
Citation: Bogoi, A.; Dan, C.-I.;
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Abstract: Stochastic Differential Equations (SDEs) model physical phenomena dominated by stochas-
tic processes. They represent a method for studying the dynamic evolution of a physical phenomenon,
like ordinary or partial differential equations, but with an additional term called “noise” that rep-
resents a perturbing factor that cannot be attached to a classical mathematical model. In this paper,
we study weak and strong convergence for six numerical schemes applied to a multiplicative noise,
an additive, and a system of SDEs. The Efficient Runge–Kutta (ERK) technique, however, comes
out as the top performer, displaying the best convergence features in all circumstances, including
in the difficult setting of multiplicative noise. This result highlights the importance of researching
cutting-edge numerical techniques built especially for stochastic systems and we consider to be of
good help to the MATLAB function code for the ERK method.

Keywords: stochastic; Itô; white noise; Gaussian distribution; Wiener process; convergence;
Euler–Maruyama; Milshtein; Heun; Efficient Runge–Kutta

1. Introduction

Although a field that emerged in the mid-20th century [1,2], stochastic calculus is a
crucial step in various domains, such as finance, meteorology, epidemiology, and engineer-
ing. Without being exhaustive, we provide examples of several authors who emphasize the
role of stochastic differential equations in real-life applications. For instance, Sagirow [3]
dedicates an entire course to stochastic methods in the dynamics and stability of satellite
orbits. Kloeden and Platen [4] extensively present multiple areas where stochastic calculus
is used, such as population dynamics, genetics, experimental psychology, seismology,
and mechanics. Higham [5,6] illustrates the applicability of stochastic calculus in the
probabilistic nature of chemical reactions.

Stochastic differential equations are differential equations whose solutions are influ-
enced by boundary and initial conditions but are not solely determined by them, unlike
Ordinary Differential Equations (ODEs) for which knowing the boundary and initial condi-
tions is enough to solve these equations. The difference between the two types of differential
equations is the stochastic (or probabilistic) term, which gives the integrand function a
degree of uncertainty which can be associated with the uncertainty of any phenomena
occurring in the real world [1,2], such as the influence of random perturbations affecting the
deterministic mathematical model applied to the phenomena. Such cases involving linear
and harmonic oscillators [7] and even nonlinear oscillators [8,9] have been thoroughly
analyzed and are a subject of interest in present studies.

We consider that this paper is dedicated to students and researchers who want to
be quickly introduced in the field of stochastic differential equations and who want to
solve them numerically, but do not know what numerical scheme to choose immediately.
Through this work and the provided examples, we hope to guide them as quickly as
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possible towards a fair choice of the numerical method of calculation depending on the
type of problem that is wanted to be solved.

2. Brownian Motion, White Noise

A stochastic process is a family X(t), t ≥ 0 of a random variable that depends on
the continuous real parameter time t, [3,10]. Thus, we can see the stochastic process like
a trajectory of the system (or the sequence of values of the random variable obtained in
temporal order) depending on the outcome of each probabilistic experiment.

A stochastic process with independent increments is the process in which, for arbitrary
time moments t0 < t1 < t2 < . . . < tk, the differences X(t1)− X(t0), X(t2)− X(t1), . . .,
X(tk)− X(tk−1) are independent, and the process at any moment can be written as [6–10]:

X(tk) =
k

∑
i=1

(X(ti)− X(ti−1)) (1)

A Wiener process (or Brownian motion), W(t), t ≥ 0 is a stochastic process with

W(0) = 0 (2)

with probability one, the variation W(t2) −W(t1) ∼ N
(
0,
√

t2 − t1
)

has a normal (or
Gaussian) distribution such that the expectation E and the variance σ2 are:

E[W(t2)−W(t1)] = 0

σ2 = Var[W(t2)−W(t1)] = k(t2 − t1), k ∈ R
(3)

and the increments W(t2)−W(t1) are independent on [0, T] for any 0 ≤ t1 < t2 ≤ T. This
process is not differentiable at any point in its domain of definition. The origin of the term
“noise,” commonly used in SDEs, represents a generic term to describe a random variable
with zero mean [11,12]. The concept of white noise can be likened to the effect of unwanted,
unpredictable vibrations or unwanted interference contaminating a reference signal due to
atmospheric effects or imperfections in transmitting and/or receiving equipment. White
noise, denoted by ξ(t), defined as the derivative of the Wiener process:

ξ(t) =
dW
dt

(4)

is satisfying that the mean is E[ξ(t)] = 0 and the covariance is E(ξ(t1)ξ(t2)) = δ(t1 − t2),
which is the Dirac delta function. Although we previously mentioned that the Wiener
process is not differentiable, it admits, in the limit, for infinitely small-time domains, the
association of the Dirac function as its derivative. White noise can be thought of as a
sequence of infinitely large impulses acting in an infinitely small time [3].

3. A Brief Presentation of Stochastic Differential Equations

Given two differentiable functions f , g : R× [0, T]→ R , we consider the stochastic
initial value problem (SIVP) for the scalar Itô stochastic differential equation (SDE) given by

dX(t)
dt

= f (X(t), t) + g(X(t), t)ξ(t), X(0) = X0 (5)

The form of a stochastic differential equation includes both the deterministic term
f (X(t), t) (i.e., “drift coefficient”) and the probabilistic term g(X(t), t)ξ(t) (i.e., “diffusion
coefficient” or “stochastic term”). The equivalent relationship arises from replacing (4) in
(5) and obtains:

dX = f (X, t)dt + g(X, t)dW(t) (6)
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where W(t) is a Wiener process, f and g are known functions, at least of class C2(R), and
X(t) is the random variable to be determined. The integral solution of this stochastic
differential equation is:

X(t) = X(t0 = 0) +
t∫

t0

f (X(s), s)ds +
t∫

t0

g(X(s), s)dW(s) (7)

The solution (7) of Equation (6) suggests that the knowledge of the process state
at each intermediate time moment is necessary due to the integral with the integrand
dW. Previously, we mentioned that the Wiener process has independent increments, so
the Riemannian sense of integration is not applicable here. For this reason, a different
integration concept of the Wiener process has been defined, known as the Itô integral [13]

t+∆t∫
t

g(X(s), s)dW(s) = lim
∆t→0

g(X(t))[W(t + ∆t)−W(t)] (8)

This Equation (8) represents Itô’s interpretation of the integral of a Wiener stochastic
process [3,14–16]. However, there is another interpretation of the integral of a stochastic
process, given by the Russian mathematician Ruslan Stratonovich [3], which differs from
the first one as follows (marked to avoid confusion with the previous one by the symbol (◦):

t+∆t∫
t

g(X(s), s) ◦ dW(s) = lim
∆t→0

g
(

X(t) + X(t + ∆t)
2

)
[W(t + ∆t)−W(t)] (9)

It cannot be said that one of these definitions of the integral is correct and the other
one is wrong; everything depends on the way one wants to solve an equation like the one
in (6). Furthermore, if the temporal domain of computation [t, t′] is discretized into as many
nodes as possible, we arrive at the Itô integral:

t′∫
t

g(X(s))dW(s) = lim
N→∞

N

∑
i=1

g(X(ti−1))[W(ti)−W(ti−1)] (10)

Or to the Stratonovich integral:

t′∫
t

g(X(s)) ◦ dW(s) = lim
N→∞

N

∑
i=1

g
(

X(ti−1) + X(ti)

2

)
[W(ti)−W(ti−1)] (11)

In the numerical resolution of stochastic differential equations to be analyzed, the Itô
integral (10) will be used. To illustrate the differences between the two types of stochastic
calculus, the integral of WdW(t) will be integrated in both directions:

• In the Itô sense:

T∫
0

WdW = lim
N→∞

N

∑
i=1

W(ti−1)[W(ti)−W(ti−1)] =
W(T)2 − T

2
(12)

• In the Stratonovich sense:

T∫
0

W ◦ dW = lim
N→∞

N

∑
i=1

(
W(ti−1) + W(ti)

2

)
[W(ti)−W(ti−1)] =

W(T)2

2
(13)
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Thus, the random variable X(t) satisfies the stochastic differential equation in the
Itô sense:

dX = f (X(t), t)dt + g(X(t), t)dW(t) (14)

If X(t) satisfies the stochastic differential equation, then to be valid in the Stratonovich
sense the differential equation must be written:

dX =

[
f (X(t), t)− 1

2
dg(X(t), t)

dX
g(X(t), t)

]
dt + g(X(t), t) ◦ dW(t) (15)

or
dX = F(X(t), t)dt + g(X(t), t) ◦ dW(t) (16)

where we denoted F(X(t), t) = f (X(t), t)− 1
2 g′(X(t), t)g(X(t), t).

4. Finite Difference Schemes in Solving SDEs

Let us now consider a discretized Brownian motion by setting the time step ∆t = T/N,
where N is the number of intervals. The discretization of the temporal domain into a grid
ti = i∆t, i = 0, N with a constant step is the first stage in applying a numerical scheme. In
this paper, five schemes will be studied:

• Euler–Maruyama Scheme [2,10] of order O
(

∆t3/2
)

is given by:

Xi+1 = Xi + f (Xi, ti)∆t + g(Xi, ti)∆Wi (17)

where the index represents Xi = X(ti) and the difference of the Wiener process is
given by ∆Wi = W(ti+1)−W(ti) =

√
∆t ui,

Xi+1 = Xi + f (Xi, ti)∆t + g(Xi, ti)
√

∆t ui (18)

where the terms (ui)i=1,N which replaced the white noise, is a set of independent Gaussian
random variables with zero mean and variance 1.

• Milstein Scheme [2,6,10] of order O
(

∆t3/2
)

is given by:

Xi+1 = Xi + f (Xi, ti)∆t + g(Xi, ti)
√

∆t ui +
1
2

g(Xi, ti)g′(Xi, ti)∆t
(

u2
i − 1

)
(19)

where dg(Xi ,ti)
dX = g′(Xi, ti):

• The Stochastic Heun Scheme [2,10,17] (or Semi-Implicit Euler Scheme) of order O
(

∆t3/2
)

:

Xi+1 = Xi +
∆t
2

[
F(Xi, ti) + F

(
X̃i+1, ti+1

)]
+

√
∆t
2

ui

[
g(Xi, ti) + g

(
X̃i+1, ti+1

)]
(20)

The scheme from (19) uses (16) for the notation F(Xi, ti) and requires the application
of another explicit-type scheme—for example, (17) or (18)—to determine the “predicted”
value X̃i+1 anticipated for the future time i + 1.

• First-order Runge–Kutta method [13,14] involving the Itô coefficient (FRK1):

Xi+1 = Xi +
√

∆t(F1(Xi, ti) + G2(Xi, ti)∆ui) + [G2(Xi, ti)− G1(Xi, ti)]
√

∆t (21)

where:

G2(Xi, ti) = g
(

Xi +
1
2

G1(Xi, ti)(∆ui −
√

∆t)
)

. (22)
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• Improved three-stage Runge–Kutta scheme [13] (Saito and Mitsui):

Xi+1 = Xi +
1
4 [F1 + 3F3]∆t + 1

4 [G1 + 3G3]
√

∆tui+

+ 1
2
√

3

[
f ′g− g′ f − 1

2 g′′ g2
]

i
∆t∆Ŵ

(23)

where ∆Ŵi =
√

∆tu′ i is a Wiener process with u′ i, an independent N(0, 1) random
variables and:

F1 = F(Xi, ti), G1 = g(Xi, ti),

F2 = F
(

Xi +
1
3 F1∆t + 1

3 G1∆ui, ti

)
, G2 = g(Xi +

1
3 F1∆t + 1

3 G1∆ui, ti),

F3 = F
(
Xi +

2
3 F2∆t + 2

3 G2∆ui, ti
)
, G3 = g(Xi +

2
3 F2∆t + 2

3 G2∆ui, ti).

(24)

• Efficient Runge–Kutta method [18,19] based on the Itô coefficient (ERKI):

Xi+1 = Xi +
1
2 [F1 + F2]∆t + 1

40 [37G1 + 30G3 − 27G4]
√

∆tui+

+ 1
16 [8G1 + G2 − 9G3]

√
3∆t

(25)

where:

F1 = F(Xi, ti), G1 = g(Xi, ti),

F2 = F
(

Xi + F1∆t + G1
√

∆t∆ui, ti

)
, G2 = g

(
Xi − 2

3 G1

(√
∆t∆ui +

√
3∆t
)

, ti

)
,

G3 = g
(

Xi +
2
9 G1

(
3
√

∆t∆ui +
√

3∆t
)

, ti

)
,

G4 = g
(

Xi − 20
27 F1∆t + 10

27 (G2 − G1)
√

∆t∆ui − 10
27 G2
√

3∆t, ti

)
.

(26)

The MATLAB code for the ERK method is provided in The Appendix A of this paper.

5. Convergence Analysis

In this section, we recall from the stochastic theory some relevant concepts about the
strong and weak convergence of sequences of random variables. Convergence of a numeri-
cal method is measured by comparing the exact solution Xexact(ti) and the estimation Xi.
Since X(ti) and Xi are random variables, in order to measure their difference, the expected
values are used, [18]:

• A method is said to have a strong order of convergence equal to p if there exist the
positive constant A such that:

E[Xi − Xexact(ti)] ≤ A∆tp, i = 0, N (27)

• A method is said to have a weak order of convergence equal to q if there exist the
positive constant C and an arbitrary smooth test function φ such that:

|Eφ(Xi)−Eφ(X(ti))| ≤ C∆tq, C ≥ 0, i = 0, N (28)

In this paper we will focus on the case where the test function φ is the identity function:
φ(X) = X. Strong convergence quantifies “the expected value of the error,” whereas weak
convergence quantifies “the error of the expected values”. The strong order always satisfies
p ≤ q. The orders of convergence of the presented schemes will be studied by varying the
time step [6].

6. Numerical Application

In this section, we provide a numerical study of the properties of convergence of the
presented methods for two stochastic differential equations, one with additive “white”
noise and the other with multiplicative “white” noise.
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Benchmark Test 1: Consider the stochastic differential equation with multiplicative
white noise:

dX(t) = αX(t)dt + βX(t)dW(t) (29)

with the initial condition X(0) = X0. The exact solution is given by:

X(t) = X0 exp
[(

α− β2

2

)
t + βW(t)

]
(30)

which for α = 2, β = 1, X0 = 1, T = 1 becomes for any t ∈ [0, 1]

X(t) = exp
[

3
2

t + W(t)
]

(31)

The numerical strategy is the following. The time domain is initially discretized with
dt = T/213 and then we consider seven intervals, multiple of 2, defined by N(s) = 213−s,
s = 0, 6.The corresponding number of time steps is Dt = 1/N(s) = 2sdt. To understand
how is added the white noise on each time step in the obtained results, see an example in
Figure 1.
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Figure 1. Contribution of the white noise. At time step 1/212 the white noise is considered for each
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white noise is the sum of each four initial steps, and the process goes on.

We compute M = 5000 different trajectories with white noise (Brownian paths) over
the interval [0, 1], following a Gaussian distribution. For each path, we have generated
seven numerical solutions corresponding to each step size. To compare the numerical
methods, we arbitrary choose a path from those M paths. The results are given in Figure 2
in full and detailed representations. We can notice that the Runge–Kutta classic method is
practically the same as the Milshtein method.
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of the time step and the accuracy of the results, the first four, smaller time steps have been
considered for each scheme, as shown in Figure 3.
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The Euler–Maruyama method performs well for smaller time steps and increasing
the size of the time step drastically reduces the accuracy of the results. In Figure 3, the
differences between the graphs considering the same range on horizontal axis are almost
imperceptible ranging at the last decimal. However, out of all the schemes, the ERK method
appears to have the best results (i.e., the exact solution is the closest to the line magenta in
Figure 2c), not being dramatically affected by the change in time step size.

Regarding the order of convergence, we have studied the two orders of convergence for
each method. According to [18] strong convergence was studied computing the expectation
at the final time tN = T:

E[XN − Xexact(tN)] = ε
strong
∆t = A∆tp, i = 0, N (32)

where A ∈ R+ is a constant. Considering a log–log plot ε
strong
∆t against ∆t

log ε
strong
∆t = log A + p log ∆t (33)

we expect to see a line of slope p.The absolute errors at the final time moment are taken, the
averages of these errors are calculated depending on the considered time steps, and they
are graphically represented in Figure 4 where the slope of the resulting line corresponds to
the order of convergence, p. The numerical results confirm the orders of strong convergence
of O

(
∆t1/2

)
for Euler–Maruyama and of O(∆t) order for both Milshtein, Stochastic Heun,

FRKI, and IRK schemes.
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The best order of strong convergence, of O
(

∆t3/2
)

is obtained by the Efficient Runge–
Kutta method. For weak convergence, we perform with a similar procedure, but the
difference is that we compute at the end time the mean of the last values for all the
trajectories and the mean of all the last values using a certain method:

|Eφ(XN)−Eφ(Xexact(tN))| = εweak
∆t = C∆tq, C ≥ 0, i = 0, N (34)

log εweak
∆t = log C + q log ∆t (35)

The results are presented in Figure 5 and, with the exception of the ERK which is once
again of order O

(
∆t3/2

)
, and the Heun method, in which determining the type of accuracy

is difficult, all the other schemes have a weak convergence of order 1.
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Benchmark Test 2: Consider the stochastic differential equation with additive white
noise, discretized in the same way as in the previous example, (32):

dX(t) =
[

2
1 + t

X(t) +
3
2
(1 + t)2

]
dt +

3
2
(1 + t)2dW(t) (36)

with the initial condition X0 = 0.5 and the analytical solution:

X(t) = (1 + t)2X0 +
3
2
(1 + t)2(W(t) + t) (37)

From Figure 6, it can be observed that the values of the Milshtein method overlap
with those of the Euler–Maruyama method and with those of the First Order Runge–Kutta
method. This is due to the term dg

dX which, in the case of additive noise, cancels out, and
thus, the three schemes will be identical.
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Figure 7 shows that all schemes have very similar values, which is caused by the 
way the benchmark test is chosen. An interesting conclusion is that the decision to use a 
greater computation effort scheme is invalid since the additive noise does not allow for 
significant differences between the schemes. 
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Figure 6. (a) Comparison of the numerical solution for all the numerical schemes used in the
benchmark test 2 (b,c) Details of the comparisons.

Figure 7 shows that all schemes have very similar values, which is caused by the way
the benchmark test is chosen. An interesting conclusion is that the decision to use a greater
computation effort scheme is invalid since the additive noise does not allow for significant
differences between the schemes.
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Figure 7. All methods compared for benchmark 2: (a) Euler–Maruyama method, (b) First Order
Runge–Kutta method, (c) Milshtein method, (d) Heun method, (e) Improved Runge–Kutta method,
(f) Efficient Runge–Kutta method.

As anticipated, Figure 8 shows the strong and weak convergence for all of the schemes,
and the conclusion is that additive noise results in the same convergence O(∆t) regardless
of whether it is strong or weak. The ERK and IRK methods are still the most precise and
near the exact solution among all the other numerical approaches.
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Benchmark Test 3: Solving a system of SDEs is the subject of the final test. Consider
a mechanical oscillator having a negligible damping force and undamped oscillations,
maintained by a harmonic force of constant amplitude and a white additive noise ξ(t):

..
x(t) + δ2x(t) = A cos ωt + Bξ(t) (38)

The physics literature contains several examples of this type of stochastic oscillator (e.g.,
Helmholtz Resonator). It is convenient to be written in a stochastic formulation, taking into
account the Wiener process by (4)

dX1(t) = X2(t)dt (39)

dX2(t) =
(
−δ2X1(t) + A cos ωt

)
dt + BdW(t) (40)

which in matrix formulation becomes

dX = Fdt + GdW (41)

where the vectors are given by:

F(X, t) =
(

X2
−δ2X1 + A cos ωt

)
, G(X, t) =

(
0
B

)
(42)

In our example, we consider: A = 10, B = 1.5, δ = 10, ω = 5. For the following
simulations, we chose a time step size of ∆t = 2−8s. For this simulation we do not take the
advantage of having an exact solution to compare the results with it. However, Figure 9
shows that the evolutions in time of almost all methods are closer one to each other, which
demonstrate that the methods could predict a stochastic process well.
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7. Conclusions

In order to fully understand our findings, it is clear that selecting a numerical scheme
requires careful consideration of the type of noise present in the system. For additive noise,
the little increases in computational complexity brought on by techniques like Milshtein or
Stochastic Heun do not result in an observable improvement in convergence.

The influence of multiplicative noise, however, is significant. The Efficient Runge–
Kutta, which has superior convergence characteristics, appears as the best option in this case.
This finding indicates us to give the MATLAB function list code, for the ERK method, in
Appendix A.

Surprisingly, in the presence of multiplicative noise, the first order Runge–Kutta approach
performs on par with the Milshtein method. This finding calls into question established
notions on the relative accuracy of numerical techniques used in stochastic simulations.

In conclusion, our research emphasizes how crucial it is to select a suitable numerical
scheme depending on the problem’s noise characteristics. The nature of the noise has a
significant influence on how well these strategies’ function, and while computing complex-
ity should not be completely discounted, occasionally, simpler approaches can produce
unexpectedly accurate results. Additionally, when dealing with intricate stochastic dy-
namics, the Efficient Runge–Kutta approach proves to be a potent instrument for reaching
excellent convergence.
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Appendix A

The function MATLAB code for the ERK method of the scalar case.

function [XRKE, RKE_err,WRKE_err,XRKEFull,str] = ERK(R,dW,nrTEST)
%R = [1; 16; 32; 64; 128]; % stepsizes are R*dt

global dt Dt T N M randomNumber Xzero Xtrue

str='Efficient Runge Kutta(ERK) Method'
disp('Efficient Runge Kutta(ERK) Method')

Xerr = zeros(M,size(R,1)); %. preallocate array of errors of each step time
XRKEFull = zeros(size(R,1),N);

for p = 1:size(R,1) % 5 different stepsizes
Dt = R(p)*dt;
L = N/R(p); % L Euler steps of size Dt = R*dt
Xtemp = Xzero*ones(M,1);
XRKE = zeros(1,L);
for j = 1:L

Wien = sum(dW(:,R(p)*(j-1)+1:R(p)*j),2); % sum of each row
F1=f(Xtemp,Dt*j,nrTEST);
G1=g(Xtemp,Dt*j,nrTEST);
F2=f(Xtemp+F1*Dt+G1.*Wien,Dt*j,nrTEST);
G2=g(Xtemp-2/3*G1.*(Wien+sqrt(3*Dt)),Dt*j,nrTEST);
G3=g(Xtemp+2/9*G1.*(3*Wien+sqrt(3*Dt)),Dt*j,nrTEST);

G4=g(Xtemp-20/27*F1*Dt+10/27*(G2-G1).*Wien-10/27*G2*sqrt(3*Dt),Dt*j,nrTEST);
Xtemp =

Xtemp+(F1+F2)*Dt/2+1/40*(37*G1+30*G3-27*G4).*Wien+1/16*(8*G1+G2-9*G3)*sqrt(3*Dt);
XRKE(j) = Xtemp(randomNumber);

end
timeVector = Dt:Dt:T;
Xerr_RKEfinal(:,p) = abs(Xtemp- Xtrue(:,end)); % store the error at t = 1
XRKEFull(p,1:size(timeVector,2))=XRKE;
RKE_err(:,p) = abs(Xtemp-Xtrue(:,end));
WRKE_err(p)=sum(Xtemp)/M;

end
end
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