grid is assigned a value based on the
collision probability index descent function e−(min(Dp)−Ri), namely gray and white grids,
representing the navigable area. Among them, the gray grid represents the hazardous area,
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and the collision probability value of the gray grid is assigned as 0.8 or 0.5. The farther
away from the obstacle, the lower the collision probability value, and the color gradually
becomes lighter. The white grid represents the safe area, and the collision probability value
of the white grid is assigned a value of 0.3.
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3.3. Path Planning Based on CPGM
3.3.1. Traditional A* Algorithm

The A* algorithm is a path planning algorithm proposed by Hart. Its basic idea is
to use a heuristic search and Dijkstra algorithm to find the shortest path from the initial
point to the target point. During the search process, the A* algorithm maintains two
values: the actual cost function g(n) from the initial point to the current node, and the
heuristic function h(n) from the current node to the target point. The calculation of the
total cost f (n) of the current node allows for the evaluation of the priority of the node
and prioritization of the expanding of the node with the lowest cost until the target point
is found or expansion cannot continue. This can minimize the number of searches and
quickly locate the target point while ensuring the shortest path is found. The total cost f (n)
of the classic A* algorithm is shown in Formula (5).

f (n) = g(n) + h(n) (5)

In Equation (5): f (n) represents the total cost of searching from the initial node S to
the target node E; g(n) represents the actual cost function of the robot from the initial node
S to the current node N; h(n) is a heuristic function used to estimate the distance from the
current node N to the target node E.

The A* algorithm uses heuristic functions to estimate the cost from the current node
to the target point h(n). The commonly used heuristic functions include the Manhattan
distance [34], Euclidean distance [35], and Chebyshev distance [36].

3.3.2. Improved A* Algorithm

In the node traversal process of the traditional A* algorithm, regardless of how far
the node is from the obstacle, the cost incurred by the robot through it is considered equal.
However, in practice, the distance between the obstacle and the robot is not equivalent
to the collision state of the robot, but is inversely proportional to the distance between
them. Therefore, based on the CPGM, we integrate the collision probability values in the
map into the actual cost function for calculation, and the definition expression is shown in
Formula (6).

g′(n) =
n

∑
i=1

(µ1ki + µ2mi) (6)
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In Equation (6): ki is the distance cost of the robot in the i path; mi is the collision
probability value of the robot at the end node of the i path segment; µ1 and µ2 represent
the weighting coefficient, and using µ1 + µ2 = 1, by adjusting the weights, paths that meet
different requirements can be obtained.

The quality of the heuristic function will directly affect the path planned by the A*
algorithm, and the Euclidean distance is generally used to construct the heuristic function.
However, when planning the path of mobile robots, they will be affected by complex
obstacles and add new turning points, which will affect the results of path planning. In
order to reduce turning points while ensuring the planning of the shortest path, the heuristic
function defined in this article is shown in Formula (7).

h′(n) = γ ∗
√
(xE − xN)

2 + (yE − yN)
2 (7)

In Equation (7): γ is the transfer weight coefficient, which can be adjusted to change
the impact of the estimated cost on path planning, (xN , yN) and (xE, yE) are the coordinates
of the current node N and the target node E.

3.3.3. The Specific Process of the Improved A* Algorithm

In the classic A* algorithm, the travel mode of the path follows the eight-domain travel
mode. The advantage of this mode is that it can display the advantages and disadvantages
of the algorithm in a concise and visual manner, but it ignores the safety of the path.
Therefore, the algorithm in this article integrates the collision probability value into the
actual cost function based on the CPGM, resulting in higher path safety. The process is
shown in Figure 6.
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4. Experiment and Analysis

This article establishes a simulation environment in MATLAB, conducts CPGM con-
struction experiments under the same obstacle distribution, and compares the algorithm
proposed in this article with traditional A*, the algorithm presented in reference [37], and
the algorithm presented in reference [38], verifying the feasibility and effectiveness of the
proposed method.
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4.1. Experiment and Analysis of Constructing the CPGM

In the experiment, a 20× 20 size grid map was established in MATLAB as the working
environment of the mobile robot. The grid edge length of the working environment of the
mobile robot was set as 1 cm, and the original grid map is shown in Figure 7a. Randomly
change the position of the robot and conduct multiple repeated experiments according to
the different collision state division rules. Each group of experiments judges the rationality
of the division based on the collision probability value.
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Comparative experiments were conducted by changing the range of different collision
states to obtain different CPGMs, as shown in Figure 7b–d. In Figure 7, “Collision State 1”
divides Ra ≤ DP < Ri into a fatal zone, Ri ≤ DP < Rw into a dangerous zone, and
Rw < DP into a free zone; “Collision State 2” divides DP ≤ Rw into a fatal zone,
Rw < DP < 1.5Rw into a dangerous zone, and 1.5Rw < DP < 2Rw into a free zone;
“Collision State 3” divides DP ≤ Rw into a fatal zone, Rw < DP < 2Rw into a danger-
ous zone, and 2Rw < DP < 4Rw into a free zone. Among them, the black part represents
the location of the obstacle and is the fatal zone in the collision state, and the gray part
represents the danger zone in the collision state, which is divided according to different
collision states. The darker the color, the more dangerous it is. The white part represents
the free zone in the collision state.

From the colors in Figure 7, it can be seen that in “Collision State 1”, the fatal and
dangerous areas are too close to the obstacle, which can easily cause the planned path to
stick closely to the obstacle. Compared with “Collision State 1”, “Collision State 2” doubles
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the scope of the danger zone outward, and the planned path is safer and less prone to
collision with obstacles. Compared to “Collision State 2”, “Collision State 3” may double
the scope of the danger zone and reduce the probability of robot collision with obstacles,
but it may result in the planned path not being efficient enough. Therefore, this article
chooses α = 1, β = 1.5 as the hazardous area and α = 1.5, β = 2 as the free zone.

4.2. Experiment and Analysis of Path Planning Based on CPGM

In order to verify the effectiveness of the algorithm proposed in this paper, many
computer simulations were conducted by setting multiple sets of different parameters. The
experimental environment is Windows 10, Intel Core i7, with 8 GB of memory, and the
compilation environment is MATLAB 2020 (b).

4.2.1. Simulation of Different Parameters

To investigate the impact of the different weighting coefficients µ1 and µ2 on the
proposed algorithm, take the collision probability value mi = 0.8 in the fatal zone, the
collision probability value mi = 0.5 in the dangerous zone, and the collision probability
value mi = 0.3 in the free zone. Then take different µ1 and µ2 for multiple sets of simulations.
The results are shown in Figure 8a–c.
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As shown in Figure 8, in the CPGM, red represents the starting point and blue repre-
sents the ending point. Taking different µ1 and µ2 for simulation can obtain path planning
diagrams with different effects. The specific data are shown in Table 1.

Table 1. Simulation results under different weighting coefficients.

Different Algorithms Path Length (cm) Algorithm Time (s) Dangerous Node
Proportion (%)

Number of Turns
(Number)

Traditional A* algorithm 38.62 0.12453 7.8 15

Algorithm in this article
(µ1 = 0.2, µ2 = 0.8) 30.75 0.09630 4.3 11

Algorithm in this article
(µ1 = 0.3, µ2 = 0.7) 31.08 0.10361 2.4 8

Algorithm in this article
(µ1 = 0.4, µ2 = 0.6) 33.43 0.11497 2.1 9

From Table 1, compared to the traditional A* algorithm, the algorithm in this article
can plan a more optimal path when selecting different weighting coefficients. When the
value of mi is fixed, if the value of µ1 is larger and the value of µ2 is smaller, the proportion
of distance cost is larger and the proportion of collision probability is smaller. At this point,
the longer the path length, the longer the algorithm time, and the lower the proportion of
dangerous nodes, that is, the safer the path and the farther away from obstacles. Although
the new path is smoother, its number of turns varies irregularly. From Table 1, when
µ1 = 0.3, µ2 = 0.7 is used, the length and algorithm time obtained from path planning
increase compared to when µ1 = 0.2, µ2 = 0.8 is used, but decrease compared to when
µ1 = 0.4, µ2 = 0.6 is used, and the proportion of dangerous nodes is not significantly
different from when µ1 = 0.4, µ2 = 0.6 is used with fewer turns. Therefore, this article
takes the weighting coefficient as µ1 = 0.3, µ2 = 0.7.

4.2.2. Simulation of Different Algorithms

By conducting simulation experiments on the traditional A* algorithm, the algorithm
in reference [37], the presented in reference [38], and our algorithm in CPGM scenarios, this
paper tests the effectiveness of the proposed algorithm by analyzing different algorithms in
path planning length, algorithm time, proportion of dangerous nodes, and number of turns.
The simulation results of different algorithms in path planning are shown in Figure 9a–d,
and their simulation data are shown in Table 2.

Table 2. Simulation results under different algorithms.

Different Algorithms Path Length (cm) Algorithm Time (s) Dangerous Node
Proportion (%)

Number of Turns
(Number)

Traditional A* algorithm 38.62 0.12453 7.8 15

Reference [37] algorithm 33.26 0.11004 6.7 12

Reference [38] algorithm 36.47 0.11046 6.9 13

Algorithm in this article 31.08 0.10361 2.4 8

From Table 2 and Figure 9, it can be seen that the traditional A* algorithms plan
paths with multiple inflection points that are close to the edges and endpoints of obstacles.
Compared with the traditional A* algorithm, the algorithm in reference [37] shows that
the planned path is relatively smooth and not close to the edge of the obstacle, but it does
not solve the problem of the planned path being close to the endpoint of the obstacle.
Compared with the traditional A* algorithm, the algorithm in reference [38] has a slightly
smoother planned path, but it does not solve the problem of the planned path being close
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to the edges and endpoints of the obstacles. The paths planned by these three algorithms
are prone to collisions between robots and obstacles, and the paths are not smooth enough.
The path planned by the method in this article is not only smoother and reduces inflection
points but also has a certain safe distance from obstacles, resulting in higher safety of the
robot during driving.

Symmetry 2023, 15, x FOR PEER REVIEW 14 of 19 
 

 

proportion of distance cost is larger and the proportion of collision probability is smaller. 
At this point, the longer the path length, the longer the algorithm time, and the lower the 
proportion of dangerous nodes, that is, the safer the path and the farther away from ob-
stacles. Although the new path is smoother, its number of turns varies irregularly. From 
Table 1, when 1 0 3μ .= , 2 0 7μ .=  is used, the length and algorithm time obtained from path 
planning increase compared to when 1 0 2μ .= , 2 0 8μ .=  is used, but decrease compared to 
when 1 0 4μ .= , 2 0 6μ .=  is used, and the proportion of dangerous nodes is not signifi-
cantly different from when 1 0 4μ .= , 2 0 6μ .=  is used with fewer turns. Therefore, this ar-
ticle takes the weighting coefficient as 1 0 3μ .= , 2 0 7μ .= . 

4.2.2. Simulation of Different Algorithms 
By conducting simulation experiments on the traditional A* algorithm, the algorithm 

in reference [37], the presented in reference [38], and our algorithm in CPGM scenarios, 
this paper tests the effectiveness of the proposed algorithm by analyzing different algo-
rithms in path planning length, algorithm time, proportion of dangerous nodes, and num-
ber of turns. The simulation results of different algorithms in path planning are shown in 
Figure 9a–d, and their simulation data are shown in Table 2. 

(a) (b) 

(c) (d) 

Figure 9. Path planning diagrams obtained by different algorithms: (a) traditional A* algorithm; 
(b) the algorithm in reference [37]; (c) the algorithm in reference [38]; (d) algorithm in this article. 
In the map, white is the free grid, black is the obstacle grid, and gray is the danger grid. 

Table 2. Simulation results under different algorithms. 

Different Algorithms Path Length (cm) 
Algorithm Time 

(s) 
Dangerous Node 
Proportion (%) 

Number of Turns (Num-
ber) 

Traditional A* algorithm 38.62 0.12453 7.8 15 
Reference [37] algorithm 33.26 0.11004 6.7 12 

Figure 9. Path planning diagrams obtained by different algorithms: (a) traditional A* algorithm;
(b) the algorithm in reference [37]; (c) the algorithm in reference [38]; (d) algorithm in this article. In
the map, white is the free grid, black is the obstacle grid, and gray is the danger grid.

4.2.3. Simulation of Different Obstacle Ratios

By establishing a collision probability grid map of size 20× 20, randomly generate
obstacle nodes of different proportions, obtain different obstacle environment models,
and specify that no obstacles are generated at the starting and ending points. Four cases
of obstacle ratio p = 10%, p = 20%, p = 30%, and p = 40% were selected for experiments.
Each group randomly generated 10 different models, and then used the traditional A*
algorithm, the algorithm in reference [37], the algorithm in reference [38], and this article’s
algorithm to independently operate in different environmental models. The average values
of each parameter of the obtained path in each group were compared, and the collision
probability value mi = 0.8 in the fatal zone and the collision probability value mi = 0.5 in
the dangerous zone were specified, the collision probability value mi = 0.3 and parameter
µ1 = 0.3, µ2 = 0.7 of the free zone remained unchanged. The simulation results are shown
in Figure 10a–d.
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is from the reference [37]; algorithm proposed by Likhachev, M. in 2023 is from the reference [38].

Figure 10 shows the comparison of various parameters for path planning using four
algorithms under different obstacle ratios. The specific data are shown in Table 3.

From Table 3, compared with the traditional A* algorithm, the algorithm in reference [37],
and the algorithm in reference [38], the path length, algorithm time, proportion of danger-
ous nodes, and number of turns planned by the algorithm in this paper have all decreased.
And from Figure 10, the higher the proportion of obstacles, the more complex the map
is, and the search time of all four algorithms has increases. However, compared to the
other three algorithms, the search time used in this algorithm is significantly reduced.
Through analysis, the algorithm proposed in this article can significantly improve the
efficiency of path planning, effectively reduce the number of path nodes, and reduce path
costs. Compared to the traditional A* and algorithm in reference [37], the algorithm in
reference [38] can more easily find a collision free feasible path.



Symmetry 2023, 15, 1891 16 of 18

Table 3. Simulation results of each parameter with different obstacle occupancy ratios.

Different
Algorithms

Proportion of Different
Obstacles (%)

Path Length
(cm)

Algorithm
Time (s)

Dangerous Node
Proportion (%)

Number of Turns
(Number)

Traditional A*
algorithm

p = 10% 34.57 0.08761 6.3 11
p = 20% 38.62 0.12453 7.8 15
p = 30% 45.18 0.27164 12.4 23
p = 40% 50.09 0.38542 18.3 31

Reference [37]
algorithm

p = 10% 30.81 0.07732 5.1 10
p = 20% 33.26 0.11004 6.7 12
p = 30% 38.07 0.26458 9.4 22
p = 40% 45.93 0.37946 16.3 30

Reference [38]
algorithm

p = 10% 33.19 0.08845 5.7 9
p = 20% 36.47 0.11046 6.9 13
p = 30% 44.84 0.25431 10.8 21
p = 40% 49.33 0.33546 17.6 29

Algorithm in
this article

p = 10% 30.05 0.06213 1.1 6
p = 20% 31.08 0.10361 2.4 8
p = 30% 34.16 0.24687 5.9 11
p = 40% 41.67 0.33418 14.3 15

5. Conclusions

In this article, we propose a map construction and path planning method based on
collision probability models. Through this method, we can find a safer, more efficient and
optimal path in complex environments. This study solves the problems of simple structure,
lack of collision probability information, and planning an optimal anti-collision safety path
in the navigation grid map constructed by using traditional grid methods. By comparing
various algorithms through extensive simulation experiments in MATLAB, the following
conclusions can be drawn:

(1) By setting different parameters for the radius of the outer circle between the robot
and the obstacle, we obtained a reasonable range for dividing the danger zone and
safety zone between the robot and the obstacle and constructed a CPGM. Compared
with other grid map construction methods, this map contains collision probability
information, which improves the safety for subsequent path planning.

(2) The path planned by the method used in this study will not be close to the edge or
endpoint of the obstacle, and the length of the planned path will be shorter than the
other three algorithms, with less search time and smoother paths, greatly improving
the safety of the paths planned by the algorithm. This is because we add collision
probability values into the actual cost function of the traditional A* algorithm, so that
every time we search for the node with the lowest cost, the collision probability is
also minimized.

However, our algorithm still has some limitations. Therefore, we will make the
following improvements in our future work:

(1) Our method is only applicable to static mobile robot navigation scenarios and cannot
avoid dynamic obstacles. Therefore, how to plan a safer, more efficient, and more
path-optimized path in dynamic and complex obstacle environments will be the focus
of our next research.

(2) Our method still needs to be improved in terms of running speed. We will improve
the running speed of our algorithm in the future by ensuring that we can plan more
secure paths.
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