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Abstract: This study aims to examine the oscillatory behavior of third-order differential equations
involving various delays within the context of functional differential equations of the neutral type.
The oscillation criteria for the solutions of our equation have been obtained in this study to extend
and supplement existing findings in the literature. In this study, a technique that relies on repeatedly
improving monotonic properties was used in order to exclude positive solutions to the studied
equation. Negative solutions are excluded based on the symmetry between the positive and negative
solutions. Our results are important because they become sharper when applied to a Euler-type
equation as compared to previous studies of the same equation. The significance of the findings was
illustrated through the application of these findings to specific cases of the investigated equation.
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1. Introduction

Delay differential equations (DDEs), a subclass of functional differential equations,
take into account the system’s reliance on the past to produce predictions for the future that
are more precise and effective. One of the most important roles that the concept of delay
in systems is thought to play is modeling the length of time needed to complete certain
unseen activities. The predator–prey model demonstrates a delay when the birth rate of
the predator takes into account both present and past numbers of predators and prey. With
the rapid development of communication technologies, transmitting measured signals
to a remote control center has become much simpler. However, the biggest obstacle for
engineers is the time that it takes for the signal to reach the controller after a measurement
has been taken. In order to minimize the possibility of experimental instability and potential
harm, this lag must be considered during the planning phase. Modeling such phenomena,
as well as others, requires the use of DDEs (see [1–5]).

Neutral delay differential equations (NDDEs) are encountered in several kinds of phe-
nomena, such as electric transmission line problems, which are utilized for interconnecting
switching circuits in high-speed computers, the study of vibrating masses connected to
elastic bars, the solution of variational problems involving time delays or in the theory
of automatic control, and neuro-mechanical systems where inertia is a significant factor
(see [6–10]). The reader is directed to consult the references [11–15] for comprehensive
insights into the methodologies, techniques, and findings relating to the investigation of os-
cillatory behavior in third-order NDDEs. Furthermore, the aforementioned studies [16–20]
primarily center their attention on the examination of DDEs with odd orders.
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This study focuses on third-order NDDEs expressed in linear form with several delays

(
κ2(`)

(
κ1(`)z′(`)

)′)′
+

Ω

∑
i=1

qi(`)y(τi(`)) = 0, (1)

where ` ≥ `0, z(`) := y(`) + p(`)y(σ(`)), and Ω is a positive natural number. We suppose
throughout this paper that the following hypotheses are fulfilled:

(A1) κ1 ∈ C2([`0, ∞), (0, ∞)), κ2 ∈ C([`0, ∞), (0, ∞)) and∫ ∞

`0

1
κ1(ρ)

dρ =
∫ ∞

`0

1
κ2(ρ)

dρ = ∞; (2)

(A2) p, qi ∈ C([`0, ∞), [0, ∞)), qi(`) ≥ 0, qi(`) does not vanish identically for each
i = 1, 2, . . . , Ω and 0 ≤ p(`) ≤ p0 < 1;

(A3) τi, σ ∈ C([`0, ∞),R), τi(`) ≤ `, σ(`) ≤ `, lim`→∞ σ(`) = ∞, and lim`→∞ τi(`) = ∞,
for each i = 1, 2, . . . , Ω.

A function y ∈ C3([`y, ∞),R), `y > `0, is said to be a solution of (1), which has the
property z, κ1z′, and κ2(κ1z′)′ belong to C1[`y, ∞) and satisfies (1) on [`y, ∞). Furthermore,
we consider only solutions y of (1) that satisfy

sup{|y(`)| : ` > L} > 0, for all L ≥ `y.

If a solution y is neither eventually positive nor eventually negative, then it is said to
be oscillatory. Otherwise, it is said to be non-oscillatory. The equation itself is termed
oscillatory if all of its solutions oscillate.

The previous studies on the oscillatory characteristics of neutral differential equations
with odd orders primarily concentrated on establishing a suitable criterion for verifying
whether the solutions exhibit oscillatory behavior or approach zero, as referenced in [21–24].
In the following, we provide some background details regarding the study of various classes
of neutral differential equations.

In 2010, Baculíková and Džurina [11,25] investigated the asymptotic properties of the
third-order NDDE (

κ(`)
(
z′′(`)

)γ
)′

+ q(`) f (y(τ(`))) = 0. (3)

They obtained conditions that test the convergence of all non-oscillatory solutions to zero.
In [11], they used comparisons with first-order equations, while in [25], they obtained Hille
and Nehari criteria. Thandapani and Li [26] found some fulfilling conditions that confirm
that every solution of (3) either converges to zero or is oscillatory by using the Riccati
transformation. In [27], Baculíková and Džurina examined the oscillation of the NDDE

(
κ(`)(z(`))′′

)′
+ q(`)y(τ(`)) = 0.

They obtained results based on the comparison theorems, which allowed them to reduce the
problem of the oscillation in a third-order equation coupled to a first-order equation.

As an improvement over and completion of previous studies, Džurina et al. [28]
established conditions to ensure that all solutions of linear NDDE(

κ2(`)
(
κ1(`)z′(`)

)′)′
+ q(`)y(τ(`)) = 0,

using a comparison with first-order delay equations. Moaaz et al. [29] investigated the
oscillatory behavior of the NDDE

(
κ(`)

(
z′′(`)

)α
)′

+ q(`)yα(τ(`)) = 0.
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Utilizing the iterative technique, they established criteria of an iterative nature and found a
criterion for the nonexistence of the so-called Kneser solutions.

Recently, Jadlovská et al. [30] studied the oscillation of the NDDE(
κ2(`)(κ1(`)y(`))

′′
)′

+ q(`)y(τ(`)) = 0.

Their results tested the convergence of all non-oscillatory solutions to zero. Their results
are also sharp when applied to the Euler-type DDE, and they improved all previous results
with regard to the criterion that tests the convergence of all non-oscillatory solutions to zero.

Our paper investigates the oscillatory properties of a third-order NDDE with multiple
delays. The main motivation of this study is to extend the results of [28] to equations
with multiple delays with respect to the convergence of non-oscillatory solutions to zero.
Moreover, we create standards that guarantee the oscillation of all solutions of the studied
equation by establishing a standard that excludes so-called Kneser solutions. Applying our
results to a particular case of the considered equation supported the findings.

2. Preliminary Results

For convenience, we define the following:

τ(`) := min{τi(`); i = 1, 2, . . . , Ω}, qi(`) := min{qi(`), qi(σ(`)},

τ̃(`) := max{τi(`); i = 1, 2, . . . , Ω},

J0z = z, J1z = κ1z′, J2z = κ2
(
κ1z′

)′, J3z =
(

κ2
(
κ1z′

)′)′,
M1(`) :=

∫ `

`0

dρ

κ1(ρ)
, M2(`) :=

∫ `

`0

dρ

κ2(ρ)
,

and

M12(`) :=
∫ `

`0

M2(ρ)

κ1(ρ)
dρ.

Lemma 1. Ref. [28] Lemma 1—suppose that there is a constant l > 0 such that

lim
`−→∞

κ1(`)M1(`)

κ2(`)M2(`)
= l. (4)

Then,
M12(`) ≥

ε

1 + l
M1(`)M2(`), (5)

eventually for all ε ∈ (0, 1).

To proceed with proving our results we need to define the following limits:

lim inf
`→∞

M12(`)

M12(τ(`))
:= λ∗,

lim inf
`→∞

κ2(`)M2(`)M12(τ(`))
Ω

∑
i=1

qi(`)(1− p(τi(`)) := β∗,

and

lim inf
`→∞

Mβ∗
2 (`)

M12(`)

∫ `

`0

M1−β∗
2 (ρ)

κ1(ρ)
dρ := k∗, for β∗ ∈ (0, 1).

3. Main Results

In this section, we provide sufficient conditions to ensure the oscillation of all solutions
of the studied equation. For the following results, we assume that λ∗, β∗, k∗ ∈ (0, ∞).
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Lemma 2. Suppose that y is a positive solution of (1). Then, J3z(`) ≤ 0, and there are only
two categories:

Class (1) : z > 0, J1z > 0, J2z > 0,

Class (2) : z > 0, J1z < 0, J2z > 0.

Proof. The proof is straightforward; hence, we omit the details.

Notation 1. By x ∈ =1 we mean that solution x with corresponding function has class (1)
properties, while by x ∈ =2 we mean that the solution x with corresponding function has
class (2) properties.

3.1. Class (1)

In this section, we present some characteristics of solutions that belong to class =1. We
also obtain criteria that rule out the existence of solutions with class =1 properties.

Remark 1. From the definition of M12, β∗, and k∗, the following can be concluded:

(R1) For any β ∈ (0, β∗), there is a `β ≥ `0 such that

κ2(`)M2(`)M12(τ(`))
Ω

∑
i=1

qi(`)(1− p(τi(`)) ≥ β, for all ` ≥ `β. (6)

Lemma 3. Suppose that y ∈ =1 and β∗ > 0. Then, eventually,

(a) the functions J2z(`), J1z(`)/M2(`), and z(`)/M12(`) converge to zero;
(b) J1z/M2 is decreasing;
(c) z/M12 is decreasing.

Proof. Suppose that y ∈ =1. Since z(`) ≥ y(`) and z′(`) > 0, we have y(`) ≥ (1− p(`))z(`),
and so y(τi(`)) ≥ (1− p(τi(`))z(τi(`)). Thus, (1) becomes

J3z(`) = −
Ω

∑
i=1

qi(`)y(τi(`))

≤ −
Ω

∑
i=1

qi(`)(1− p(τi(`))z(τi(`))

≤ −z(τ(`))
Ω

∑
i=1

qi(`)(1− p(τi(`)). (7)

(a) Using the facts J2z(`) > 0 and J3z(`) ≤ 0, it is obvious that J2z(`) → $0 as
` → ∞. Assume the contrary that $0 > 0. Hence, it follows that J2z(`) ≥ $0 > 0.
Therefore,

J1z(`) ≥
∫ `

`1

1
κ2(ρ)

J2z(ρ)dρ, (8)

and so

z(`) ≥
∫ `

`1

1
κ1(ρ)

J1z(ρ)dρ

≥
∫ `

`1

1
κ1(ρ)

(∫ ρ

`1

1
κ2(u)

J2z(u)du
)

dρ (9)

≥ $0

∫ `

`1

1
κ1(ρ)

(∫ ρ

`1

1
κ2(u)

du
)

dρ

= $0

∫ `

`1

M2(ρ)

κ1(ρ)
dρ > δ$0M12(`).
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for all δ ∈ (0, 1). Hence, (7) reduces to

J3z(`) ≥ $0M12(τ(`))
Ω

∑
i=1

qi(`)(1− p(τi(`)).

Integrating this inequality from `1 ≥ ` and using (6), we obtain for `2 = max
{
`1, `β

}
,

J2z(`) ≥ $0

∫ `

`1

M12(τ(ρ))
Ω

∑
i=1

qi(ρ)(1− p(τi(ρ)))dρ

≥ β$0

∫ `

`1

1
κ2(ρ)M2(ρ)

dρ

= β$0 ln
M2(`)

M2(`1)
.

Then, lim`→∞ J2z(`) = ∞, a contradiction. Consequently, ξ = 0. The rest of the properties
in (a) are proven directly by using L’Hopital’s principle.

(b) Using (8) and the fact that J3z(`) ≤ 0, we arrive at

J1z(`) ≥ J2z(`)
∫ `

`1

1
κ2(ρ)

dρ = M2(`)J2z(`).

and thus, (
J1z
M2

)′
=
J2zM2 −J1z

M2
2κ2

< 0.

(c) Since J1z/M2 tend to zero and the function is decreasing, we find

z(`) ≥
∫ `

`1

M2(ρ)

κ1(ρ)

J1z(ρ)
M2(ρ)

dρ ≥ J1z(`)
M2(`)

∫ `

`1

M2(ρ)

κ1(ρ)
dρ

>
J1z(`)
M2(`)

M12(`).

Therefore, (
z

M12

)′
=
J1zM12 − zM2

M2
12κ1

< 0.

We have reached the end of the proof.

Remark 2. From the definition of M12, β∗, and k∗, the following can be concluded:

(R2) Assume that β∗ ∈ (0, 1), we can conclude that k∗ ≥ 1. For any k ∈ (1, ∞), there is `k ≥ `0
such that

Mβ
2 (`)

M12(`)

∫ `

`0

M1−β
2 (ρ)

κ1(ρ)
dρ ≥ k, ` ≥ `k. (10)

Lemma 4. Suppose that y ∈ =1 and β∗ > 0. Then, eventually,

(C01) J1z/M1−β∗
2 (`) is decreasing;

(C02) J1z(`)/M1−β∗
2 (`) converges to zero;

(C03) z > k(M12/M2)J1z, and z/M1/k
12 is decreasing.

Proof. Assume that y ∈ =1. From Lemma 3, we have that (a), (b), and (c) hold.
(C01) We define

ω(`) := J1z(`)−M2(`)J2z(`). (11)
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Thus, from (b), ω(`) > 0 for all ` ≥ `1. Hence, we obtain

ω′(`) = (J1z(`)−M2(`)J2z(`))′ = −M2(`)J3z(`),

which with (1) gives

ω′(`) = M2(`)
Ω

∑
i=1

qi(`)y(τi(`)). (12)

Since z(`) ≥ y(`) and z′(`) > 0, we have y(`) ≥ (1− p(`))z(`). Thus,

ω′(`) ≥ M2(`)
Ω

∑
i=1

qi(`)(1− p(τi(`)))z(τi(`))

≥ z(τ(`))M2(`)
Ω

∑
i=1

qi(`)(1− p(τi(`))).

Using (6) and (c), we obtain

ω′(`) ≥ β
z(τ(`))

κ2(`)M12(τ(`))
≥ β

z(`)
κ2(`)M12(`)

≥ β
J1z(`)

κ2(`)M2(`)
.

for ` ≥ `2 ≥ `1. Integrating this inequality from `2 to `, we have

ω(`) ≥ β
∫ `

`2

J1z(ρ)
κ2(ρ)M2(ρ)

dρ ≥ β
J1z(`)
M2(`)

∫ `

`2

1
κ2(ρ)

dρ (13)

> βJ1z(`).

From the definition of ω, we obtain (1− β)J1z(`) > M2(`)J2z(`), and so(
J1z

M1−β
2

)′
=
J2zM2 − (1− β)J1zM2

M2−β
3 κ2

< 0, ` ≥ `3. (14)

(C02) From (14), we have β < 1. From (13), we find that

ω(`) ≥ β
∫ `

`2

J1z(ρ)
κ2(`)M2(ρ)

dρ

≥ β
J1z(`)

M1−β
2 (`)

∫ `

`2

1

κ2(`)Mβ
2 (ρ)

dρ

≥ β

1− β

J1z(`)

M1−β
2 (`)

(
M1−β

2 (`)−M1−β
2 (`2)

)
≥ ε1β

1− β
J1z(`)

for all ε1 ∈ (0, 1). Then, eventually,

ω(`) ≥ (β∗ + c2)J1z(`),

for c2 > 0, by choosing β ∈ (β∗/(1 + β∗), β∗). Hence,

(1− β∗)J1z(`) > (1− β∗ − c2)J1z(`) > M2(`)J2z(`). (15)

Thus, J1z/M1−β∗−c2
2 is decreasing. Now, if we assume lim`−→∞ J1y/M1−β∗

2 > 0,we find

J1z(`)

M1−β∗−c2
2 (`)

=
J1z(`)

M1−β∗
2 (`)

Mc2
2 (`) −→ ∞ as ` −→ ∞, (16)
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a contradiction. Therefore, lim`−→∞ J1y/M1−β∗
2 = 0.

(C03) From the previous facts we can conclude that

z(`) = z(`3) +
∫ `

`3

M1−β∗
2 (ρ)

κ1(ρ)

J1z(ρ)

M1−β∗
2 (ρ)

dρ

≥ z(`3) +
J1z(`)

M1−β∗
2 (`)

∫ `

`3

M1−β∗
2 (ρ)

κ1(ρ)
dρ

= z(`3) +
J1z(`)

M1−β∗
2 (`)

∫ `

`0

M1−β∗
2 (ρ)

κ1(ρ)
dρ− J1z(`)

M1−β∗
2 (`)

∫ `3

`0

M1−β∗
2 (ρ)

κ1(ρ)
dρ

>
J1z(`)

M1−β∗
2 (`)

∫ `

`0

M1−β∗
2 (ρ)

κ1(ρ)
dρ

≥ k
M12(`)

M2(`)
J1z(`), ` ≥ `5 ≥ `3.

Therefore, eventually, (
z

M1/k
12

)′
< 0.

We have reached the end of the proof.

Lemma 5. If β∗ ≥ 1, then =1 = ∅.

Proof. Assume that y ∈ =1. Since J1z/M1−β∗
2 (`) is decreasing and J2z > 0, we obtain

β∗ < 1, a contradiction. Thus, =1 = ∅.

We can improve the previous properties by defining the following sequences:

βn =


β∗ for n = 0

β0kn−1λ
1− 1

kn−1
∗

(1−βn−1)
for n = 1, 2, . . . ,

and

kn = lim inf
`→∞

Mβn
2 (`)

M12(`)

∫ `

`0

M1−βn
2 (ρ)

κ1(ρ)
dρ, for n = 0, 1, 2, . . . . (17)

Remark 3. If βi < 1 and ki ∈ [1, ∞) for i = 0, 1, . . . , n, then βn+1 can be clearly determined. In
this case, the following inequality holds:

β1 = β0
k0

1− β0
λ

1− 1
k0∗ > β0.

Thus,

k1 = lim inf
`→∞

Mβ0
2 (`)

∫ `
`0

M
1−β0
2 (ρ)
κ1(ρ)

dρ

M12(`)
= lim inf

`→∞

Mβ1
2 (`)

∫ `
`0

M
1−β0−(β1−β0)
2 (ρ)

κ1(ρ)
dρ

M12(`)

≥ lim inf
`→∞

Mβ0
2 (`)

∫ `
`0

M
1−β0
2 (ρ)
κ1(ρ)

dρ

M12(`)
= k,
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Applying induction to n, it is straightforward to demonstrate that

βn+1

βn
= ln > 1, (18)

where

`0 : =
k0λ

1− 1
k0∗

1− β0
, (19)

`n : =
kn(1− βn−1)λ

1− 1
kn−1

− 1
kn

∗
(1− βn)kn−1

, n ∈ N,

with
kn ≥ kn−1.

Lemma 6. Ref. [28] Lemma 2—suppose that (4) holds, β∗ > 0, and βi < 1, i = 0, 1, . . . , n. We
can conclude that

kn(`) ≥ βn
l

1 + l
+ 1 > 1, n ∈ N0.

Lemma 7. Suppose that y ∈ =1 and β∗ > 0. Then, eventually,

(Cn1)J1z/M1−βn
2 is decreasing;

(Cn2) lim
`→∞
J1z(`)/M1−βn

2 (`) converges to zero;

(Cn3) z > εnkn(M12/M2)J1z and y/M1/(εnkn)
12 is decreasing for any εn ∈ (0, 1).

Proof. Assume that y ∈ =1. We will employ an induction argument on n. For n = 0, the
conclusion directly follows from Lemma 4 with ε0 = k/k∗. Next, assuming that (Cn1)–(Cn3)
hold when n ≥ 1 for ` ≥ `n ≥ `1, we need to demonstrate that these conditions also hold
for n + 1.

Based on Lemma 4, the proof is exactly similar to the proof of Lemma 5 in [28];
therefore, it was omitted.

Corollary 1. If βi < 1 for i = 0, 1, . . . , n− 1, and βn ≥ 1, then =1 = ∅.

From the previous results and taking into account (18), the sequence {βn} has the limit

lim βn
n→∞

= βζ :=
β∗kζλ

1−1/kζ
∗

1− βζ
∈ (0, 1), (20)

where

kζ = lim inf
`→∞

M
βζ

2 (`)

M3(`)

∫ `

`0

M
1−βζ

2 (ρ)

κ1(ρ)
dρ.

Theorem 1. If (20) does not possess a root on (0, 1), then =1 = ∅.

Corollary 2. If
β∗ > α, (21)

then =1 = ∅, where

α := max
{

βζ(1− βζ)k−1
ζ λ

1/kζ−1
∗ : 0 < βζ < 1

}
.
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3.2. Class (2)

Lemma 8. Assume y ∈ =2 and

∫ ∞

`0

1
κ1(s)

∫ ∞

s

1
κ2(ρ)

∫ ∞

ρ

Ω

∑
i=1

qi(u)dudρds = ∞. (22)

Then, lim`→∞ z(`) = 0.

Proof. Assume that y ∈ =2. Since z(`) > 0 and z′(`) < 0, we have z(`) → ν0 as ` → ∞,
where ν0 ≥ 0. Assume that ν0 > 0; then, we have for all ε > 0, ν0 < z(`) < ν0 + ε,
eventually. By choosing 0 < ε < ν0(1−p0)

p0
, it is easy to verify that

y(`) = z(`)− p(`)y(σ(`)) > ν0 − p0z(σ(`))

> ν0 − p0(ν0 + ε) > h(ν0 + ε) > hz(`),

where h = ν0−p0(ν0+ε)
ν0+ε > 0. Then, (1) becomes

J3z(`) = −
Ω

∑
i=1

qi(`)y(τi(`))

≤ −h
Ω

∑
i=1

q(`i)z(τ(`))

≤ −hν0

Ω

∑
i=1

q(`i).

Integrating from ` to ∞, we obtain

J2z(`) ≥ ν0h
∫ ∞

`

Ω

∑
i=1

qi(ρ)hν0dρ,

In other words,

(J1z(`))′ ≥ ν0h
κ2(`)

∫ ∞

`

Ω

∑
i=1

qi(ρ)dρ. (23)

Integration (23) from ` to ∞ gives

−z′(`) ≥ ν0h
κ1(`)

∫ ∞

`

1
κ2(u)

∫ ∞

u

Ω

∑
i=1

qi(ρ)dρdu,

and hence,

z(`) ≤ z(`2)− ν0h
∫ `

`2

1
κ1(x)

∫ ∞

x

1
κ2(u)

∫ ∞

u

Ω

∑
i=1

qi(ρ)dρdudx → −∞ as `→ ∞,

which contradicts the positivity of z. Then, the proof of this lemma is complete.

In the following theorem, we establish certain conditions that guarantee the absence of
Kneser solutions, which are solutions whose corresponding function satisfies the properties
in class (2). In the following, we need the conditions

τi(σ(`)) = σ(τi(`)), and σ′(`) ≥ σ0 > 0.
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Theorem 2. Suppose that there is a function ζ(`) ∈ C([`0, ∞), (0, ∞)) satisfying τ̃(`) < ζ(`)
and σ−1(ζ(`)) < `. If the DDE

w′(`) +
σ0

σ0 + p0
K(ζ(`), τ̃(`))w

(
σ−1(ζ(`))

) Ω

∑
i=1

q̃i(`) = 0, (24)

is oscillatory, then =2 = ∅, where

K(ς, $) :=
∫ ς

$

1
κ1(s)

∫ ς

s

1
κ2(u)

duds.

Proof. Assume that y ∈ =2. This implies that

z > 0, J1z < 0, and J2z > 0. (25)

From (1), we see that

0 ≥ p0

σ′(`)

(
κ2(σ(`))

(
κ1(σ(`))z′(σ(`))

)′)′
+ p0

Ω

∑
i=1

qi(σ(`))x(τi(σ(`)))

≥ p0

σ0
J3z(σ(`)) + p0

Ω

∑
i=1

qi(σ(`))x(τi(σ(`)))

=
p0

σ0
J3z(σ(`)) + p0

Ω

∑
i=1

qi(σ(`))x(σ(τi(`))). (26)

Combining (1) and (26), we obtain

0 ≥ J3z(`) +
p0

σ0
J3z(σ(`))

+
m

∑
i=1

qi(`)x(τi(`)) + p0

Ω

∑
i=1

qi(σ(`))x(σ(τi(`)))

≥ J3z(`) +
p0

σ0
J3z(σ(`)) +

Ω

∑
i=1

q̃i(t)[x(τi(`)) + p0x(σ(τi(`)))]. (27)

From definition of z, we have

z(τi(`)) = x(τi(`)) + p(τi(`))x(σ(τi(`))) ≤ x(τi(`)) + p0x(σ(τi(`))).

By using the latter inequality in (27), we obtain

0 ≥ J3z(`) +
p0

σ0
J3z(σ(`)) +

Ω

∑
i=1

q̃i(t)z(τi(`)).

Since z is decreasing, then

0 ≥ J3z(`) +
p0

σ0
J3z(σ(`)) + z(τ̃(`))

Ω

∑
i=1

q̃i(`)

That is

0 ≥
(
J2z(`) +

p0

τ0
J2z(σ(`))

)′
+ z(τ̃(`))

Ω

∑
i=1

q̃i(`). (28)
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On the other hand, it follows from the monotonicity of J2z that

−J1z($) ≥ J1z(ς)−J1z($) =
∫ ς

$
(J1z(s))′ds =

∫ ς

$

J2z(s)
κ2(s)

ds

≥ J2z(ς)
∫ ς

$

1
κ2(s)

ds (29)

Integrating (29) from $ to ς, we have

z($) ≥ J2z(ς)
∫ ς

$

1
κ1(s)

∫ ς

s

1
κ2(u)

duds. (30)

Thus, we have
z(τ̃(`)) ≥ J2z(ζ(`))K(ζ(`), τ̃(`)),

which, by virtue of (28), yields that(
J2z(`) +

p0

σ0
J2z(σ(`))

)′
+ K(ζ(`), τ̃(`))J2z(ζ(`))

Ω

∑
i=1

q̃i(`) ≤ 0. (31)

Now, set
w(t) = J2z(`) +

p0

σ0
J2z(σ(`)) > 0.

From the fact that J2z is non-increasing, we have

w(t) ≤ J2z(σ(`))
(

1 +
p0

σ0

)
,

or equivalently,

J2z(ζ(`)) ≥ σ0

σ0 + p0
w
(

σ−1(ζ(`))
)

. (32)

Using (32) in (31), we see that w is a positive solution of the differential inequality

w′(`) +
σ0

σ0 + p0
K(ζ(`), τ̃(`))w

(
σ−1(ζ(`))

) Ω

∑
i=1

q̃i(`) ≤ 0.

In view of [31] Theorem 1, we have that (24) also has a positive solution, a contradiction.
Thus, the proof is complete.

Corollary 3. Suppose that there is a function ζ(`) ∈ C([`0, ∞), (0, ∞)) satisfying τ̃(`) < ζ(`) and
σ−1(ζ(`)) < `. If

lim inf
t→∞

∫ t

σ−1(ζ(t))
K(ζ(s), τ(s))

Ω

∑
i=1

q̃i(s)ds >
σ0 + p0

σ0e
, (33)

then =2 = ∅.

Proof. The results in [32] guarantee the oscillation of Equation (24) under condition (33).

3.3. Oscillatory Theorems and Examples

We obtain the criteria in the following theorems by directly combining the results
in the previous two subsections. Assuming that the solution is positive means that it
belongs to one of two categories: =2 or =2. Therefore, when it is confirmed that categories
=2 and =2 are empty, this means that there are no positive solutions, and accordingly, all
solutions are oscillatory (this is based on the principle of symmetry between positive and
negative solutions).



Symmetry 2023, 15, 1920 12 of 15

Theorem 3. Suppose β∗ > 1, and (22) holds. Then, every solution of (1) either converges to zero
or is oscillatory.

Theorem 4. Suppose (21) and (22) hold. Then, every solution of (1) either converges to zero or
is oscillatory.

Theorem 5. Suppose β∗ > 1, and (33) holds. Then, every solution of (1) is oscillatory.

Theorem 6. Suppose (21) and (33) hold. Then, every solution of (1) is oscillatory.

The following example demonstrates the significance of the results obtained.

Example 1. Consider

(y(`) + p0y(σ0`))
′′′ +

Ω

∑
i=1

q0

`3 y(τi`) = 0, (34)

where 0 ≤ p0 < 1, and τi, σ0 ∈ (0, 1). Clearly:
κ1(`) = κ2(`) = 1, σ(`) = ρ0`, τ(`) = τ0` = min{τi`, i = 1, 2, . . . , Ω}, p(`) = p0,
qi(`) = q0/`3, and

M1(`) ∼ `, M2(`) ∼ `, M12(`) ∼ `2/2.

Then, we can compute the value of β∗ as follows:

β∗ = lim inf
`→∞

M2(`)κ2(`)M12(τ(`))
Ω

∑
i=1

qi(`)(1− p(τi(`)))

= lim inf
`→∞

`
τ2

0 `
2

2
Ωq0

`3 (1− p0)

=
1
2

Ωτ2
0 (1− p0)q0,

For β∗ ≥ 1, we have

q0 >
2

Ωτ2(1− p0)
.

Moreover∫ ∞

`0

1
κ1(v)

∫ ∞

`

1
κ2(u)

∫ ∞

ρ
ϕ(ρ)dρdudv =

∫ ∞

1

∫ ∞

`

∫ ∞

ρ

Ωq0

ρ3 (1− p0)dρdudv = ∞.

Thus, the assumption of Theorem 3 is satisfied, and then, every solution of (34) either converges to
zero or is oscillatory.

Example 2. Consider the third-order neutral delay differential equation

(
e−`(y(`) + p0y(σ(`))′′

)′
+

Ω

∑
i=1

q0y(τi`) = 0, ` > 1. (35)

where q0 > 0. It is easy to verify that

κ1(`) = 1, κ2(`) = e−`, σ(`) = σ0`, τ(`) = τ0` = min{τi`, i = 1, 2, . . . , Ω}, p(`) = p0,
qi(`) = q0, and

M1(`) ∼ `, M2(`) ∼ e`, M12(`) ∼ e`.

Then
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λ∗ = lim
t→∞

inf
M12(`)

M12(τ(`))
= lim inf

`→∞
e(1−τ)` = ∞,

and

β∗ = lim inf
`→∞

M2(`)κ2(`)M12(τ(`))
Ω

∑
i=1

qi(`)(1− p(τi(`))) = lim inf
`→∞

eτ`Ωq0(1− p0) > 0, (36)

where 0 ≤ p0 < 1. Moreover,

∫ ∞

`0

1
κ2(u)

∫ ∞

u

Ω

∑
i=1

qi(ρ)dρdu =
∫ ∞

1
eu
∫ ∞

u
Ωq0dρdu =

∫ ∞

1
Ωq0(eu − e)du = ∞.

Hence, if (36) holds, all assumptions of Theorem 3 are satisfied, and then every solution
of (35) either converges to zero or is oscillatory.

Remark 4. Consider the differential equation(
y(`) + 0.5y

(
`

6

))′′′
+

q0

`3 (x(0.5`) + x(0.6`) + x(0.7`)) = 0, (37)

where Ω = 3, p0 = 0.5, σ(`) = `/6 and τ(`) = min{0.5`, 0.6`, 0.7`} = 0.5`. Then, every
solution of (37) either converges to zero or is oscillatory.

q0 >
2

3(0.5)2
(

1− 1
2

) = 5.3 . (38)

4. Conclusions

This study focuses on the oscillatory characteristics of solutions to the third-order
neutral equation with several delays. Although there have been numerous studies related
to this subject, we have discovered enough evidence in these studies to assert that any
non-oscillatory solution will lead to zero. In this study, we introduce new standards which
guarantee that all solutions to Equation (1) are oscillatory. Our results expand and improve
upon those found in the literature [28]. For a certain type of general third-order delay
differential equation, we propose new oscillation criteria in the event that the functions κi
are of the same kind, using an iterative technique in Theorems 5 and 6. In a particular case,
a single condition ensures that Equation (1) oscillates. It is noteworthy that our criteria are
relevant even when τ(`) = `, as they do not require τ(`) to be a non-decreasing function.

In future research endeavors within this particular domain, we are enthusiastic about
the potential to expand our investigation to include quasi-linear third-order neutral differ-
ential equations of the form:(

κ2(`)
((

κ1(`)z′(`)
)α
)′)′

+
Ω

∑
i=1

qi(`)yα(τi(`)) = 0.
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