
Citation: Buchbinder, I.L.;

Reshetnyak, A.A. Covariant Cubic

Interacting Vertices for Massless and

Massive Integer Higher Spin Fields.

Symmetry 2023, 15, 2124. https://

doi.org/10.3390/sym15122124

Academic Editors: Olga Kodolova,

Tomohiro Inagaki and Alberto Ruiz

Jimeno

Received: 26 October 2023

Revised: 20 November 2023

Accepted: 24 November 2023

Published: 28 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Covariant Cubic Interacting Vertices for Massless and Massive
Integer Higher Spin Fields
I. L. Buchbinder 1,2,3,4 and A. A. Reshetnyak 1,3,5,*

1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia;
buchbinder@theor.jinr.ru

2 Center for Theoretical Physics, Tomsk State Pedagogical University, 634061 Tomsk, Russia
3 Faculty of Physics, National Research Tomsk State University, 634050 Tomsk, Russia
4 Laboratory for Theoretical Cosmology, International Center of Gravity and Cosmos, Tomsk State University

of Control Systems and Radioelectronics, 634050 Tomsk, Russia
5 Department of Mathematics and Informatics, National Research Tomsk Polytechnic University,

634050 Tomsk, Russia
* Correspondence: reshet@tspu.edu.ru

Abstract: We develop the BRST approach to construct the general off-shell local Lorentz covariant
cubic interaction vertices for irreducible massless and massive higher spin fields on d-dimensional
Minkowski space. We consider two different cases for interacting higher spin fields: with one
massive and two massless; two massive, both with coinciding and with different masses and one
massless field of spins s1, s2, s3. Unlike the previous results on cubic vertices we extend our earlier
result in (Buchbinder, I.L.; et al. Phys. Lett. B 2021, 820, 136470) for massless fields and employ the
complete BRST operator, including the trace constraints, which is used to formulate an irreducible
representation with definite integer spin. We generalize the cubic vertices proposed for reducible
higher spin fields in (Metsaev, R.R. Phys. Lett. B 2013, 720, 237) in the form of multiplicative and
non-multiplicative BRST-closed constituents and calculate the new contributions to the vertex, which
contains the additional terms with a smaller number of space-time derivatives. We prove that without
traceless conditions for the cubic vertices in (Metsaev, R.R. Phys. Lett. B 2013, 720, 237) it is impossible
to provide the noncontradictory Lagrangian dynamics and find explicit traceless solution for these
vertices. As the examples, we explicitly construct the interacting Lagrangians for the massive spin of
the s field and the massless scalars, both with and without auxiliary fields. The interacting models
with different combinations of triples higher spin fields: massive spin s with massless scalar and
vector fields and with two vector fields; massless helicity λ with massless scalar and massive vector
fields; two massive fields of spins s, 0 and massless scalar is also considered.

Keywords: higher spin field theory; multidimensional Minkowski spaces; Lagrangian formulation;
BRST operator; gauge invariance; cubic interaction vertices

1. Introduction

The construction of interacting higher spin field theory attracts significant attention
both from a general theoretical point of view and in connection with the possibilities of
discovering new approaches to describe gravity at the quantum level (see for a review,
e.g., [1–7] and the references therein). The extension of General Relativity on a base of
local supersymmetry principle up to the supergravity models [8] with improved quantum
properties and a connection with (Super)string Field Theory permits one to include massless
fields of spins s > 2 in Higher Spin Gravity (see [9] and references therein) with respecting
the string field theory properties, asymptotic safety and some others. The AdS/CFT
correspondence gives strong indications that higher spin excitations can be significant to
elaborate the quantum gravity challenges [10]. Interacting massive and massless higher
spin fields in constant-curvature spaces provide another possible insight into the origin of
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Dark Matter and Dark Energy [11,12] beyond the models with vector massive fields [13] and
sterile neutrinos [14] to be by reasonable candidates for Dark Matter, see for reviews [15–17].

The simplest of higher spin interactions, the cubic vertex for various fields with higher
spins, has been studied by many authors with the use of different approaches (see, e.g., the
recent papers [18–31] and the references therein) (A complete list of papers on a cubic
vertex on constant curvature spaces contains dozens of papers. Here, we cite only the
recent papers containing a full list of references). Note, the results on the structure of
cubic vertices obtained in terms of physical degrees of freedom in a concise form in the
light-cone approach in [31,32]. In the covariant metric-like form, the list of cubic vertices
for reducible representations of the Poincare group with discrete spins (being consistent
with [32]) are contained in [18], where the cubic vertices were derived using the constrained
BRST approach, but without imposing on the vertex the algebraic constraints. The latter
peculiarity leads to the violation of the irreducibility of the representation for interacting
higher spin fields and, hence, to a possible change of the number of physical degrees of
freedom (Without finding the solution for the vertex respecting the algebraic constraints,
the number of physical degrees of freedom, which is determined by one of the independent
initial data for the equations of motion for the interacting model is different (less) than as
one from that for the undeformed model with vanishing algebraic constraints evaluated
on respecting equations of motion, but with the deformed gauge symmetry not respecting
these constraints). Also, we point out the constructions of cubic vertices within the BRST
approach without the use of constraints responsible for trace conditions in the BRST charge
(see e.g., [30] and the references therein). It means, in fact, that the vertex is obtained in terms
of reducible higher spin fields (To avoid various misunderstandings, we emphasize that
we use the term “unconstrained formulation” in the sense that all possible constraints are
consequences of the Lagrangian equations of motion. No additional restrictions, separate
from the equations of motion, are imposed).

In this paper, we derive the cubic vertices for irreducible massless and massive
higher spin fields focusing on the manifest Lorentz covariance. The analysis is carried
out within the BRST approach with complete BRST operator that extends our earlier
approaches [33–35] and involves a converted set of operator constraints forming a first-
class gauge algebra. The set of constraints includes on equal-footing the on-shell condition
l0 and constraints l1, l11, responsible for divergences and traces. Unlike our consideration,
in the constrained BRST approach, the operator l11 is imposed as a constraint on the set of
fields and gauge parameters outside of the Lagrangian formulation for simplicity of calcu-
lations. Such an approach inherits the way of obtaining the Lagrangian formulation for
higher spin fields from the tensionless limit [36] for (super)string theory with resulting in a
BRST charge without the presence of the algebraic (e.g., trace) constraints. We have already
noted [33] that this way of consideration is correct but the actual Lagrangian description
of irreducible fields is achieved only after additional imposing the subsidiary conditions
which are not derived from the Lagrangian. Of course, the Lagrangian formulations for
the same free irreducible higher spin field in Minkowski space obtained in constrained
and unconstrained BRST approaches are equivalent [37] (For irreducible massless and
massive field representations with half-integer spin the Lagrangians with reducible gauge
symmetries and compatible holonomic constraints, were firstly obtained therein). However,
the corresponding equivalence has not yet been proved for interacting irreducible higher-
spin fields as it was recently demonstrated for massless case [33,34] for cubic vertices.
Aspects of the BRST approach with complete BRST operator for a Lagrangian description
of various free and interacting massive higher spin field models in Minkowski and AdS
spaces were developed in many works (e.g., see the papers [38–45], and the review [3]).

As a result, we face the problem when constructing the cubic vertex for irreducible
massless and massive higher integer spin fields on d-dimensional flat space-time within
metric-like formalism on the base of the complete BRST operator. It is exactly the problem
that we intend to consider in the paper. We expect that the final cubic vertices will contain
new terms (as compared with [18]) with the traces of the fields. Such new terms may
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evidently have significance when gauging away auxiliary gauge symmetry and fields to
obtain a component Lagrangian formulation.

The aim of the paper is to present a complete solution of the above problem for
the cubic vertices for unconstrained irreducible massless and massive higher spin fields
within BRST approach and to obtain from general oscillator-like vertices explicit tensor
representations for Lagrangian formulations with reducible gauge symmetry for some
triples of interacting higher spin fields.

The paper has the following organization. Section 2 presents the basics of a BRST
Lagrangian construction for a free massive higher spin field, with all constraints l0, l1, l11
taken into account. In Section 3, we deduce a system of equations for a cubic (linear)
deformation in fields of the free action (free gauge transformations). A solution for the
deformed cubic vertices and gauge transformation is given in a Section 4 for one massive
and two massless fields; for two massive with different and coinciding masses and one
massless field. The number of examples for the fields with a special set of spins are pre-
sented in the Section 5. The main result of the work is that the cubic vertices and deformed
reducible gauge transformations include both types of constraints: with derivative l1 and
one with trace l11. In conclusion, a final summary with comments is given. A derivation of
Singh–Hagen Lagrangian from free BRST Lagrangian formulation for the massive field of
spin s presented in Appendix A. Appendixes B and C contain results of calculations for
component interacting Lagrangian and gauge transformations for massive field of spin s
with massless scalars and with massless vector and scalar. In Appendix D we formulate
conditions for the incomplete BRST operator, traceless constraints and cubic vertices to ob-
tain non-contradictory Lagrangian dynamics for a model with interacting fields with given
spins. We find the form of projectors ∏3

j=1 P(j)
0|11 for .respective cubic vertices

∣∣V(3)
c 〉

(m)3
(s)3

from [18] to have the cubic vertices
∣∣V(3)

c 〉
(m)3
(s)3

, firstly determined by (A66) and (A68) for
irreducible interacting fields. We use the usual definitions and notations from the work [33]
for a metric tensor ηµν = diag(+,−, . . . ,−) with Lorentz indices µ, ν = 0, 1, . . . , d− 1 and
the respective notation ε(F), gh(F), [F, G}, [x], (s)3 for the values of Grassmann parity and
ghost number of a homogeneous quantity F, as well as the supercommutator, the integer
part of a real-valued x and for the triple (s1, s2, s3).

2. Lagrangian Formulation for Free Massive Higher Spin Fields

Here, we present the basics of the BRST approach to free massive higher integer spin
field theory for its following use to construct a general cubic interacting vertex.

The unitary massive irreducible representations of Poincare ISO(1, d − 1) group
with integer spins s can be realized using the real-valued totally symmetric tensor fields
φµ1 ...µs(x) ≡ φµ(s) subject to the conditions(

∂ν∂ν + m2, ∂µ1 , ηµ1µ2
)
φµ(s) = (0, 0, 0) ⇐⇒ (1)(

l0, l1, l11, g0 − d/2
)
|φ〉 = (0, 0, 0, s)|φ〉.

The basic vectors |φ〉 and the operators l0, l1, l11, g0 − d/2 above are defined in the
Fock spaceH with the Grassmann-even oscillators aµ, a+ν , ([aµ, a+ν ] = −ηµν) as follows

|φ〉 = ∑
s≥0

ıs

s!
φµ(s)

s

∏
i=1

a+µi
|0〉, (2)

(
l0, l1, l11, g0

)
=
(
∂ν∂ν + m2, −ıaν∂ν,

1
2

aµaµ,−1
2
{

a+µ , aµ
})

.

The free dynamics of the field with definite spin s in the framework of the BRST
approach is described by the first-stage reducible gauge theory with the gauge invariant
action given on the configuration space M(s)

cl whose dimension grows with the growth of
“s”, thus, including the basic field φµ(s) with many auxiliary fields φ1µ(s−1), . . . of lesser
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than s ranks. All these fields are incorporated into the vector |χ〉s and the dynamics is
encoded by the action

Sm
0|s[φ, φ1, . . . ] = Sm

0|s[|χ〉s] =
∫

dη0s〈χ|KQ|χ〉s, (3)

where η0 and K are, respectively, a zero-mode ghost field and an operator defining the
inner product. The action (3) is invariant under the reducible gauge transformations

δ|χ〉s = Q|Λ〉s, δ|Λ〉s = Q|Λ1〉s, δ|Λ1〉s = 0, (4)

with |Λ〉s, |Λ1〉s to be the vectors of zero-level and first-level gauge parameters of the
abelian gauge transformations (4). The quantity Q in (3) is the BRST operator having
the same structure as one for massless case [33] constructed on the base of the constraints
l0, l1, l+1 , l11, l+11 = 1

2 a+νa+ν with the Grassmann-odd ghost operators η0, η+
1 , η1, η+

11, η11,
P0, P1, P+

1 , P11, P+
11,

Q = η0l0 + η+
1 ľ1 + ľ+1 η1 + η+

11 L̂11 + L̂+
11η11 + ıη+

1 η1P0, (5)

where (
ľ1, ľ+1

)
=
(
l1 + md, l+1 + md+

)
,
(

L̂11, L̂+
11
)
=
(

Ľ11 + η1P1, Ľ+
11 + P

+
1 η+

1
)
. (6)

Here

Ľ11 = l11 − (1/2)(d)2 + (b+b + h)b, Ľ+
11 = l+11 − (1/2)(d+)2 + b+ (7)

and (ε, gh)Q = (1, 1). The algebra of the operators l0 ,l1, l+1 , Ľ11, Ľ+
11, G0 looks like

[l0, l(+)
1 ] = 0, [l1, l+1 ] = l0 −m2 and [Ľ11, Ľ+

11] = G0, [G0, Ľ+
11] = 2Ľ+

11 (8)

and their independent non-vanishing cross-commutators are [l1, Ľ+
11] = −l+1 , [l1, G0] = l1.

The ghost operators satisfy the non-zero anticommuting relations

{η0,P0} = ı, {η1,P+
1 } = {η

+
1 ,P1} = {η11,P+

11} = {η
+
11,P11} = 1. (9)

The theory is characterized by the spin operator σ, which is defined according to

σ = G0 + η+
1 P1 − η1P+

1 + 2(η+
11P11 − η11P+

11) (10)

G0 = g0 + d+d + 2b+b +
1
2
+ h.

Here, d, d+, b, b+ ([d, d+] = 1, [b, b+] = 1) are two pairs of auxiliary Grassmann-even
oscillators. The operator σ selects the vectors with definite spin value s

σ(|χ〉s, |Λ〉s, |Λ1〉s) = (0, 0, 0), (11)

where the standard distribution for Grassmann parities and the ghost numbers of these
vectors are (0, 0), (1,−1), (0,−2), respectively.

All the operators above act in a total Hilbert space with the scalar product of the
vectors depending on all oscillators (A; A+) = (aµ, b, d; aµ+, b+, d+) and ghosts

〈χ|ψ〉 =
∫

ddx〈0|χ∗
(

A; η0, η1,P1, η11,P11
)
ψ
(

A+; η0, η+
1 ,P+

1 , η+
11,P+

11
)
|0〉. (12)



Symmetry 2023, 15, 2124 5 of 40

The operators Q, σ are supercommuting and Hermitian with respect to the scalar
product (12) including the operator K (see e.g., [37,39,45]) being equal to 1 on Hilbert
subspace not depending on auxiliary b, b+ operators

Q2 = η+
11η11σ, [Q, σ} = 0; (13)

Q+K = KQ, σ+K = Kσ, (14)

K = 1⊗
∞

∑
n=0

1
n!
(b+)n|0〉〈0|bnC(n, h(s)), C(n, h(s)) ≡

n−1

∏
i=0

(i + h(s)) (15)

The BRST operator Q is nilpotent on the subspace with zero eigenvectors for the spin
operator σ (11).

The field |χ〉s, the zero |Λ〉s and the first |Λ1〉s level gauge parameters labeled by the
symbol ”s” as eigenvectors of the spin condition in (11) has the same decomposition as ones
in [33] but with ghost-independent vectors |Φ...〉s−..., |Ξ...〉s−... instead of |φ...〉s−..., |Ξ...〉s−...

|χ〉s = |Φ〉s + η+
1

(
P+

1 |Φ2〉s−2 + P+
11|Φ21〉s−3 + η+

11P
+
1 P

+
11|Φ22〉s−6

)
(16)

+ η+
11

(
P+

1 |Φ31〉s−3 + P+
11|Φ32〉s−4

)
+ η0

(
P+

1 |Φ1〉s−1 + P+
11|Φ11〉s−2

+ P+
1 P

+
11

[
η+

1 |Φ12〉s−4 + η+
11|Φ13〉s−5

])
,

|Λ〉s = P+
1 |Ξ〉s−1 + P+

11|Ξ1〉s−2 + P+
1 P

+
11

(
η+

1 |Ξ11〉s−4 (17)

+ η+
11|Ξ12〉s−5

)
+ η0P+

1 P
+
11|Ξ01〉s−3,

|Λ1〉s = P+
1 P

+
11|Ξ

1〉s−3. (18)

Here,

|Φ...〉s−... =
[s−../2]−l

∑
l=0

(b+)l

l!

s−2l...

∑
k=0

(d+)k

k!
|φ...|l,k(a+)〉s−k−2l..., for |φ|0,0(a+)〉s ≡ |φ〉s, (19)

|Ξ...〉s−... =
[s−.../2]−l

∑
l=0

(b+)l

l!

s−2l...

∑
k=0

(d+)k

k!
|Ξ...|l,k(a+)〉s−k−2l.... (20)

We prove in the Appendix A that after imposing the appropriate gauge conditions
and eliminating the auxiliary fields with help of the equations of motion, the theory
under consideration is reduced to Singh–Hagen ungauged form [46] in terms of a totally
symmetric double traceless tensor field φµ(s) and auxiliary traceless φ

µ(s−3)
3 .

Now we turn to the interacting theory.

3. System of Equations for Cubic Vertex

Here, we follow the general scheme developed for massless case in [33] to find the cubic
interaction vertices for the models with one massive and two massless higher spin fields,
two massive and one massless higher spin field with different mass value distributions and
derive the equations for these vertices.

To include the cubic interaction we introduce three vectors |χ(i)〉si , gauge parameters
|Λ(i)〉si , |Λ(i)1〉si with corresponding vacuum vectors |0〉i and oscillators, where i = 1, 2, 3.
It permits to define the deformed action and the deformed gauge transformations as follows
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S(m)3
[1]|(s)3

[χ(1), χ(2), χ(3)] =
3

∑
i=1
Smi

0|si
+ g

∫ 3

∏
e=1

dη
(e)
0

(
se 〈χ(e)K(e)∣∣V(3)〉(m)3

(s)3
+ h.c.

)
, (21)

δ[1]
∣∣χ(i)〉si = Q(i)∣∣Λ(i)〉si − g

∫ 2

∏
e=1

dη
(i+e)
0

(
si+1 〈Λ

(i+1)K(i+1)∣∣si+2 〈χ
(i+2)K(i+1)∣∣ (22)

+ (i + 1↔ i + 2)
)∣∣Ṽ(3)〉(m)3

(s)3
,

δ[1]
∣∣Λ(i)〉si = Q(i)∣∣Λ(i)1〉si − g

∫ 2

∏
e=1

dη
(i+e)
0

(
si+1 〈Λ

(i+1)1K(i+1)∣∣si+2 〈χ
(i+2)K(i+1)∣∣ (23)

+ (i + 1↔ i + 2)
)∣∣V̂(3)〉(m)3

(s)3

with some unknown three-vectors
∣∣V(3)〉(m)3

(s)3
,
∣∣Ṽ(3)〉(m)3

(s)3
,
∣∣V̂(3)〉(m)3

(s)3
. Here, Smi

0|si
is the free

action (3) for the field
∣∣χ(i)〉si , Q(i) is the BRST charge corresponding to spin si, i = 1, 2, 3,

K(i) is the operator K (15) corresponding to spin si, i = 1, 2, 3 for massive and with change
h(s) → h(s) + 1/2 for massless field and g is a deformation parameter (called usually
as a coupling constant). Also, we use the notation (m)3 ≡ (m1, m2, m3) and convention
[i + 3 ' i].

The concrete construction of the cubic interaction means finding the concrete vectors∣∣V(3)〉(m)3
(s)3

,
∣∣Ṽ(3)〉(m)3

(s)3
,
∣∣V̂(3)〉(m)3

(s)3
. For this purpose, we can involve the set of fields, the con-

straints, and ghost operators related with spins s1, s2, s3 and the respective conditions of
gauge invariance of the deformed action under the deformed gauge transformations as
well as the conservation of the form of the gauge transformations for the fields

∣∣χ(i)〉si

under the gauge transformations δ[1]
∣∣Λ(i)〉si at the first power in g (In this connection, note

also the results of recent works [47–50] obtained on the base of the deformation of general
gauge theory [51–54]).

g
∫ 3

∏
e=1

dη
(e)
0 sj 〈Λ

(j)K(j)∣∣sj+1 〈χ
(j+1)K(j+1)∣∣sj+2 〈χ

(j+2)K(j+2)∣∣Q(V3, Ṽ3) = 0, (24)

g
∫ 2

∏
e=1

dη
(e)
0 sj+1 〈Λ

(j+1)1K(j+1)∣∣sj+2 〈χ
(j+2)K(j+2)∣∣(Q(Ṽ3, V̂3)−Q(j+2)|V̂(3)〉

)
= 0, (25)

where

Q(V3, Ṽ3) =
3

∑
k=1

Q(k)∣∣Ṽ(3)〉(m)3
(s)3

+ Q(j)
(∣∣V(3)〉(m)3

(s)3
−
∣∣Ṽ(3)〉(m)3

(s)3

)
, j = 1, 2, 3. (26)

Following our results, [33,34] we choose coincidence for the vertices:
∣∣Ṽ(3)〉 =

∣∣V(3)〉
=
∣∣V̂(3)〉, which provides the validity of the operator equations at the first order in g (the

highest orders are necessary for finding the quartic and higher vertices)

Qtot∣∣V(3)〉(m)3
(s)3

= 0, σ(i)∣∣V(3)〉(m)3
(s)3

= 0, (27)

jointly with the spin conditions as the consequence of the spin Equation (11) for each
sample (with |χ(i)〉si , |Λ(i)〉si , |Λ(i)1〉si ) providing the nilpotency of total BRST operator
Qtot ≡ ∑i Q(i) when evaluated on the vertex due to the Equations (13) and {Q(i), Q(j)} = 0
for i 6= j.

A local dependence on space-time coordinates in the vertices
∣∣V(3)〉,

∣∣Ṽ(3)〉,
∣∣V̂(3)〉

means ∣∣V(3)〉(m)3
(s)3

=
3

∏
i=2

δ(d)
(
x1 − xi

)
V(3)|(m)3

(s)3

3

∏
j=1

η
(j)
0 |0〉, |0〉 ≡ ⊗

3
e=1|0〉e (28)

(for (ε, gh)V(3)|(m)3
(s)3

= (0, 0)). We have the conservation law: ∑3
i=1 p(i)µ = 0, for the momenta

associated with all vertices. Again as for the massless case [33], the deformed gauge
transformations still form the closed algebra, that means after the simple calculations
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[
δΛ1
[1] , δΛ2

[1]

]
|χ(i)〉 = −gδΛ3

[1] |χ
(i)〉, (29)∣∣Λ3〉 ∼

∫ 2

∏
e=1

dη
(i+e)
0

(
〈Λ(i+1)

2 K
∣∣〈Λ(i+2)

1

∣∣K +
(
i + 1↔ i + 2

))
−
(
Λ1 ↔ Λ2

)}∣∣V(3)〉

with the Grassmann-odd gauge parameter Λ3 being a function of the parameters Λ1, Λ2,
Λ3 = Λ3(Λ1, Λ2).

The Equations (27) (for coinciding vertices V(3) = Ṽ(3) = V̂(3)) together with the
form of the commutator of the gauge transformations (29) determine the cubic interacting
vertices for irreducible massive and massless totally symmetric higher spin fields.

4. Solution for Cubic Vertices

In this section, we will construct the general solution for the cubic vertices in the
following cases for interacting higher spin fields: with one massive and two massless; with
two massive and one massless of spins s1, s2, s3 according to [18,31]: we introduce fourth
order polynomial D ≡ D(m1, m2, m3) and quantity Pεm ≡ P(m1, m2, m3):

D = (m1 + m2 + m3)(m1 −m2 + m3)(m1 + m2 −m3)(m1 −m2 −m3), (30)

Pεm = ε1m1 + ε2m2 + ε3m3, ε2
i = 1, i = 1, 2, 3. (31)

With the help of these quantities, we have the classification

m1 = m2 = 0, m3 6= 0 ⇒ D(0, 0, m3) > 0, (32)

m1 = 0, m2 = m3 = m 6= 0 ⇒ D(0, m, m) = 0, Pεm = 0 (33)

m1 = 0, m2 6= 0, m3 6= 0, m3 6= m2 ⇒ D(0, m2, m3) > 0, (34)

m1 6= 0, m2 6= 0, m3 6= 0 ⇒ D(m1, m2, m3) > 0, (35)

m1 6= 0, m2 6= 0, m3 6= 0, ⇒ D(m1, m2, m3) < 0, (36)

m1 6= 0, m2 6= 0, m3 6= 0, ⇒ D(m1, m2, m3) = 0, Pεm = 0. (37)

Cases (33)–(37) correspond to critical masses described in [31,55], respectively, for
d = 4 and d = 3, on a base of use the conservation law for the momenta associated
with vertices

3

∑
i=1

p(i)µ = 0. (38)

and the process of decay of the massive particle (i = 1) into the two massive particles
(i = 2, 3) in the rest frame of the first particle

p(1)µ = (m1, 0). p(i)µ = (Ei, (−1)ip) with Ei =
√

m2
i + p2, (39)

from which it follows the well-known restrictions on masses and (d− 1)-space momentum p

m1 > (=)m2 + m3, for p 6= (=)0, p2 = D/(4m2
1). (40)

Note, the case of equal masses m1 = m2 = m3 corresponds to (36) with D(m, m, m) =
−3m4

1, whereas the case of mi = mi+1 6= m3 may satisfy to any from the relations (35)–(37).
The latter cases related to real (D > 0), virtual (D < 0) processes, and real process
(D = 0) with vanishing transfer of momentum (Note, for the case (37) when εi = 1:
Pεm = m1 + m2 + m3 = 0, a consistent Lagrangian theory with reducible massive higher
spin fields in d = 3 flat space-time was derived in [56] in the light-cone approach).



Symmetry 2023, 15, 2124 8 of 40

4.1. Cubic Vertices for Two Massless Fields and One Massive Field

For the case (32) with D > 0 we look for a general solution of the Equations (27) in the
form of products of specific operators, homogenous in oscillators. As suggested in [18] two
ways of vertex derivation known from the light-cone approach [32] as Minimal derivative
scheme and Massive field strength scheme (however, due to the uniqueness of the interaction
vertex with given order k of derivatives, we expect the vertex obtained by one scheme
should differ from the vertex obtained by another scheme on BRST-exact terms) we will
consider the first one.

With the use of the notations

p̂(i)µ = p(i+1)
µ − p(i+2)

µ , P̂ (i)
0 = P (i+1)

0 −P (i+2)
0 , a(3)+µ = a(3)+µ −

p(3)µ

m3
d(3)+ (41)

the massive field strength scheme corresponds to the set of monomials given on the
constrained Fock spaceHtot|c

L(i) = p̂(i)µ a(i)µ+ − ıP̂ (i)
0 η

(i)+
1 , i = 1, 2; L(3) = p̂(3)µ a(3)µ+, (42)

L(12)+
11 = a(1)µ+a(2)+µ +

1
2m2

3
L(1)L(2) − 1

2
P (1)+

1 η
(2)+
1 − 1

2
P (2)+

1 η
(1)+
1 (43)

L(i3)+
11 = a(i)µ+a(3)+µ + (−1)i 1

m2
3

L(i)p(i)µ a(3)µ+, i = 1, 2. (44)

In turn, the minimal derivative scheme contains the monomials

L(i) = p̂(i)µ a(i)µ+ − ıP̂ (i)
0 η

(i)+
1 , i = 1, 2, 3; (45)

L(12)+
11 = a(1)µ+a(2)+µ +

1
2m2

3
L(1)L(2) − 1

2
P (1)+

1 η
(2)+
1 − 1

2
P (2)+

1 η
(1)+
1 ; (46)

L(23)+
11 = a(2)µ+a(3)+µ − 1

2m2
3

L(2)L(3) +
1

2m3
L(2)d(3)+ − 1

2
P (2)+

1 η
(3)+
1 − 1

2
P (3)+

1 η
(2)+
1 ; (47)

L(31)+
11 = a(3)µ+a(1)+µ − 1

2m2
3

L(3)L(1) − 1
2m3

d(3)+L(1) − 1
2
P (1)+

1 η
(3)+
1 − 1

2
P (3)+

1 η
(1)+
1 ; (48)

Z = L(12)+
11 L(3) + L(23)+

11 L(1) + L(31)+
11 L(2). (49)

The operators above do not introduce the divergences into the vertices, are Grassmann-
even with vanishing ghost number and have the distributions in powers of creation oscilla-
tors A(i)+ and momenta

L(i) L(12)+
11 L(23)+

11 L(31)+
11 L̂(i)+

11 Z
degA(j)+ δij (1, 1, 0) (0, 1, 1) (1, 0, 1) 2δij (1, 1, 1)

degp 1 ≤ 2 ≤ 2 ≤ 2 0 ≤ 3

Note, first, that for massless case the latter row (degp) for massless analogs of operators

is filled as:
(
1, 0, 0, 0, 0, 1

)
. Second, the operators (42) L(i) for i = 1, 2 are not BRST-closed

with respect to the constrained BRST operator Qtot
c ≡ Qtot|

η
(+)i
11 =0

as compared to L(3),

Qtot
c L(3)|0〉 = 0. Namely, we have:

Qtot
c L(i)|0〉 = (−1)im2

3η
(i)+
1 |0〉 6= 0, i = 1, 2. (50)

and, therefore, the operator Z (49) is not Qtot
c - BRST-closed
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Qtot
c Z|0〉 6= 0⇒ QtotZ|0〉 6= 0 (51)

In turn, the operators L(ii+1)+
11 , L̂(i)+

11 are Qtot
c - BRST-closed, but not Qtot- BRST-closed

due to

L̂(i)
11 L(ij)+

11 |0〉 = 0, i, j = 1, 2, 3 (52)

L̂(i)
11 (L(ij)+

11 )2|0〉 6= 0 (53)

Then, following [33] we have the respective trace operators (massless for i = 1, 2 and
massive i = 3)

U(si)
ji

(
η
(i)+
11 ,P (i)+

11
)

:= (L̂(i)+
11 )(ji−2){(L̂+(i)

11 )2 − ji(ji − 1)η(i)+
11 P

(i)+
11

}
, i = 1, 2, 3. (54)

Indeed, the Qtot- BRST closeness for the operator L(3) is reduced to the fulfillment of
the equations at the terms linear in η

(3)+
11

L̂(i)
11 (L(i+j))k|0〉 ≡ 0, j = 1, 2, ∀k ∈ N , (55)

L̂(i)
11 L(i)|0〉 =

(
− p̂(i)µ a(i)µ + ıP̂ (i)

0 η
(i)
1 + L(i) L̂(i)

11

)
|0〉 = 0, (56)

L̂(i)
11 (L(i))2|0〉 = ηµν p̂(i)µ p̂(i)ν |0〉 = ( p̂(i))2|0〉 6= 0, i = 1, 2, 3. (57)

The last relations and ones for (L(3))k do not vanish under the sign of inner products
and justify the introduction of the BRST-closed forms, first for k ≤ 5

L(3)1 = L(3) − [L̂(3)
11 , L(3)} b(3)+

h(3)
, L(3)2 = (L(3))2 − ( p̂(3))2 b(3)+

h(3)
, (58)

L(3)3 = L(i)
(
(L(3))2 − 3( p̂(3))2 b(3)+

h(3)

)
, (59)

L3)
4 = (L(3))2

(
(L(3))2 − 6( p̂(3))2 b(3)+

h(3)

)
+ 3( p̂(3))4 (b(3)+)2

h(3)(h(3) + 1)
, (60)

L(3)5 = (L(3))3
(
(L(3))2 − 10( p̂(3))2 b(3)+

h(3)

)
+

3 · 10
2

L(3)( p̂(3))4 (b(3)+)2

h(3)(h(3) + 1)
, (61)

then, by induction for arbitrary k ∈ N

L(3)k =
[k/2]

∑
j=0

(−1)j(L(3))k−2j( p̂(3))2j k!
j!2j(k− 2j))!

(b(3)+)j

C(j, h(3)(s))
. (62)

(the equivalent polynomial representation for BRST-closed operator L(3)k is also found, see

Section 4.1). For the same reason, any power of the forms L(ii+1)+
11 , (hence (L(ii+1)+

11 )k, k > 1)
are not BRST-closed as well due to Equations (65),

η
(i)+
11 L̂(i)

11 (L(i+1i+2)+
11 )k|0〉 ≡ 0, ∀k ∈ N , (63)

∑
i

η
(i)+
11 L̂(i)

11 L(12)+
11 |0〉 = ∑

i
η
(i)+
11

(
− a(2)µ+a(i)µ +

1
2m2

3

(
− p̂(i)a(i)µ − ıP̂ (i)

0 η
(i)
1
)

L(2) (64)
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− 1
2
P (2)+

1 η
(i)
1 −

1
2

η
(2)+
1 P (i)

1

)
|0〉 = 0,

∑
i

η
(i)+
11 L̂(i)

11 (L(12)+
11 )2|0〉 = ∑

i
η
(i)+
11 [[L̂(i)

11 , L(12)+
11 }, L(12)+

11 }|0〉 6= 0, (65)

2

∑
i=1

η
(i)+
11 [[L̂(i)

11 , L(12)+
11 }, L(12)+

11 } =
[
η
(1)+
11

(
a(2)µ+a(2)+µ +

1
2m2

3

(
p̂(1)a(2)+µ +

ı
2
P̂ (1)

0 η
(2)+
1

)
L(2)

+
1
2
P (2)+

1 η
(2)+
1

)
+ η

(2)+
11

(
a(1)µ+a(1)+µ +

1
2m2

3

(
p̂(2)a(1)+µ +

ı
2
P̂ (2)

0 η
(1)+
1

)
L(1) +

1
2
P (1)+

1 η
(1)+
1

)]
,

To compensate for this term in L(12)+
11 we add the modified summand for it and find

BRST-closed completion in the form

L(12)+
11|1 = L(12)+

11 −∑
i0

W(i0)
(12)|0

b(i0)+

h(i0)
+

1
2

(
∑

i0 6=j0

[L̂(j0)
11 , W(i0)

(12)|0}
b(i0)+

h(i0)
b(j0)+

h(j0)
(66)

+∑
i0

[L̂(i0)
11 , W(i0)

(12)|0}
(b(i0)+)2

h(i0)(h(i0) + 1)

)
,

for (L(12)+
11 )2

L(12)+
11|2 = L(12)+

11 L(12)+
11|1 −∑

i1

W(i1)
(12)|1

b(i1)+

h(i1)
+

1
2

(
∑

i1 6=j1

[L̂(j1)
11 , W(i1)

(12)|1}
b(i1)+

h(i1)
b(j1)+

h(j1)
(67)

+∑
i1

[L̂(i1)
11 , W(i1)

(12)|1}
(b(i1)+)2

h(i1)(h(i1) + 1)

)
− 1

6

(
3 ∑

i1 6=j0

[L̂(j1)
11 , [L̂(i1)

11 , W(i1)
(12)|1}} ×

× b(j1)+

h(j1)
(b(i1)+)2

h(i1)(h(i1) + 1)
+ ∑

i1

[L̂(i1)
11 , [L̂(i1)

11 , W(i1)
(12)|2}}

(b(i1)+)3

C(3, h(i1)(s))

)
, ,

then for (L(12)+
11 )3

L(12)+
11|3 = L(12)+

11 L(12)+
11|2 −∑

i2

W(i2)
(12)|2

b(i2)+

h(i2)
+

1
2

(
∑

i2 6=j1

[L̂(j2)
11 , W(i2)

(12)|2}
b(i2)+

h(i2)
b(j2)+

h(j2)
(68)

+∑
i2

[L̂(i2)
11 , W(i2)

(12)|2}
(b(i2)+)2

h(i2)(h(i2) + 1)

)
− 1

6

(
3 ∑

i2 6=j2

[L̂(j2)
11 , [L̂(i2)

11 , W(i2)
(12)|2}}

× b(j2)+

h(j2)
(b(i2)+)2

h(i2)(h(i2) + 1)
+ ∑

i2

[L̂(i2)
11 , [L̂(i2)

11 , W(i2)
(12)|2}}

(b(i2)+)3

∏2
p=0(h(i2) + p)

)
+

1
4!

(
4 ∑

i2 6=j2

ad
L̂(j2)

11
ad2

L̂(i2)
11

W(i2)
(12)|2

b(j2)+

h(j2)
(b(i2)+)3

C(3, h(i2))
+ 3 ∑

i2 6=j2

ad2
L̂(j2)

11

ad
L̂(i2)

11
W(i2)

(12)|2

× (b(j2)+)2

C(2, hj2))

(b(i2)+)2

C(2, h(i2))
+ ∑

i2

ad3
L̂(i2)

11

W(i2)
(12)|2

(b(i2)+)4

C(4, h(i2))

)
,

and by induction for (L(12)+
11 )k+1 at k = 1, . . . , min(s1, s2)− 1:

L(12)+
11|k+1 = L(12)+

11 L(12)+
11|k −∑

ik

W(ik)
(12)|k

b(ik)+

h(ik)
+

1
2

(
∑

ik 6=jk

[L̂(jk)
11 , W(ik)

(12)|k}
b(ik)+

h(jk)
b(jk)+

h(jk)
(69)

+∑
ik

[L̂(ik)
11 , W(ik)

(12)|k}
(b(ik)+)2

∏1
p=0(h(ik) + p)

)
+

k+2

∑
e=3

(−1)e

e!

[e/2]

∑
l=0, j 6=i

e!
[e/(e− l)](e− l)!l!

×

×adl
L̂
(jk )
11

ade−l−1

L̂
(ik )
11

W(ik)
(12)|k

(b(jk)+)l

C(l, h(jk))

(b(ik)+)e−l

C(e− l, h(ik))
.
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In (66)–(69) the indices i0, . . . , ik are running two values: 1, 2; and we have used the
notations

[L̂(i0)
11 , L(12)+

11 } ≡ W(i0)
(12)|0 , [L̂(ik)

11 , L(12)+
11 L(12)+

11|k } ≡ W(ik)
(12)|k , k = 1, 2, . . . , (70)

adl+1

L̂
(jk)
11

B ≡
[
L̂(jk)

11 ,

l times︷ ︸︸ ︷[
L̂(jk)

11 , . . . ,
[
L̂(jk)

11 , B
}} }

.

By construction the calligraphic operators are traceless

[L̂(i)
11 , L(12)+

11|k+1} = 0, k = 0, 1, . . . , min(s1, s2)− 1, (71)

because of the last terms in (66)–(69) in front of the maximal power in b(i)+, i.e., [L̂(j0)
11 ,W(i0)

(12)|0},

. . . , adl
L̂
(jk)
11

adk−l+1

L̂
(ik)
11

W(ik)
(12)|k depend on only a(i)µ , d(i), η/(i)

1 ,P (i)
1 (annihilation) oscillators, and

therefore, the compensation procedure is finalized.
In deriving (66)–(69) we have used the permutation properties

[L̂(i3)
11 , W(j3)

(12)|k} = [L̂(j3)
11 , W(i3)

(12)|k} , (72)

[L̂(i3)
11 , [L̂(j3)

11 , W(i3)
(12)|k}} = [L̂(j3)

11 , [L̂(i3)
11 , W(i3)

(12)|k}} = [L̂(i3)
11 , [L̂(i3)

11 , W(j3)
(12)|k}} , (73)

adp

L̂
(ik−1)
11

adl
L̂
(jk−1)
11

ade
L̂
(ik−1)
11

W(ik−1)
(12)|k = adl

L̂
(jk−1)
11

ade+p

L̂
(ik−1)
11

W(ik−1)
(12)|k , (74)

which follow from the Jacobi identity, first, for triple L̂(i3)
11 , L̂(j3)

11 , W(i3)
(12)|k, second, of its

repeated application for L̂(i3)
11 , L̂(j3)

11 , adp

L̂
(ik−1)
11

W(ik−1)
(12)|k with account for commuting of two first

trace operators, e.g.,

ad
L̂
(ik−1)
11

ad
L̂
(jk−1)
11

ade
L̂
(ik−1)
11

W(ik−1)
(12)|k = ad

L̂
(jk−1)
11

ade+1

L̂
(ik−1)
11

W(ik−1)
(12)|k . (75)

Thus, all calligraphic operators L(12)+
11|k+1 are BRST-closed.

Analogously, we have the same BRST-closed completions for L(23)+
11|1 and L(31)+

11|1 , and re-

spective BRST-closed forms L(23)+
11|k+1, L(31)+

11|k+1 to be uniquely written as follows, for i = 2, 3:

L(ii+1)+
11|1 = L(ii+1)+

11 −
3

∑
i0=2

W(i0)
(ii+1)|0

b(i0)+

h(i0)
+

1
2

(
∑

i0 6=j0

[L̂(j0)
11 , W(i0)

(ii+1)|0}
b(i0)+

h(i0)
b(j0)+

h(j0)
(76)

+∑
i0

[L̂(i0)
11 , W(i0)

(ii+1)|0}
(b(i0)+)2

h(i0)(h(i0) + 1)

)
,

L(ii+1)+
11|k+1 = L(ii+1)+

11 L(ii+1)+
11|k −∑

ik

W(ik)
(ii+1)|k

b(ik)+

h(ik)
+

1
2

(
∑

ik 6=jk

[L̂(jk)
11 , W(ik)

(ii+1)|k} (77)

× b(ik)+

h(jk)
b(jk)+

h(jk)
+ ∑

ik

[L̂(ik)
11 , W(ik)

(ii+1)|k}
(b(ik)+)2

∏1
p=0(h(ik) + p)

)
+

k+2

∑
e=3

(−1)e

e!
×

×
[e/2]

∑
l=0, j 6=i

e!
[e/(e− l)](e− l)!l!

adl
L̂
(jk)
11

ade−l−1

L̂
(ik)
11

W(ik)
(ii+1)|k

(b(jk)+)l

C(l, h(jk))

(b(ik)+)e−l

C(e− l, h(ik))

(for .k = 1, . . . , min(si, si+1)− 1). Note, in the expressions for BRST-closed forms L(23)+
11|k ,

L(31)+
11|k indices i0, j0, . . . , ik−1, jk−1 are ranging, respectively, from {2, 3} and {3, 1}.
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As a result, the solution for the parity invariant vertex (given by Figure 1), has the form

|V(3)〉(0,0,m)
(λ1 ,λ2 ,s3)

≡

(
m, s3

)
(
0, λ1

)

(
0, λ2

)

+ . . . . . .

Figure 1. Interaction vertex |V(3)〉m
(s)3

for the massive field φ
(3)
µ(s3)

of spin s3 and two massless fields

φ
(i)
µ(λi)

of helicities λi for i = 1, 2. The terms in ” . . . ” correspond to the auxiliary fields from |Φ(i)〉si ,

|Φ(3)〉s3 .

|V(3)〉m(s)3
= |VM(3)〉m(s)3

+
([s1/2],[s2/2],[s3/2])

∑
(j1,j2,j3)>0

U(s1)
j3

U(s2)
j3

U(s3)
j3
|VM(3)〉m(s)3−2(j)3

, (78)

where the vertex
∣∣VM(3)〉m

(s)3−2(j)3
was defined in Metsaev’s paper [18] with account for (28)

but with modified forms L(3)k , (62) and L(ii+1)+
11|σ(i+2) instead of

(
L(ii+1)+

11
)σ(i+2)

(46)–(48)

VM(3)|m
(s)3−2(j)3

= ∑
k
L(3)k

3

∏
i=1
L(ii+1)+

11|σi+2
, (s, J) = ∑

i

(
si, ji

)
, (79)

and is (3 + 1)-parameters family to be enumerated by the natural parameters (j)3, and k
subject to the relations

σi =
1
2
(s− 2J − k)− si, i = 1, 2; σ3 =

1
2
(s + k)− s3, (80)

max
(
0, (s3 − 2j3)−

2

∑
i=1

(si − 2ji)
)
≤ k ≤ s3 − 2j3 −

∣∣s1 − 2j1 − (s2 − 2j2)
∣∣, (81)

0 ≤ 2ji ≤ 2[si/2], s− 2J − k = 2p, p ∈ N0. (82)

Note, that the vertex in the unconstrained formulation depends on 3 additional param-
eters (j)3 enumerated the number of traces in the respective set of fields and usual one k
respecting the minimal order of derivatives in VM(3)|m

(s)3−2(j)3
. For vanishing (j)3, the remaining

parameters correspond to one in the constrained BRST formulation [18].

Trace-Deformed Vertex Generalization

The standard trace restriction L̂(i)
11 |χ(i)〉 = L̂(i)

11 |Λ(i)〉 = 0 imposed off-shell in con-
strained BRST approach may be deformed (in the scheme with complete BRST operator)
on the interacting level when deriving from resolution of deformed equations of motion
and gauge transformations by following Qtot-closed modification of the L(3)k as compared
to (58)–(62)

L(3)1 = L(3) − [L̂(3)
11 , L(3)} b(3)+

h(3)
, (83)

L̃(3)2 = (L(3))2 − iP̂ (3)
0 η

(3)+
11 − l̂(3)0

b(3)+

h(3)
, (84)

L̃(3)2k = (L̃(3)2 )k, L̃(3)2k−1 = (L̃(3)2 )k−1L(3)1 , (85)
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Note, the representation (83)–(85) contains the term linear in η
(3)+
11 without P (3)+

11 .
Thus, the other (more general) solution for the vertex |V(3)〉m

(s)3
(78) is obtained after the

substitution of new L̃(3)k instead of old ones L(3)k . It is used in Section 5.1.2 for the example
with the vertex |V(3)〉m

(1,0,s) of interacting massive field of spin s with massless scalar and
vector fields.

4.2. Cubic Vertices for One Massless Field and Two Massive Fields

In this section, we consider the cases of coinciding and different masses for mas-
sive fields

4.2.1. One Massless and Two Massive Fields with Coinciding Masses

In the case (33) with D = 0, Pεm = 0 of massive fields of the same masses m2 =
m3 = m 6= 0 (critical case) there are the following Qtot

c BRST-closed operators (in minimal
derivative scheme)

Ľ(i) = p̂(i)µ a(i)µ+ + (−1)imd(i)+θi,1 − ıP̂ (i)
0 η

(i)+
1 , i = 1, 2, 3 (86)

L(23)+
11 = a(2)µ+a(3)+µ +

1
2m

(d(2)+L(3) − d(3)+L(2)) + d(2)+d(3)+ (87)

− 1
2
P (2)+

1 η
(3)+
1 − 1

2
P (3)+

1 η
(2)+
1 ,

Z = L̃(12)+
11 Ľ(3) + cycl.perm.(1, 2, 3). (88)

L̃(23)+
11 = L(23)+

11 − 1
2m

(d2)+ Ľ(3))− d3)+ Ľ(2)) (89)

L̃(ii+1)+
11 = a(i)µ+a(i+1)+

µ − 1
2
P (i)+

1 η
(i+1)+
1 − 1

2
P (i+1)+

1 η
(i)+
1 , i = 1, 3. (90)

The trace operators L̂(i)+
11 , L̂(i)

11 look for massless field

(
L̂(1)+

11 , L̂(1)
11

)
=
(

l(1)+11 + b(1)+ + P (1)+
1 η

(1)+
1 , l(1)11 + (b(1)+b(1) + h(1))b(1) + η

(1)
1 P

(1)
1

)
(91)

and according to (6) and (7) for massive case when i = 2, 3

L̂(i)+
11 = l(i)+11 − (1/2)(d(i)+)2 + b(i)+ + P (i)+

1 η
(i)+
1 , (92)

L̂(i)
11 = l(i)11 − (1/2)(d(i))2 + (b(i)+b(i) + h(i))b(i) + η

(i)
1 P

(i)
1 . (93)

The general solution for the parity invariant cubic vertex describing interaction for
irreducible massless field with helicity s1 and two massive with spins s2, s3 with the same
masses (m̄)2 = (0, m, m) is shown in Figure 2, and has the form

|V(3)〉(0,m,m)
(λ1 ,s2 ,s3)

≡

(
0, λ1

)
(
m, s2

)

(
m, s3

)
+ . . . . . .

Figure 2. Interaction vertex |V(3)〉(m̄)2

(s)3
for two massive fields φ

(i)
µ(si)

with coinciding masses m2 =

m3 = m of spins si for i = 1, 2 and massless field φ
(1)
µ(λ1)

of helicity λ1. The terms in ” . . . ” correspond

to the auxiliary fields from |Φ(1)〉s1 , |Φ(i)〉si .
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|V(3)〉(m̄)2
(s)3

= |VM(3)〉(m̄)2
(s)3

+
([s1/2],[s2/2],[s3/2])

∑
(j3,j3,j3)>0

U(s1)
j3

U(s2)
j3

U(s3)
j3
|VM(3)〉(m̄)2

(s)3−2(j)3
, (94)

where the vertex
∣∣VM(3)〉(m̄)2

(s)3−2(j)3
was defined in Metsaev’s paper [18] for (j)3 = 0 with

account for (86)–(90) but with modified forms Ľ(i)ki
,

Ľ(i)ki
=

[ki/2]

∑
j=0

(−1)j(Ľ(i))ki−2j( p̂(i))2j ki !
j!2j(ki − 2j))!

(b(i)+)j

C(j, h(i))
, (95)

for ( p̂(i))2 = ηµν(p(i+1)
µ − p(i+2)

µ )(p(i+1)
ν − p(i+2)

ν )− (−1)im2θi,1, i = 1, 2, 3.

and forms L(ii+1)+
11|σ(i+2)

instead of polynomials
(

L(ii+1)+
11

)σ(i+2) given in (89), (90) for i = 1, 2, 3:

L(ii+1)+
11|1 = L(ii+1)+

11 −
i+1

∑
i0=i

W(i0)
(ii+1)|0

b(i0)+

h(i0)
+

1
2

(
∑

i0 6=j0

[L̂(j0)
11 , W(i0)

(ii+1)|0}
b(i0)+

h(i0)
b(j0)+

h(j0)
(96)

+∑
i0

[L̂(i0)
11 , W(i0)

(ii+1)|0}
(b(i0)+)2

h(i0)(h(i0) + 1)

)
,

L(ii+1)+
11|k+1 = L(ii+1)+

11 L(ii+1)+
11|k −

i+1

∑
ik=i

W(ik)
(ii+1)|k

b(ik)+

h(ik)
+

1
2

(
∑

ik 6=jk

[L̂(jk)
11 , W(ik)

(ii+1)|k} (97)

× b(ik)+

h(jk)
b(jk)+

h(jk)
+ ∑

ik

[L̂(ik)
11 , W(ik)

(ii+1)|k}
(b(ik)+)2

∏1
p=0(h(ik) + p)

)
+

k+2

∑
e=3

(−1)e

e!
×

×
[e/2]

∑
l=0, j 6=i

e!
[e/(e− l)](e− l)!l!

adl
L̂
(jk )
11

ade−l−1

L̂
(ik )
11

W(ik)
(ii+1)|k

(b(jk)+)l

C(l, h(jk))

(b(ik)+)e−l

C(e− l, h(ik))
.

(for k = 1, . . . , min(si, si+1) − 1) and with Qtot- BRST-closed polynomials Zλ, for λ =

1, 2, . . . , min(s1, s2, s3) constructed from BRST-closed forms L̃(ii+1)+
11|1 according to (96), sub-

ject to change of L(ii+1)+
11|1 on one with tilde and L̃(i)1 :

Z = L̃(12)+
11|1 Ľ

(3)
1 + cycl.perm.(1, 2, 3). with L̃(i)1 = Ľ(i) − [L̂(i)

11 , Ľ(i)} b(3)+

h(3)
. (98)

Explicitly, the vertex VM(3)|(m̄)2
(s)3−2(j)3

is determined by

VM(3)|(m̄)2
(s)3−2(j)3

= ∑
σ,λ
L(23)+

11|σ Z
λ

3

∏
i=1
Ľ(i)ki

, for 0 ≤ k1 ≤ s1 − 2j1 (99)

and is (3+ 2)-parameter family to be enumerated by the natural parameters (corresponding
for traces) (j)3, and kmin, kmax (corresponding for order of derivatives) subject to the
equations

k1 = kmin, k2 = kmax − kmin − (s3 − 2j3), k3 = kmax − kmin − (s3 − 2j3), (100)

σ = s− 2(s1 − 2j1)− kmax + 2kmin, λ = s1 − 2j1 − kmin, (101)[
max(s2 − 2j2, s3 − 2j3)

]
≤ kmax − kmin ≤

[
s− 2(s1 − 2j1) + kmin

]
..

The representation for the vertex (94) and (99) for irreducible massless and massive
fields with the same masses presents the basic results of this subsection. For vanishing (j)3
remaining parameters correspond to ones in constrained BRST formulation [18].
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4.2.2. One Massless Field and Two Massive Fields with Different Masses

For the case (34) with D > 0 with different non-vanishing masses m3 6= m2 we start
from Qtot

c BRST-closed operators, with except for L(1) (in minimal derivative scheme)

L(i) = p̂(i)µ a(i)µ+ + (−1)i δi2m2
3 + δi3m2

2
mi

d(i)+ − ıP̂ (i)
0 η

(i)+
1 , i = 1, 2, 3; (102)

L(23)+
11 = a(2)µ+a(3)+µ +

d(2)+

2m2
L(3) − d(3)+

2m3
L(2) +

m2
2 + m2

3
2m2m3

d(2)+d(3)+

− 1
2
P (2)+

1 η
(3)+
1 − 1

2
P (3)+

1 η
(2)+
1 , (103)

L(12)+
11 = a(1)µ+a(2)+µ −

( d(2)+

2m2
+

L(2)

2(m2
3 −m2

2)

)
L(1)− 1

2
P (1)+

1 η
(2)+
1 − 1

2
P (2)+

1 η
(1)+
1 , (104)

L(31)+
11 = a(3)µ+a(1)+µ +

( d(3)+

2m3
+

L(3)

2(m2
3 −m2

2)

)
L(1)− 1

2
P (3)+

1 η
(1)+
1 − 1

2
P (1)+

1 η
(3)+
1 , (105)

The general solution for the parity invariant cubic vertex describing interaction for
irreducible massless field with helicity s1 and two massives with spins s2, s3 with different
masses is shown by Figure 3 and has the representation in terms of the product of BRST-
closed (with respective complete BRST operator Qtot in question) forms

|V(3)〉(m)2
(s)3

= |VM(3)〉(m)2
(s)3

+
([s1/2],[s2/2],[s3/2])

∑
(j3,j3,j3)>0

U(s1)
j3

U(s2)
j3

U(s3)
j3
|VM(3)〉(m)2

(s)3−2(j)3
, (106)

where the vertex
∣∣VM(3)〉(m)2

(s)3−2(j)3
was given in [18] with account for (102)–(105) but with

modified forms L(i)ki
, (108) and L(jj+1)+

11|σ(j+2)
(110), (77) instead of

(
L(jj+1)+

11
)σ(j+2)

VM(3)|(m)2
(s)3−2(j)3

= ∑
τ2,τ3

3

∏
i=2
L(i)τi

3

∏
r=1
L(rr+1)+

11|σr+2
, (107)

were the ranges for τ2, τ3, σ1, σ2, σ3 are specified below. Here,

L(i)ki
=

[ki/2]

∑
j=0

(−1)j(L(i))ki−2j( p̂(i))2j ki !
j!2j(ki − 2j))!

(b(i)+)j

C(j, h(i))
, (108)

for ( p̂(i))2 = ηµν(p(i+1)
µ − p(i+2)

µ )(p(i+1)
ν − p(i+2)

ν )−
(δi2m2

3 + δi3m2
2)

2

m2
i

, i = 2, 3. (109)

and for mixed trace operators, when i = 1, 2, 3

L(ii+1)+
11|1 = L(ii+1)+

11 −
i+1

∑
i0=i

W(i0)
(ii+1)|0

b(i0)+

h(i0)
+

1
2

(
∑

i0 6=j0

[L̂(j0)
11 , W(i0)

(ii+1)|0}
b(i0)+

h(i0)
b(j0)+

h(j0)
(110)

+∑
i0

[L̂(i0)
11 , W(i0)

(ii+1)|0}
(b(i0)+)2

h(i0)(h(i0) + 1)

)
,

L(ii+1)+
11|k+1 = L(ii+1)+

11 L(ii+1)+
11|k −

i+1

∑
ik=i

W(ik)
(ii+1)|k

b(ik)+

h(ik)
+

1
2

(
∑

ik 6=jk

[L̂(jk)
11 , W(ik)

(ii+1)|k} (111)

× b(ik)+

h(jk)
b(jk)+

h(jk)
+ ∑

ik

[L̂(ik)
11 , W(ik)

(ii+1)|k}
(b(ik)+)2

∏1
p=0(h(ik) + p)

)
+

k+2

∑
e=3

(−1)e

e!
×

×
[e/2]

∑
l=0, j 6=i

e!
[e/(e− l)](e− l)!l!

adl
L̂
(jk )
11

ade−l−1

L̂
(ik )
11

W(ik)
(ii+1)|k

(b(jk)+)l

C(l, h(jk))

(b(ik)+)e−l

C(e− l, h(ik))
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(for k = 1, . . . , min(si, si+1)− 1). The vertex (107) represents the (3 + 2)-parameter family
to be enumerated by the natural parameters (j)3, and τ2, τ3 subject to the equations

σi =
1
2
[s− 2J − 2(si − 2ji)− (−1)δi1 τ2 − (−1)δi2 τ3], i = 1, 2, 3; (112)

∣∣ 3

∑
i=2

(−1)i(si − 2ji − τi)
∣∣ ≤ s1 − 2j1 ≤

3

∑
i=2

(si − 2ji − τi), (113)

s− 2J − τ2 − τ3 = 2p, p ∈ N0. (114)

|V(3)〉(0,m2 ,m3)
(λ1 ,s2 ,s3)

≡

(
0, λ1

)
(
m2, s2

)

(
m3, s3

)
+ . . . . . .

Figure 3. Interaction vertex |V(3)〉(m̄)2

(s)3
for two massive fields φ

(i)
µ(si)

with different masses mi of spins

si for i = 1, 2 and massless field φ
(1)
µ(λ1)

of helicity λ1. The terms in ” . . . ” correspond to the auxiliary

fields from |Φ(1)〉s1 , |Φ(i)〉si .

The relations for the vertex (106) and (107) for irreducible massless and massive fields
with different masses present our basic results in the subsection. Again, for vanishing (j)3
the remaining parameters correspond to the ones in the constrained BRST formulation [18].

5. Examples for HS Fields with Special Spin Values

Here, we consider ghost-independent and component (tensor) forms of the cubic
vertices for special cases of interacting higher spin fields.

5.1. Vertices for Fields with (m, s), (0, λ1), (0, λ2)

In the subsection, we derive the cubic vertices VM(3)|m
(s)3

for one massive HS field
with (m, s) and two massless HS fields with (0, λ1), (0, λ2) with small values of two
spin parameters.

5.1.1. Case (m, s), (0, λi) for λi = 0

First, for the interaction of 2 massless scalars with a massive HS field we have, ac-
cording to (78) and (79), the j-parameter family of vertices for j = 1, . . . , [s/2] restoring
the dimensional coupling constants tj (dim tj=s + d/2− 3− 2j, in metric units providing a
dimensionless of the action)

V(3)|m
(0,0,s) =

[s/2]

∑
j≥0

tjU
(s)
j L

(3)
s−2j =

[s/2]

∑
j≥0

tjU
(s)
j

[(s−2j)/2]

∑
i=0

(−1)i(L(3))s−2j−2i × (115)

×( p̂(3))2i (s− 2j)!
i!2i(s− 2j− 2i)!

(b(3)+)i

C(i, h(3))
,

with following decomposition in powers of η
(3)+
1 for the operators
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(L(3))k = (L(3))k
0 − ıkP̂ (3)

0 η
(3)+
1 (L(3))k−1

0 ≡
(

p̂(3)µ a(i)µ+
)k−1

(
p̂(3)µ a(3)µ+ − ıkP̂ (3)

0 η
(3)+
1

)
, (116)

L(3)k = L(3)0k − ıP̂ (3)
0 η

(3)+
1

(
L(3)k−1

)′ ≡ L(3)k |η(3)+1 =0
(117)

−ıP̂ (3)
0 η

(3)+
1

[k/2]

∑
i=0

(−1)i(L(3))k−1−2i
0 ( p̂(3))2i k!

i!2i(k− 1− 2i)!
(b(3)+)i

C(i, h(3))
.

The interacting part of the action S(m)3
[1]|(s)3

(21) for (m)3 = (0, 0, m), (s)3 = (0, 0, s)

depends only on basic R-valued fields φ(1), φ(2) φ
(3)
µ(s) and on auxiliary ones |φ(3)

µ(s−k−2l)|k,l .
for k = 0, . . . , s; l = 0, . . . , [s− k/2], (k + l > 0) according to (19):

S(m)3
1|(s)3

[φ(1), φ(2), χ(3)] = g
∫ 3

∏
i=1

dη
(i)
0

(
s〈χ(3)K(3)∣∣0〈φ(2)∣∣0〈φ(1)∣∣V(3)〉m(s)3

+ h.c.
)

, (118)

whereas the ghost-independent form for initial free action looks like

3

∑
i=1
Smi

0|si
=
∫

ddx
[ 2

∑
i=1

φ(i)�φ(i) + Sm
0|s[χ

(3)]
]
, (119)

where the functional Sm
0|s[χ

(3)] is explicitly determined in (A1), (A2) and invariant with

respect to the initial gauge transformations for the field
∣∣χ(3)〉s (A3)–(A12) and for the

gauge parameter
∣∣Λ(3)〉s (A13). The gauge symmetry is untouched under the deformation

for the interacting massive field
∣∣Φ(3)

... 〉s−..., whereas in the sector of scalar fields they admit
non-linear deformation

δ[1]

(∣∣χ(3)〉s,
∣∣Λ(3)〉s

)
= Q(3)

(∣∣Λ(3)〉s,
∣∣Λ(3)1〉s

)
, (120)

δ[1]
∣∣φ(1)〉0 = −g

∫
dη

(2)
0 dη

(3)
0 s〈Λ(3)K(3)∣∣0〈φ(2)∣∣V(3)〉m(s)3

, (121)

δ[1]
∣∣φ(2)〉0 = −g

∫
dη

(3)
0 dη

(1)
0

(
s〈Λ(3)K(3)∣∣0〈φ(1)∣∣V(3)〉m(s)3

. (122)

The values of parameters h(i)(si) are equal to h(1)(0) = h(2)(0) = −(d − 6)/2 and
h(3)(s) = −s− (d− 5)/2.

The interacting part of action S(m)3
1|(s)3

(118) is written in the ghost-independent form

S(m)3
1|(s)3

[φ(1), φ(2), χ(3)] = −g
3

∏
i=2

δ(d)
(

x1 − xi
)({

0〈φ(2)∣∣0〈φ(1)∣∣(s〈Φ(3)K(3)∣∣ (123)

×
[s/2]

∑
j≥0

tj(Ľ(3)+
11 )jL(3)0s−2j + s−2〈Φ

(3)
2 K(3)∣∣ [s/2]−1

∑
j≥0

tj(j + 1)(Ľ(3)+
11 )jL(3)0s−2(j+1)

+s−4〈Φ
(3)
32 K(3)∣∣ [s/2]−2

∑
j≥0

tj(j + 1)(j + 2)(Ľ(3)+
11 )jL(3)0s−2(j+2)

−s−6〈Φ
(3)
22 K(3)∣∣ [s/2]−3

∑
j≥0

tj(j + 1)(j + 2)(j + 3)(Ľ(3)+
11 )jL(3)0s−2(j+3)

}
|0〉+ h.c.

)
,

jointly with the gauge transformation
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δ[1]
∣∣φ(1)〉0 = −g

3

∏
i=2

δ(d)
(
x1 − xi

)
0〈φ(2)∣∣{s−1〈Ξ(3)K(3)∣∣ [s−1/2]

∑
j≥0

tj(Ľ(3)+
11 )j(L(3)s−1−2j

)′ (124)

−s−5〈Ξ(3)
12 K(3)∣∣ [s−5/2]

∑
j≥0

tj(j + 1)(j + 2)(Ľ(3)+
11 )j(L(3)s−5−2j

)′}|0〉,
δ[1]
∣∣φ(2)〉0 = −δ[1]

∣∣φ(1)〉0|(φ(1)(x1)→ φ(2)(x2)
). (125)

In deriving the action (123) we have taken the vanishing of the term P̂ (3)
0 , whereas

for the transformations (124) and (125) its necessary presence in L(3) by the rule (117).
In addition, we have used for U(s)

j the decomposition in powers of ghost oscillators,
according to (6) and (54)

U(s)
j =

(
Ľ(3)+

11
)(j−3)

[(
Ľ+(3)

11
)3

+ j
(

Ľ+(3)
11

)2P (3)+
1 η

(3)+
1 + j(j− 1)P (3)+

11 η
(3)+
11 (126)

×
[

Ľ+(3)
11 +

(
j− 2

)
P (3)+

1 η
(3)+
1

}]
.

Presenting the above expressions in the oscillator forms, first, for cubic in field action
(A23), second, for linear in field generators of the gauge transformations (A24), (A25) and
calculating the underlying scalar products by the rules (A26)–(A28) we obtain finally, for the
action (A23) with accuracy up to overall factor (−1)ss! the representation (A34)

S(m)3
1|(s)3

= S(0)
1

[
φ(a), Φ(3)

]
+ S(2)

1

[
φ(a), Φ(3)

2

]
+ S(32)

1

[
φ(a), Φ(3)

32

]
+ S(22)

1

[
φ(a), Φ(3)

22

]
, (127)

(for φ(a) = (φ(1), φ(2))) also for the gauge transformations (A24), (A25) given by (A35), (A36)

δ[1]φ
(a)(xa) = (−1)a+1(δ1|Ξ(3)φ

(a)(xa) + δ
1|Ξ(3)

12
φ(a)(xa)

)
, a = 1, 2. (128)

Let us discuss the obtained solution. The part of vertex Ŝ(m)3
1|(s)3

= S(m)3
1|(s)3
|j=0 (127)

without traces (for j = 0, and therefore, for l = k = 0) with only initial φ
(3)ν(s)
0,0 and auxiliary

φ
(3)ν(s−2i)
i,0 , i = 1, . . . , [s/2] fields reads

Ŝ(m)3
1|(s)3

= −2gt0

∫
ddx
[ [s/2]

∑
i=0

(s)!
i!

s−2i

∑
u=0

(−1)u

u!(s− 2i− u)!

i

∑
q=0

i−q

∑
t=0

Cq,t
i

(−1)t

2i−t (129)

×
[
∂ν0 . . . ∂νu

(
∂νu+1 . . . ∂νu+t�

qφ(1)
)][

∂νu+t+1 . . . ∂νs−2i+t ∂νu+1 . . . ∂νu+t�i−q−tφ(2)
]
φ
(3)ν(s−2i)
i,0

}
.

The respective gauge transformations δ̂[1]φ
(1) = δ[1]φ

(1)|j=0 from (128) depending only
on the coupling constant t0 take the form

δ̂[1]φ
(1)(x1) = −gt0

∫
ddx
{ [s−1/2]

∑
i=0

s−1−2i

∑
u=0

(s− 1)!
i!u!(s− 1− 2i− u)!

i

∑
q=0

i−q

∑
t=0

Cq,t
i

(−1)t

2i−t (130)

×Ξ(3)ν(s−1−2i)
i,0 (x)

[
∂νu+t+1 . . . ∂νs−1−2i+t

(
∂νu+1 . . . ∂νu+t�i−q−tφ(2)

)][
∂ν0 . . . ∂νu

(
�q∂νu+1 . . . ∂νu+t

)]
−

[s−5/2]

∑
i=0

s−5−2i

∑
u=0

(s− 5)!
i!u!(s− 5− 2i− u)!

i

∑
q=0

i−q

∑
t=0

Cq,t
i

(−1)t

2i−t Ξ(3)ν(s−5−2i)
12|i,0 (x)

×
[
∂νu+t+1 . . . ∂νs−5−2i+t

(
∂νu+1 . . . ∂νu+t�i−q−tφ(2)

)][
∂ν0 . . . ∂νu

(
�q∂νu+1 . . . ∂νu+t

)]}
δ(d)
(
x− x1

)
;

δ̂[1]φ
(2)(x2) = −δ̂[1]φ

(1)(x1)|[φ(1)(x1)→φ(2)(x2)]
. (131)

We stress the action (129) and gauge transformations (130) and (131) coincide with
ones for interacting massless fields with helicities 0, 0 and λ ≡ s. The same is true for all
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interacting terms in the action (127) without traces, i.e., for j = 0, although it is not true for
the case j > 0 with traces due to massive modes presence when k > 0.

Note, that for the Massive field strength scheme, where operator L(3) (42) (to be modified
according to (83)) depends both on p̂(3)µ and on d(3)+ the respective part of the action and
deformed gauge transformations without traces contain additional fields φ

(3)ν(s−2i)
i,1 related

to massive modes.
Now, we may apply the gauge-fixing procedure developed in the Appendix A of

auxiliary fields elimination, due to the procedure’s independence from the scalars φ(1), φ(2).
As a result, the interacting part of action (127) will contain two terms with fields φ

(3)ν(s−2k)
0,2k ,

φ
(3)ν(s−2−2k)
2|0,2k without b(3)+-generated fields, so that, the action

S(m)3
1|(s)3

= −2g
∫

ddx
[ [s/2]

∑
j≥0

tj

j

∑
k≥0

j!(s− 2j)!
22(j−k)k!(j− k)!

{ s−2j

∑
u=0

(−1)u

u!(s− 2j− u)!
(132)

×
[
∂ν0 . . . ∂νu φ(1)

][
∂νu+1 . . . ∂νs−2j φ

(2)
]}

φ
(3)ν(s−2k)
0,2k

j−k

∏
r=1

ηνs−2j+2r−1νs−2j+2r

+
[s/2]−1

∑
j≥0

tj

j

∑
k≥0

(j + 1)!(s− 2(j + 1))!
22(j−k)k!(j− k)!

{ s−2(j+1)

∑
u=0

(−1)u

u!(s− 2(j + 1)− u)!

[
∂ν0 . . . ∂νu φ(1)

]

×
[
∂νu+1 . . . ∂νs−2(j+1) φ(2)

]}
φ
(3)ν(s−2−2k)
2|0,2k

j−k

∏
r=1

ηνs−2(j+1)+2r−1νs−2(j+1)+2r

]
.

jointly with the action (A16) (also with ones for the scalars), for free fields subject to the
traceless constraints (A15) may serve as an interacting action in triplet formulation for the
fields in question.

When the triplet
∣∣Φ(3)

l 〉, l = 0, 1, 2 is expressed in terms of only single field, from the

algebraic equation of motion
∣∣Φ(3)

1 〉 = ľ1
∣∣Φ(3)〉 − ľ+1

∣∣Φ(3)
2 〉 and :due to ((A15): ľ(3)11

∣∣Φ(3)〉 =
−
∣∣Φ(3)

2 〉) ∣∣φ(3)
2|0,k〉s−k−2 =

∣∣φ(3)
0|0,k+2〉s−k−2 − 2l(3)11

∣∣φ(3)
0|0,k〉s−k (133)

⇔ φ
(3)ν(s−k−2)
2|0,k = φ

(3)ν(s−k−2)
0|0,k+2 − φ

(3)ν(s−k−2)µ
0|0,k µ

(for k = 0, 1, . . . , s− 2) it follows the representation of free Lagrangian (A18), (A19) in terms
of single massive φ(3)ν(s) and auxiliary φ

(3)ν(s−k)
0,k fields in b(3)+-independent vector

∣∣Φ(3)〉s

Sm
C|s

(
Φ(3)

)
= s〈Φ(3)∣∣(l0 − ľ+1 ľ1 − (ľ+1 )2 ľ11 − ľ+11(ľ1)

2 − ľ+11(l0 + ľ1 ľ+1 )ľ11

)∣∣Φ(3)〉s, (134)

δ
∣∣Φ(3)〉s = ľ+1 |Ξ

(3)〉s−1 and ľ11
(
ľ11|Φ(3)〉, |Ξ(3)〉

)
= (0, 0). (135)

In turn, the vertex (132) with use of (133) turn to one depending only on initial
∣∣φ(3)〉s

field and Stukelberg
∣∣φ(3)

0|0,2k〉s ≡
∣∣φ(3)

0,2k〉s, k > 0 resulting in irreducible gauge theory with

Lagrangian formulation S(m)3
[1](s)3

S(m)3
[1](s)3

= Sm
C|s

[
φ(3)

]
+
∫

ddx
2

∑
i=1

φ(i)�φ(i) + S(m)3
1|(s)3

[
φ(1), φ(2), φ(3)] (136)

subject to the gauge symmetry with constraints (135) and deformed gauge transformations
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δ[1]φ
(1)(x1) = −g

∫
ddx
[[s−1/2]

∑
j≥0

tj

j

∑
k≥0

s−1−2j

∑
u=0

Ck,0
j

(s− 1− 2j)!
u!(s− 1− 2j− u)!

Ξ(3)ν(s−1−2k)
0,2k (x) (137)

× 1
22(j−k)

j−k

∏
r=1

ηνs−1−2j+2r−1νs−1−2j−+2r

[
∂νu+1 . . . ∂νs−1−2j φ

(2)
][

∂ν0 . . . ∂νu

]]
δ(d)

(
x− x1

)
δ[1]φ

(2)(x2) = −δ[1]φ
(1)(x1)|[φ(1)(x1)→φ(2)(x2)]

. (138)

Finally, in terms of only ungauged unconstrained initial φ
(3)ν(s)
0,0 and auxiliary φ

(3)ν(s−3)
0,3

fields surviving after complete resolution of the constraints (A20) and rest interacting scalars
φ(i) the interacting Lagrangian action

S(m)3
[1](s)3

[
φ(i), φ(3), φ

(3)
3

]
= Sm

C|s[φ, φ3] +
∫

ddx
2

∑
i=1

φ(i)�φ(i) + S(m)3
1|(s)3

[
φ(1), φ(2), φ(3)], (139)

S(m)3
1|(s)3

[
φ(i), φ(3)] = 2g

∫
ddx
[ [s/2]

∑
j≥0

tj

j

∑
k≥0

j!(s− 2j)!(k− 1)
22(j−k)k!(j− k)!

{ s−2j

∑
u=0

(−1)u

u!(s− 2j− u)!
(140)

×
[
∂ν0 . . . ∂νu φ(1)

][
∂νu+1 . . . ∂νs−2j φ

(2)
]}

φ
(3)ν(s)
0,0

j

∏
r=1

ηνs−2j+2r−1νs−2j+2r

+
[s/2]−1

∑
j≥0

tj

j

∑
k≥0

(j + 1)!(s− 2(j + 1))!
22(j−k)k!(j− k)!

{ s−2(j+1)

∑
u=0

(−1)u

u!(s− 2(j + 1)− u)!

[
∂ν0 . . . ∂νu φ(1)

]

×
[
∂νu+1 . . . ∂νs−2(j+1)φ

(2)
]}

φ
(3)ν(s)
0,0

j+1

∏
r=1

ηνs−2(j+1)+2r−1νs−2(j+1)+2r

]

(for Sm
C|s[φ, φ3] defined in (A21), (A22) without involving of the field φ

(3)ν(s−3)
0,3 into interac-

tion) determines ungauge theory with accuracy up to the first order in g.
Note, for constrained fields: double traceless φ

(3)ν(s)
0,0 and traceless φ

(3)ν(s−3)
0,3 , there are

only two coupling constants t0, t1 due to the absence of double traces in (139) and (140).
For spin s = 4 the interacting action (140) for unconstrained massive field φ

(3)ν(4)
0,0

takes the form

S(0,0,m)
1|(0,0,4)

[
φ(i), φ(3)] = −2g

∫
ddx
{

t0φ
(3)ν(4)
0,0

(
φ(1)∂ν1 . . . ∂ν4 − 4

[
∂ν1 φ(1)

]
∂ν2 . . . ∂ν4 (141)

+6
[
∂ν1 ∂ν2 φ(1)

]
∂ν3 ∂ν4 − 4

[
∂ν1 ∂ν2 ∂ν3 φ(1)

]
∂ν4

+
[
∂ν1 ∂ν2 ∂ν3 ∂ν4 φ(1)

])
φ(2) + t̃1φ

(3)ν1ν2ν
0,0 ν

(
φ(1)∂ν1 ∂ν2 − 2

[
∂ν1 φ(1)

]
∂ν2

+
1
4

[
∂ν1 ∂ν2 φ(1)

])
φ(2) + t̃2φ

(3)ν1ν2
0,0 ν1ν2 φ(1)φ(2)

}
,

. where t̃1 =
t1

4
+ t0, t̃2 ≡

5
2

(
t1 −

3t2

8

)
(142)

are redetermined coupling constants with the dimensions: ([t0], [t̃1], [t̃2]) = ( d+2
2 , d−2

2 , d−6
2 ).

We stress, that there are no any terms in the interacting action with divergences both for
the model with s = 4 and for arbitrary spin s. In case of using the double-traceless massive
field the last term with t̃2 in (141) vanishes.

The interacting action for the cubic vertex of the massless field of helicity s and two
massless scalars coincides with the action (139), (140) for putting k = 0 with j ≥ 1 for the first
term and j = 0 for the second one for double traceless φ

(3)ν(s)
0,0 . The gauge transformations

for the field present the usual gradient one with traceless parameter ξ(3)ν(s−1) ≡ Ξ(3)ν(s−1)
0,0 ,

whereas in the deformed transformations for the scalars φ(i) (137), (138) one should put
k = j = 0.
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5.1.2. Case (m, s), (0, λi) for λi ≤ 1

Second, for the case of interaction of fields with (0, 1), (0, 0), (m, s), i.e., massless vector
φ
(1)
µ and scalar φ(2) fields and massive irreducible tensor field φ

(3)
µ(s), the cubic vertex will be

uniquely determined in the form (with coupling constants tj)

V(3)
m|(1,0,s) =

[s/2]

∑
j≥0

tjU
(s)
j L

(3)
s−1−2jL

(31)+
11|1 =

[s/2]

∑
j≥0

tjU
(s)
j

[s−1/2]−j

∑
i=0

(−1)i(L(3))s−1−2j−2i (143)

× ( p̂(3))2i (s− 1− 2j)!
i!2i(s− 1− 2j− 2i)!

(b(3)+)i

C(i, h(3))

(
a(1)µ+a(3)+µ

− 1
2m2

3
L(1)L(3) − 1

2m3
d(3)+L(1) − 1

2
P (1)+

1 η
(3)+
1 − 1

2
P (3)+

1 η
(1)+
1

)
,

The values of h(i)(si) are equal to h(1)(0) = h(2)(0)− 1 = −(d− 4)/2 and h(3)(s) =
−s − (d − 5)/2. Having used the decomposition of mixed-trace operator L(31)+

11 (48) in
powers of ghosts

L(31)+
11 = L(31)+

11||0 + L(31)+
11|gh ≡ L(31)+

11 |(P=η+=0) +
(

L(31)+
11 − L(31)+

11||0
)
. (144)

a component ghost-independent form of the interacting action reads with account of
(A1)–(A13) and (A37)

S(m)3
[1](1,0,s) = Sm

s

[
χ(3)

]
+ S0

1

[
χ(1)

]
+
∫

ddx
{

φ(2)�φ(2)}+ S(m)3
1|(1,0,s)

[
χ(1), φ(2), χ(3)], (145)

S0
1

[
χ(1)

]
=

(
1〈φ(1)∣∣0〈φ(1)

1

∣∣)( l(1)0 −l(1)+1

−l(1)1 1

)( ∣∣φ(1)〉1∣∣φ(1)
1 〉0

)
,

S(m)3
1|(1,0,s) = ∑

J=(0,2,32,22)
S(J)

1

[
φ(1), φ(2), Φ(3)

J

]
(146)

(for Φ(3)
0 ≡ Φ(3)) For deformed gauge transformations of massless fields we have with

account for (A38)–(A40)

δ[1]
∣∣φ(1)〉r = δ1|Ξ(3)

∣∣φ(1)〉r + δ
1|Ξ(3)

12

∣∣φ(1)〉r, r = 0, 1, (147)

δ[1]
∣∣φ(2)〉0 = δ1|Ξ(3)

∣∣φ(2)〉0 + δ
1|Ξ(3)

12

∣∣φ(2)〉0 + δ1|Ξ(1)

∣∣φ(2)〉0, (148)

and also for the components from the field
∣∣χ(3)〉s described in (A41)–(A46)

δ1
∣∣Φ(3)

P 〉s−... = δ1|Ξ(1)

∣∣Φ(3)
P 〉s−..., P ∈ (0, 1, 2, 22, 32, 13), (149)

δ1
∣∣Φ(3)

J 〉s−... = 0, J = {12, 11, 31, 21}

At the same time, deformed first-level gauge transformations are trivial (for δ1
(∣∣Λ(3)〉s,∣∣Λ(1)〉1

)
= 0). Note, that for trace-deformed vertex representation (see Section 4.1) with the

operators L̃(3)k (85) for the zero-level gauge parameter
∣∣Λ(1)〉1 the first-level transformations

look (with respective modifications the previous gauge transformations and the interacting
part of the action)

δ1
∣∣Ξ(1)〉0 = − g

2

3

∏
i=2

δ(d)
(
x1 − xi

)
0〈φ(2)∣∣{s−3〈Ξ(3)1K(3)∣∣ [s−3/2]

∑
j≥0

tj(Ľ(3)+
11 )j (150)

×(s− 2− 2j)
[
(s−3−2j)

2

]
L̃(3)0s−3−2j|0〉.

In deriving the representations above, we have used the relations (116), (117), (126), (144).
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Third, for the case [(0, 1), (0, 1), (m, s)] of interacting massive field φ
(3)
µ(s) with massless

vectors φ
(i)
µ , the cubic vertex will be determined according to (78) and (79)

V(3)
m|(1,1,s) =

[s/2]

∑
j≥0

tjU
(s)
j

{
L(3)s−2jL

(12)+
11|1 + L(3)s−2−2jL

(23)+
11|1 L

(31)+
11|1

}
= V(3)1

m|(1,1,s)+ V(3)2
m|(1,1,s), (151)

V(3)1
m|(1,1,s) =

[s/2]

∑
j≥0

tjU
(s)
j

[s/2]−j

∑
i=0

(−1)i(L(3))s−2j−2i( p̂(3))2i (s− 2j)!
i!2i(s− 2j− 2i)!

(152)

× (b(3)+)i

C(i, h(3))

(
a(1)µ+a(2)+µ +

1
2m2

3
L(1)L(2) − 1

2
P (1)+

1 η
(2)+
1 − 1

2
P (2)+

1 η
(1)+
1

)
,

V(3)2
m|(1,1,s) =

[s/2]

∑
j≥0

tjU
(s)
j

[s/2]−j−1

∑
i=0

(−1)i(L(3))s−2−2j−2i( p̂(3))2i (s− 2− 2j)!
i!2i(s− 2− 2j− 2i)!

(153)

× (b(3)+)i

C(i, h(3))

(
L(23)+

11 L(31)+
11|1 −

[
W(3)

(23)|0, L(31)+
11|1

} b(3)+

h(3)

)
,

with

[
W(3)

(23)|0, L(31)+
11|1

}
=
[[

L̂(3)
11 , L(23)+

11

}
, L(31)+

11

}
(154)

=
1
2

[(
2a(2)µ+ − 1

m2
3

L(2) p̂(3)µ
)(

a(1)+µ − 1
2m2

3
L(1) p̂(3)µ

)
+

1
2
(
− i

1
2m2

3
L(2)P̂ (3)

0 + P (2)+
1

)
η
(1)+
1 +

1
2
P (1)+

1 η
(2)+
1 +

1
2m2

3
L(2)L(1)

]
,

where we have used definitions (46)–(48) for L(ii+1)
11 and (70) for W(3)

(23)|0.
As a result, the interacting action and deformed gauge transformations may be found

according to the above-developed procedure for the triples of fields with (0, λ1), (0, 0),
(m, s) for λ1 = 0, 1. We stress that the gauge transformations for the massless fields become
non-Abelian and reducible, whereas the gauge symmetry for the massive field is deformed
by remains with untouched reducibility relation with accuracy up the first order in g

5.1.3. Case (m, s), (0, λi) for (λ2 + s) ≤ 1

Firstly, we stress that there is no non-trivial interaction for the massless field of helicity
λ1 ≡ λ ∈ Z with massless and massive scalars except for the “trace” vertex (without
derivatives) for even λ = 2r

V(3)
m|(λ,0,0) = δλ,2[λ/2]U

(λ)
[λ/2], (155)

which, however, vanishes after passing to Fronsdal (single-field) formulation for massless
tensor φµ(λ).

For the case of (λ2, s) = (1, 0) or (λ2, s) = (0, 1) non-trivial solutions for the vertex
exist. For the latter case, the vertex has the representation

V(3)
m|(λ,0,1) = tδλ,2[λ/2]U

(λ)
[λ/2]L

(3) + t1δλ,2[λ/2]+1U(λ)
[λ/2]L

(31)+
11 = V(3)1

m|(λ,0,1) + V(3)2
m|(λ,0,1), (156)

5.2. Vertices for Fields with (0, λ1), (m, 0), (m, s3)

In this subsection, we derive a ghost-independent form for the cubic vertices V for
two massive HS fields with (m, si), i = 2, 3 for coinciding masses and one massless HS field
(0, λ1) restricting by the values λ1 = s1 = 0.

The vertex is 1-parameter family and determined according to general prescription
(94)–(99)
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V(3)
(m̄)2|(0,0,s) =

[s/2]

∑
(j)=0

U(s)
j L

(3)
s−2j =

[s/2]

∑
(j)=0

U(s)
j

[s/2]−j

∑
i=0

(−1)i(Ľ(3))s−2j−2i (157)

× ( p̂(3) + m2)2i (s− 2j)!
i!2i(s− 2(j + i))!

(b(3)+)i

C(i, h(3))
,

where the operator Ľ(3) (95) is additive d(3)+ extension of the standard operator L(3) (45):

Ľ(3) − L(3) = −md(3)+. (158)

The quantity (157) appears by the extension of the vertex V(3)
m|(0,0,s) (115) from the

Section 5.1.1 for the interaction of two massless scalars with a massive HS field and contains
it for q = 0 in

V(3)
(m̄)2|(0,0,s) =

[s/2]

∑
(j)=0

U(s)
j

[s/2]−j

∑
i=0

s−2j−2i

∑
q=0

(−1)i+q(L(3))s−2j−2i−q(md(3)+)q (159)

× ( p̂(3) + m2)2i (s− 2j)!
i!q!2i(s− 2j− 2i− q))!

(b(3)+)i

C(i, h(3))
,

(for h(1)(0) = h(2)(0) + 1/2 = −(d− 6)/2 and h(3)(s) = −s− (d− 5)/2) The representa-
tion above permits one to determine the interacting action in the ghost-independent form

S(m̄)2
[1]|(0,0,s)[φ

(i), χ(3)] =
∫

ddx
2

∑
i=1

φ(i)(�+ δ2,im2)φ(i) + Sm
s [χ(3)] + S(m̄)2

1|(0,0,s)[φ
(i), χ(3)], (160)

S(m̄)2
1|(0,0,s)[φ

(i), χ(3)] = −g
3

∏
i=2

δ(d)
(
x1 − xi

)({
0〈φ(2)∣∣0〈φ(1)∣∣[s〈Φ(3)K(3)∣∣ (161)

×
[s/2]

∑
j≥0

tj(Ľ(3)+
11 )jĽ(3)0s−2j + s−2〈Φ(3)

2 K(3)∣∣ [s−2/2]

∑
j≥0

tj(j + 1)(Ľ(3)+
11 )jĽ(3)0s−2(j+1)

+s−4〈Φ
(3)
32 K(3)∣∣ [s−4/2]

∑
j≥0

tj(j + 1)(j + 2)(Ľ(3)+
11 )jĽ(3)0s−2(j+2)

−s−6〈Φ(3)
22 K(3)∣∣ [s−6/2]

∑
j≥0

tj(j + 1)(j + 2)(j + 3)(Ľ(3)+
11 )jĽ(3)0s−2(j+3)

]}
|0〉+ h.c.

)
,

(for L(3)0s−2(j+... ) ≡ L
(3)
s−2(j+... )|η+=0) together with deformed gauge transformations

δ[1]
∣∣φ(1)〉0 = −g

3

∏
i=2

δ(d)
(
x1 − xi

)
0〈φ(2)∣∣{s−1〈Ξ(3)K(3)∣∣[s−1/2]

∑
j≥0

tj(s− 2j)(Ľ(3)+
11 )jĽ(3)0s−1−2j (162)

−s−5〈Ξ(3)
12 K(3)∣∣ [s−5/2]

∑
j≥0

tj(j + 1)(j + 2)(s− 2(j + 2))(Ľ(3)+
11 )jĽ(3)0s−5−2j|

}
|0〉;

δ[1]
∣∣φ(2)〉0 = g ∏

i=1,3
δ(d)
(
x2 − xi

)
0〈φ(1)∣∣{s−1〈Ξ(3)K(3)∣∣[s−1/2]

∑
j≥0

tj(s− 2j)(Ľ(3)+
11 )jĽ(3)0s−1−2j (163)

−s−5〈Ξ(3)
12 K(3)∣∣ [s−5/2]

∑
j≥0

tj(j + 1)(j + 2)(s− 2(j + 2))(Ľ(3)+
11 )jĽ(3)0s−5−2j

}
|0〉.

The action functional for free massive HS field Sm
s [χ(3)] with respective reducible

transformations are presented by the formulas (A1) and (A13). Note, the interacting part of
the action and deformed gauge transformations contain operators with “check” Ľ(3)0s−1−2j

depending on d(3)+ by the rule (158) opposite to the operators L(3)0s−1−2j for the interaction
of two massless scalars with massive HS field. It means on the component level after the
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gauge fixing procedure the auxiliary field φ
(3)ν(s−3)
0|0,3 will be included, therefore, into the

vertex on equal footing with the basic fieldφ
(3)ν(s)
0|0,0 .

The inclusion of the constraints L(i)
11 responsible for the traces into the BRST operator

means that the standard condition of vanishing double traces of the fields is fulfilled only
on-shell as the consequence of free equations of motion. Off-shell the (double) traces of
the fields do not vanish. At the same time, the vanishing of double (single) traces of the
fields (gauge parameters) for interacting higher spin fields is modified as compared to the
case of free dynamics, however, with the preservation of irreducibility for any interacting
(basic) fields, As a result, the trace constraints come into the cubic vertices whereas the
respective ghost oscillators enter into the vertex generating operators (see e.g., (85)) beyond
these trace conditions.

6. Conclusions

To sum up, we have constructed the generic cubic vertices for a first-stage reducible
gauge-invariant Lagrangian formulations of totally symmetric massless and massive higher
spin fields with arbitrary integer helicities and spins in d-dimensional Minkowski space-
time in three different cases: for two massless fields of helicities λ1, λ2 and massive field
of spin s3; for one massless field of helicity λ1 and two massive fields of spins s2, s3, first,
with coinciding masses, second, with different masses m2 6= m3. The procedure is realized
in the framework of the BRST approach, developing our earlier results for cubic vertices
for irreducible massless fields [33,34] to higher spin field theories with the complete BRST
operator, which includes all the constraints that determine an irreducible massless or
massive higher spin representation on equal footing. This approach allows us to preserve
the irreducibility of the Poincare group representation for each interacting higher spin
field and as a consequence, provide the preservation of the number of physical degrees of
freedom on the cubic level up to the first power in the deformation parameter g.

To determine cubic vertices being consistent with a deformed gauge invariance, we
have realized an additive deformation of classical actions for three copies of the respecting
massless and massive higher spin fields and the gauge transformations for the fields
and gauge parameters, while requiring the deformed action to be invariant in a linear
approximation with respect to g, and for the gauge algebra to be closed on a deformed
mass shell up to the second order in g. These requirements, as for as for massless case [33],
result in a system of generating equations for the cubic vertices, containing the total BRST
invariance operator condition Q(V3, Ṽ3) = 0, Q(Ṽ3, V̂3) = 0 (26), the spin condition,
and the condition (29) for the gauge algebra closure. The cubic vertex, in the particular
case of coinciding operators, V3 = Ṽ3 = V̂3, satisfies the Equations (27), and their solutions
are found using a respective set of spin- and BRST-closed forms within a classification of
vertices with respect to values of polynomials of the fourth order D(m1, m2, m3) and the first
order P(m1, m2, m3) in power of mass, considered, firstly for d = 4 in [31], and extracting
the cases of real (D > 0), virtual (D < 0) processes, and real process (D = 0) with vanishing
transfer of momentum. For two massless and one massive higher-spin field, the modified
BRST-closed differential forms (58), (62), (66), (76), (77) constructed from ones in [18],
and the new forms (54) related to the trace operator constraints (having dependence on
additional oscillators, b(i)+, d(3)+ η

(i)+
11 , P (i)+

11 ) compose the parity invariant cubic vertex

V(3)|m
(s)3

(78). The vertex has a non-polynomial structure and presents (3 + 1)-parameters
family to be enumerated by the natural parameters (j1, j2, j3) respecting the orders of traces
incoming into the vertex, and k enumerating the order of derivatives in it (For another
elaboration of inclusion the trace constraints in Maxwell-like Lagrangians for interacting
massless higher spin fields on constant curvature spaces with multiple traces see [26]). As
a result parity invariant cubic vertices for irreducible fields may involve terms with less
space-time derivatives as compared with [18]. This vertex may be equivalently presented
in the polynomial form with non-commuting BRST-closed generating elements: L(3)1 (83)
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and L(ii+1)+
11|1 (66), (76) for i = 1, 2, 3, which depend in addition on annihilation oscillators as

compared to the standard receipt [3,18]. The vertex admits a trace-deformed generalization
leading to the change in the standard trace restrictions on fields and gauge parameters
imposing off-shell in the constrained BRST approach that is revealed in the BRST-closed
modification of two form L(3)2 (85) by “trace” η

(3)+
11 ghost. It means that after performing

the gauge-fixing procedure and partial resolution of the interacting equations of motion the
final trace restrictions for the initial higher-spin fields should not coincide with standard
ones derived from the Lagrangian formulations for free fields.

For the case of one massless and two massive fields coinciding masses (when D =
P = 0) the solution for the vertex contains more BRST-closed generating differential
forms given by three sets (95): Yang–Mills type form Z (98) mixed-trace forms L(23)+

11|k (97)

with new trace forms the parity invariant cubic vertex V(3)|(m̄)2
(s)3

(94), (99) is constructed.
It presents the (3 + 2)-parameter family to be enumerated by the natural parameters
(corresponding for traces) (j1, j2, j3) and kmin, kmax corresponding for order of derivatives.
Again, the vertex admits a polynomial representation in terms of non-commuting BRST-
closed generating operators.

For the variant of one massless and two massive fields with different masses (when
D > 0) derived spin- and BRST-closed vertex V(3)|(m)2

(s)3
(106), (107) was constructed as

the product of differential (2 + 3) sets of differential L(i)ki
(108) and mixed-trace L(ii+1)+

11|k ,

for i = 1, 2, 3 (110), (111) and respective new trace forms U(si)
ji

of the rank j = 1, 2, . . . , [si/2].
The vertex represents the (3 + 2)-parameter family to be enumerated by the natural param-
eters (j1, j2, j3) and τ2, τ3. A polynomial representation for the vertex also exists

From the obtained solutions it follows, first, the possibilities to construct cubic vertices
and interacting first-stage reducible Lagrangian formulations for the mentioned three cases
including the fields with all helicities and spins, e.g., for triples with two massless and one
massive field

V(3)|m
∑(s)3

= ∑
(λ1,λ2,s3)≥0

V(3)|m
(s)3

(164)

with the same mass for massive fields φ(3)µ(s3)(x) with different values of spin s3.
Second, a condition that the cubic approximation for the interacting model will be the

final term (without higher order vertices) in both Lagrangian and gauge transformations is
based on the non-trivial solution of the operator equation on the vertex

∣∣V(3)〉(m)3
(s)3

in the
second order in deformation constant g:

({V(i1, j1; i2, j2) + V(j1, i2, ; i1, j2)} − (i1, j1)) + (V(i2, i1; j1 j2)− (i1, i2)) = 0, (165)

for
∫

dη
(3)
0

(m)3

(s1,s2,s3)
〈V(3)∣∣K(3)∣∣V(3)〉(m)3

(s′1,s′2,s3)
≡ V(s1, s2; s′1, s′2), i1, j1, i2, j2 = 1, 2, 3

which should be considered additionally to the system(27).
The inclusion of trace constraints into the complete BRST operator has led to a larger

content of configuration spaces in Lagrangian formulations for interacting massless and
massive fields of integer spins in question (in comparison with the constrained BRST
approach [18]), which has permitted the appearance of new trace operator components U(si)

ji
in the cubic vertex. In this regard, the correspondence between the obtained vertices |V(3)〉
and the respective vertices |VM(3)〉 of [18] is not unique due to the fact that the tracelessness
conditions for the latter vertex are not satisfied: L(i)

11 |VM(3)〉 6= 0 as was discussed in detail
in the Appendix D. Both vertices for the same set of higher-spin fields will correspond
to each other, first, after extracting the irreducible components

∣∣V(3)
c 〉

(m)3
(s)3
≡ |VM(3)

irrep 〉 from

|VM(3)〉, satisfying L(i)
11 |V

M(3)
irrep 〉 = 0 according to (A68). We pay attention, to the form

of the cubic vertices for irreducible (massless and massive) higher-spin fields within the
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approach with an incomplete BRST operator are firstly obtained by the Equation (A68).
Then, after eliminating the auxiliary fields and gauge parameters by partially fixing the
gauge and using the equations of motion, the vertex |V(3)〉 will transform to |V̆(3)〉 in
a triplet formulation of [18], so that, up to total derivatives, the vertices |VM(3)

irrep 〉 and

|V̆(3)〉must coincide. At the same time, the different representation for the vertices with
the same set of fields, among them with trace-deformed generalization (85), leads to
different local representations of the interacting Lagrangian formulations as shown with
the generation of non-trivial deformed first-level gauge transformation for vector gauge
parameter (150) for the interacting massless vector and scalar fields with massive (m, s)
fields. We stress, following the Appendix D results, that imposing only traceless constraints
on fields and gauge parameters (A47) represents the necessary but not sufficient condition
for the consistency of deformed (on cubic level) Lagrangian dynamics for interacting
higher spin fields with spins s1, s2, s3 within a constrained BRST approach. In addition to
BRST closeness, one should validate the traceless conditions for the cubic vertices (A59)
that guarantee the preservation of Poincare group irreducibility for the interacting higher
spin fields in question. Without it, the number of physical degrees of freedom, which
is determined by one of the independent initial data for the equations of motion (partial
differential equations) due to (A63) for the interacting model is different than one from that
for the undeformed model with vanishing traceless constraints evaluated on respecting
equations of motion.

To illustrate the generic cubic vertices solutions we have also elaborated a number
of examples of the interacting Lagrangian for the unconstrained fields with special value
of spins. The basic results were achieved with cubic interactions for triple fields with
(0, λ1), (0, λ2), (m, s) in Section 5.1.1 on the basis of Appendix A for different Lagrangian
formulations of free massive higher-spin field from BRST representation and Appendix B
for respective interacting components and tensor representations. The resulting interacting
model is given in ghost-independent (123)–(125) and tensor (127) representations with
deformed gauge transformations for the massless scalars (128), (A35), (A36) and untouched
for massive higher-spin field. An application of the gauge-fixing procedure admissible
from the free formulations permit to present the interacting Lagrangian both in triplet
tensor form (132), (A16) with off-shell traceless constraints (A15) with interacting action
depending on 2 sets of fields with irreducible deformed gauge transformations (137), (138),
then in the tensor form (136) with only massless scalars φ(i), i = 1, 2, basic massive field
φ(3)ν(s) and set of auxiliary fields φ

(3)ν(s−2k)
0,2k and in ungauged form for only a quartet of

unconstrained fields φ(i)(x), φ(3)ν(s), φ
(3)ν(s−3)
0,3 , (139), (140), (A22), or in terms of double-

traceless initial and traceless auxiliary tensor fields. This result appears by a new one and
is explicitly demonstrated by the interacting action (141) for massive spin s = 4 field. The
example on the stage of triple and singlet fields formulations admit a massless limit, so that
for the triple of fields (0, 0), (0, 0), (0, s) we obtain a non-trivial cubic vertex with deformed
gauge transformations for the scalars according to [57]. The ghost-independent forms
for the interacting Lagrangian formulations have been developed also for the set of four
triples: [(0, 1), (0, λ2) (m, s)] for λ2 = 0, 1; [(0, λ1), (0, 0), (m, 1)] and for the massless scalar
with a massive scalar and massive field of spin s3 with coinciding masses [(0, 0), (m, 0),
(m, s3)]. The interacting first-stage reducible Lagrangian for the fields with [(0, 1), (0, 0),
(m, s)] are given by (145), (146) whereas the deformed part of the gauge transformations
in (147)–(148) for massless vector and scalar and for massive tensor component (149),
(A41)–(A46). The cubic vertex for two massless vectors and massive (m, s) tensor was
presented by the relations (151)–(154). For the case fields with [(0, 0), (m, 0), (m, s3)] the
cubic vertex, interacting Lagrangian and deformed reducible gauge transformations for
only the scalars are given by (159), (160), (161) and (162), (163), respectively. Note, the
interaction of the massless field of helicity λ1 with massless and massive scalars are trivial
(155) which, however, vanishes after passing to the Fronsdal (single-field) formulation. We
stress, that there are no terms in any obtained interacting vertices, and therefore, in the
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interacting part of the action with divergences by construction. It means that on mass-shell
after gauge-fixing determined by the Lorentz-like or (in general, Rξ-type, see e.g., [58])
gauge to derive the non-degenerate quantum action for the interacting model in question
the vertices do not vanish.

There are many possibilities to apply and to develop the suggested method. Among
them, we can highlight a finding cubic vertices, first, for irreducible massless and for
massive half-integer higher spin fields on flat backgrounds, second, for mixed-symmetric
higher spin fields, third, for higher spin supersymmetric fields, where in all cases the ver-
tices should include any powers of traces. The construction in question may be generalized
to determine cubic vertices for irreducible higher spin fields on anti-de-Sitter spaces, having
in mind the bypassing of a flat limit absence for many of the cubic vertices in the formula-
tion [59,60], because of one-to-one correspondence of cubic vertices in flat and anti-de-Sitter
spaces in the Fronsdal formulation demonstrated for specific cases in [61] and more gener-
ally in [26,62]. In this way, we may use the ambient formalism of embedding d-dimensional
anti-de-Sitter space in (d + 1)-dimensional Minkowski space [63] (see, as well [64] and
references therein) to uplift obtained covariant cubic vertices in anti-de-Sitter space.

In this connection, it is appropriate to point out some features of the BRST construction
for higher spins in the (A)dS space in comparison with the Minkowski space. Here, we
should stress that the description of irreducible representations for the (A)dS group with
both integer and half-integer spins in (A)dS space is completely different as compared with
ones for the Poincare group in flat space-time even for free theories. In all known cases, the
Lagrangian constructions for the same higher spin field obtained within the constrained
(incomplete) BRST approach with additional non-differential constraints and within ap-
proach with complete BRST operator do not coincide. The Lagrangian formulations for
both integer and half-integer spins in AdS spaces in the BRST approach with a complete
BRST operator, has been successfully formulated for massless and massive particles of
integer spins in [39,65] (recently for mixed-symmetric case [66]) and for massive particles
of half-integer spins in [67]. Problems related to the approach using an incomplete BRST
operator have not been discussed in detail even for a free field of a given higher spin.

One should also note the problems of constructing the fourth and higher vertices and
related various problems of locality (see the discussion initiated in [68], then in [69–71]
with recent analysis [72] and also [73–76]), where the BRST approach can possibly be useful.
The construction and quantum loop calculations with the BRST quantum action for the
models with derived cubic vertices can be realized within the BRST approach following
to [58]. We plan to address all of the mentioned problems in the forthcoming works.
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Appendix A. Reduction to Singh-Hagen Lagrangian

In this appendix, we deduce the Lagrangian formulation for free massive HS field
(m, s) in terms of only initial field φµ(s).

From the action Sm
0|s[|χ〉s] (3) and reducible gauge transformations (4) we have, first,

in the ghost-independent form

Sm
0|s = Sm

C|s[χc]−
{(

s〈Φ
∣∣KĽ+

11 + s−2〈Φ2
∣∣K (A1)

− s−3〈Φ31
∣∣Kľ1 − s−4〈Φ32

∣∣KĽ11

)∣∣Φ11〉s−2 +
(
− s−2〈Φ2

∣∣KĽ(3)+
11

− s−6〈Φ22
∣∣KĽ11 + s−3〈Φ31

∣∣Kľ+1 − s−4〈Φ32
∣∣K)∣∣Φ12〉s−4

+
(

s−4〈Φ32
∣∣Kľ+1 + s−6〈Φ22

∣∣Kľ1 − s−3〈Φ21
∣∣KĽ+

11

+
1
2 s−5〈Φ13

∣∣K)∣∣Φ13〉s−5 + s−3〈Φ21
∣∣K(l0

∣∣Φ31〉s−3 − Ľ11
∣∣Φ1〉s−1

)
− 1

2

(
s−6〈Φ22

∣∣Kl0
∣∣Φ22〉s−6 − s−4〈Φ32

∣∣Kl0
∣∣Φ32〉s−4

)
+ h.c.

}
,

where the functional Sm
C|s is the action for triplet formulation for massive fields of spins

s, s− 2, . . . ., 1(0) (following to [77]) or for the HS field of spin s with additional off-shell
traceless constraint [78], but with b+, d+-dependence in the triplet |χc〉s = |χ〉s

∣∣
(η+11,P+

11)=0:

Sm
C|s[χc] =

∫
dη0s〈χc|KQc|χc〉s (A2)

=
(

s〈Φ
∣∣s−2〈Φ2

∣∣s−1〈Φ1
∣∣)K
 l0 0 −ľ+1

0 −l0 ľ1
−ľ1 ľ+1 1


∣∣Φ〉s∣∣Φ2〉s−2∣∣Φ1〉s−1

,

for Qc = Q
∣∣
(η+11,P+

11)=0. The initial gauge transformations for the field
∣∣χ〉s, and gauge

parameter
∣∣Λ〉s
δ0
∣∣Φ〉s = ľ+1 |Ξ〉s−1 + Ľ+

11|Ξ1〉s−2, (A3)

δ0
∣∣Φ1〉s−1 = l0|Ξ〉s−1 + Ľ+

11|Ξ01〉s−3, (A4)

δ0
∣∣Φ2〉s−2 = ľ1|Ξ〉s−1 + Ľ+

11|Ξ11〉s−4 − |Ξ1〉s−2, (A5)

δ0
∣∣Φ21〉s−3 = ľ1|Ξ1〉s−2 − ľ+1 |Ξ11〉s−4 − |Ξ01〉s−3, (A6)

δ0
∣∣Φ22〉s−6 = −Ľ11|Ξ11〉s−4 + ľ1|Ξ12〉s−5, (A7)

δ0
∣∣Φ31〉s−3 = Ľ11|Ξ〉s−1 + Ľ+

11|Ξ12〉s−5, (A8)

δ0
∣∣Φ32〉s−4 = Ľ11|Ξ1〉s−2 − ľ+1 |Ξ12〉s−5 + |Ξ11〉s−4, (A9)

δ0
∣∣Φ11〉s−2 = l0|Ξ1〉s−2 − ľ+1 |Ξ01〉s−3, , (A10)

δ0
∣∣Φ12〉s−4 = l0|Ξ11〉s−4 − ľ1|Ξ01〉s−3, (A11)

δ0
∣∣Φ13〉s−5 = l0|Ξ12〉s−5 − Ľ11|Ξ01〉s−3, , (A12)

δ0(|Ξ〉, |Ξ1〉, |Ξ11〉, |Ξ12〉, |Ξ01〉) =
(
−l+11 + 1/2(d+)2 − b+, ľ+1 , ľ1, Ľ11, l0

)∣∣Ξ1〉s−3. (A13)

Second, we gauge away b+-dependence from zero-level gauge parameter |Ξ〉 by
means of all degrees of freedom of the first-level gauge parameter |Ξ1〉 due to structure
of Ľ+

11 trace operator, so that the theory becomes by the irreducible gauge theory. Third,
analogously we gauge away b+-dependence from the fields

∣∣Φ〉, ∣∣Φ1〉,
∣∣Φ2〉,

∣∣Φ31〉 with
use of all degrees of freedom of the gauge parameters |Ξ1〉, |Ξ01〉, |Ξ11〉, |Ξ12〉. The residual
non-vanishing gauge transformations take the form

δ0
(∣∣Φ〉s, ∣∣Φ1〉s−1,

∣∣Φ2〉s−2,
∣∣Φ31〉s−3

)
|b+=0 =

(
ľ+1 , l0, ľ1, Ľ11

)
|Ξ〉s−1|b+=0. (A14)
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Fourth, from the equations of motion, Q|χ〉s = 0, for the rest 6 fields
∣∣Φ21〉,

∣∣Φ22〉,∣∣Φ32〉,
∣∣Φ11〉,

∣∣Φ12〉,
∣∣Φ13〉 encountered in |χ〉s (16) with P+

11 ghost operator, we obtain that
they income in the equations with Ľ+

11 operator and, therefore, vanish. Fifth, we gauge
away the field

∣∣Φ31〉 by means of residual gauge transformations, so that the condition
of its non-appearance leads to the constraint Ľ11|b(+)=0|Ξ〉|b+=0 = 0. Sixth, from the
residual equations of motions for the triplet

∣∣Φ〉s, ∣∣Φ1〉s−1,
∣∣Φ2〉s−2 at η+

11 we obtain the
traceless constraints

ľ11
∣∣Φ〉s + ∣∣Φ2〉s−2 = 0, ľ11|b(+)=0

∣∣Φk〉s−k = 0, k = 1, 2., ľ11 ≡ Ľ11|b(+)=0 (A15)

As the result, we obtain the triplet Lagrangian formulation for the massive of spin s
field with auxiliary 3s− 4 fields subject to the constraints (A15)

Sm
C|s[χc] =

∫
dη0s〈χc|Qc|χc〉s (A16)

=
(

s〈Φ
∣∣s−2〈Φ2

∣∣s−1〈Φ1
∣∣) l0 0 −ľ+1

0 −l0 ľ1
−ľ1 ľ+1 1


∣∣Φ〉s∣∣Φ2〉s−2∣∣Φ1〉s−1

,

δ
(∣∣Φ〉s, ∣∣Φ1〉s−1,

∣∣Φ2〉s−2
)
=
(

ľ+1 , l0, ľ1
)
|Ξ〉s−1, ľ11|Ξ〉 = 0. (A17)

After expressing the field
∣∣Φ2〉 for the first constraint in (A15):

∣∣Φ2〉 = −Ľ11
∣∣Φ〉 and

expressing the field
∣∣Φ1〉 from the algebraic equation of motion:

∣∣Φ1〉 = ľ1
∣∣Φ〉 − ľ+1

∣∣Φ2〉 it
follows the Lagrangian in the single vector form with s− 1 auxiliary fields

Sm
C|s(φ, . . . ) = s〈Φ

∣∣(l0 − ľ+1 ľ1 − (ľ+1 )2 ľ11 − ľ+11 ľ2
1 − ľ+11(l0 + ľ1 ľ+1 )ľ11

)∣∣Φ〉s, (A18)

δ
∣∣Φ〉s = ľ+1 |Ξ〉s−1 and ľ11

(
ľ11|Φ〉, |Ξ〉

)
= (0, 0), (A19)

The Lagrangian formulation (A18), (A19) has smooth massless limit for m = d(+) = 0
resulting to Fronsdal formulation [79] in the form of single field

∣∣φ〉s =
∣∣Φ〉s|d+=0 with

(0, s).
Now, as it was shown in [80] the Lagrangian formulation after resolution of the

traceless constraints in terms of real constraints with decomposing of |Φ〉s| in powers of
d++-independent vectors as well as the gauge parameter |Ξ〉s−1 we obtain that only four
fields φk|(µ)s−k, k = 0, 1, 2, 3 (with physical one at k = 0) are independent from each other
and two gauge parameters ξl|(µ)s−l−1, l = 0, 1:

∣∣ξ〉s−2l−1 = (2l11)
l∣∣ξ0〉s−1,

∣∣ξ〉s−2l−2 = (2l11)
l∣∣ξ1〉s−2∣∣φ〉s−2k = k(2l11)

k−1∣∣φ2〉s−2 − (k− 1)(2l11)
k∣∣φ0〉s,∣∣φ〉s−2k−1 = k(2l11)

k−1∣∣φ3〉s−3 − (k− 1)(2l11)
k∣∣φ1〉s−1, (A20)

From the gauge transformations we may gauge away two independent fields φ1|(µ)s−1,
φ2|(µ)s−2 with use of total degrees of freedom of the independent parameters .ξ0|(µ)s−1,
ξ1|(µ)s−2 leading to ungauge theory of massive HS field with unrestricted pair of fields
φ(µ)s, φ3|(µ)s−3. composing the residual field vector,

∣∣Φ̃〉s = (1−
[s/2]

∑
k=2

d2k

(2k)!
(k− 1)(l11)

k
)∣∣φ〉s + [s/2]

∑
k=1

θs,2k
d2k+1

(2k + 1)!
k(l11)

k−1∣∣φ3〉s−3. (A21)

The respective action will coincide with Singh-Hagen action [46].

Sm
C|s(φ, φ3) = s〈Φ̃

∣∣(l0 − ľ+1 ľ1 − (ľ+1 )2 ľ11 − ľ+11 ľ2
1 − ľ+11(l0 + ľ1 ľ+1 )ľ11

)∣∣Φ̃〉s. (A22)
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For constrained pair of fields: double traceless φ(µ)s and traceless φ3|(µ)s−3, there are
no terms with traces in

∣∣Φ̃〉s besides these ones.

Appendix B. Component Interacting Lagrangian and Gauge Transformations for
(m, s), (0, 0), (0, 0)

In oscillator a(i)(+)
µ , b(i)(+), d(i)(+)-dependent form with use of the representations (19),

(20) and its duals for the fields and gauge parameters the interacting part of the action
(123) looks

S(m)3
1|(s)3

[φ(1), φ(2), χ(3)] = −g
∫ 3

∏
i=1

ddxi

3

∏
i=2

δ(d)
(
x1 − xi

){
φ(2)(x2)φ

(1)(x1)〈0| (A23)

×
( s

∑
k′=0

(d(3))k′

k′ !

[(s−k′)/2]

∑
l′=0

(b(3))l′

l′ !
C(l′, h(s))

(−ı)s−k′−2l′

(s− k′ − 2l′)!
φ
(3)µ(s−k′−2l′)
l′ ,k′ (x3)

s−k′−2l′

∏
i′=1

a(3)
µ: i′

×
[s/2]

∑
j≥0

tj

j

∑
k≥0

Ck,l
j (d(3)+)2k

(
− 1

2

)k j−k

∑
l≥0

(b(3)+)l(l(3)+11 )j−k−l

×
[s/2−j]

∑
i=0

(−1)i{ p̂(3)νa(3)+ν }s−2j−2i( p̂(3))2i (s− 2j)!
i!2i(s− 2j− 2i)!

(b(3)+)i

C(i, h(s))
|0〉

+
s−2

∑
k′=0

(d(3))k′

k′ !

[(s−k′)/2−1]

∑
l′=0

(b(3))l′

l′ !
C(l′, h(s))

(−ı)s−2−k′−2l′

(s− 2− k′ − 2l′)!
φ
(3)µ(s−k′−2l′)
2|l′ ,k′ (x3)

s−2−k′−2l′

∏
i′=1

a(3)
µ: i′

×
[s/2−1]

∑
j≥0

tj(j + 1)
j

∑
k≥0

j−k

∑
l≥0

Ck,l
j ×

×(l(3)+11 )k(b(3)+)l(d(3)+)2(j−k−l)
(
− 1

2

)j−k−l [s/2−j−1]

∑
i=0

(−1)i(L(3))s−2(j+1)−2i ×

×( p̂(3))2i (s− 2(j + 1))!
i!2i(s− 2(j + 1)− 2i)!

(b(3)+)i

C(i, h(s))

+s−4〈Φ
(3)
32 K(3)∣∣ [s−4/2]

∑
j≥0

tj(j + 1)(j + 2)(Ľ(3)+
11 )jL(3)s−2(j+2)

−s−6〈Φ
(3)
22 K(3)∣∣[s/2−3]

∑
j≥0

tj(j + 1)(j + 2)(j + 3)(Ľ(3)+
11 )jL(3)s−2(j+3)

)
|0〉+ h.c.

}
,

(for Ck,l
j ≡

j!
k!l!(j−k−l)! ), and also for the gauge transformations (124), (125)

δ[1]
∣∣φ(1)〉0 = −g

∫
ddx2φ(2)(x2)

{ ∫
ddx3〈0|

[s−1−k′/2]

∑
l′=0

j−k

∑
l≥0

[(s−1)/2]−j

∑
i=0

C(l′, h(s))
(b(3))l′

l′ !
(A24)

× (−1)i j!
k!l!(j− k− l)!

(b(3)+)l+i

C(i, h(s))

s−1

∑
k′=0

[(s−1)/2]

∑
j≥0

tj
(d(3))k′

k′ !
(d(3)+)2k

(
− 1

2

)k

×
j

∑
k≥0

(−ı)s−1−k′−2l′

(s− 1− k′ − 2l′)!
Ξ(3)µ(s−1−k′−2l′)

l′ ,k′ (x3)
s−1−k′−2l′

∏
i′=1

a(3)µi′
(l(3)+11 )j−k−l

×{ p̂(3)νa(3)+ν }s−1−2j−2i( p̂(3))2i (s− 1− 2j)!
i!2i(s− 1− 2j− 2i)!

|0〉

−s−5〈Ξ(3)
12 K(3)∣∣ [s−5/2]

∑
j≥0

tj(j + 1)(j + 2)(Ľ(3)+
11 )j(L(3)s−5−2j

)′}|0〉 3

∏
i=2

δ(d)
(
x1 − xi

)
;

δ[1]
∣∣φ(2)〉0 = −δ[1]

∣∣φ(1)〉0|(φ(1)(x1)→ φ(2)(x2)
). (A25)

In (A23) two last summands with vectors s−6〈Φ
(3)
32 |, s−6〈Φ

(3)
22 | have the same forms as

for two first ones, with s〈Φ(3)|, s−2〈Φ
(3)
2 |, as well as the last term with s−5〈Ξ

(3)
12 | in (A24) is

written similar as for the first term with s−1〈Ξ(3)|.



Symmetry 2023, 15, 2124 31 of 40

To calculate (A23)–(A25) we use the list of formulas with oscillator’s pairing

〈0|
s′

∏
i′=1

a(3)µi′

s

∏
i=1
{ p̂(3)νi a(3)+νi }(l(3)+11 )k |0〉 = δs′ ,s+2k

(−1)s′

2k S
ν1 ...νs′
µ1 ...µs′

s

∏
i=1

p̂(3)νi

k

∏
i=1

ηνs+2i−1νs+2i , (A26)

Sν1 ...νs
µ1 ...µs = ∑

P(ν1 ,...,νs)

s

∏
i=1

δ
νi
µi , (A27)

〈0|
s′

∑
k′=0

(A(3))k′
s

∑
k=0

(A(3)+)k |0〉 = s!δs′ ,s, A ∈ {b, d}. (A28)

(with symmetrizer Sν1...νs
µ1...µs). Thus, e.g., for the first integrand A1 in S(m)3

1|(s)3
from the representation

−g
∫ 3

∏
i=1

ddxi A1

3

∏
i=2

δ(d)
(

x1 − xi
)

(A29)

we have

A1 = φ(2)(x2)φ
(1)(x1)〈0|

[(s−k′)/2]

∑
l′=0

j−k

∑
l≥0

[s/2−j]

∑
i=0

C(l′, h(s))
(b(3))l′

l′ !
j!

k!l!(j− k− l)!
(A30)

× (−1)i(b(3)+)l+i

C(i, h(s))
|0〉〈0|

s

∑
k′=0

[s/2]

∑
j≥0

tj
(d(3))k′

k′ !
(d(3)+)2k

(
− 1

2

)k
|0〉

×〈0|
j

∑
k≥0

(−ı)s−k′−2l′

(s− k′ − 2l′)!
φ
(3)µ(s−k′−2l′)
l′ ,k′ (x3)

s−k′−2l′

∏
i′=1

a(3)µi′
(l(3)+11 )j−k−l{ p̂(3)νa(3)+ν }s−2j−2i |0〉

×( p̂(3))2i (s− 2j)!
i!2i(s− 2j− 2i)!

= φ(2)(x2)φ
(1)(x1)

[(s−k′)/2]

∑
l′=0

j−k

∑
l≥0

[s/2−j]

∑
i=0

C(l′, h(s))δl′ ,l+i
(−1)i

C(i, h(s))
j!

k!l!(j− k− l)!

×
s

∑
k′=0

[s/2]

∑
j≥0

tjδk′ ,2k

(
− 1

2

)k j

∑
k≥0

(ı)s−k′−2l′

2k φ
(3)µ(s−k′−2l′)
l′ ,k′ (x3)δs−k′−2l′ ,s−2l−2i−2k

×Sν1 ...νs−2l−2i−2k
µ1 ...µs−k′−2l′

s−2j−2i

∏
p=1

p̂(3)νp

j−k−l

∏
r=1

ηνs−2j−2i+2r−1νs−2j−2i+2r ( p̂(3))2i (s− 2j)!
i!2i(s− 2j− 2i)!

,

and simplifying

A1 = φ(2)(x2)φ
(1)(x1)

[s/2]

∑
j≥0

tj

j

∑
k≥0

j−k

∑
l≥0

[s/2−j]

∑
i=0

C(l + i, h(s))
C(i, h(s))

j!(s− 2j)!
k!l!i!(s− 2j− 2i)!

( p̂(3))2i (A31)

× (−1)j−k−l+i

(j− k− l)!
(ı)s−2k−2l−2i

22(j−k−l)+i
φ
(3)ν(s−2l−2i−2k)
l+i,2k (x3)

s−2j−2i

∏
i=1

p̂(3)νi

j−k−l

∏
r=1

ηνs−2j−2i+2r−1νs−2j−2i+2r .

Then, using respective binomial and polynomial decompositions

∫ 3

∏
j=1

ddxjφ
(1)(x1)φ

(2)(x2)φ
(3)ν(s)
p,t (x3)

t

∏
i=1

p̂(3)νi

3

∏
j=2

δ(d)(x1 − xi) (A32)

=
∫

ddx(−i)t
t

∑
q=0

(−1)qt!
q!(t− q)!

(
∂ν0 . . . pνq φ(1)(x)

)(
∂νq+1 . . . pνt φ

(2)(x)
)
φ
(3)ν(s)
p,t (x),

( p̂(3))2i = (p(1)2 − 2p(1)µ p(2)µ + p(2)2)i = (−1)i
i

∑
q=0

i−q

∑
t=0

Cq,t
i
(
∂2

1
)q(− 2∂1ν∂ν

2
)t(

∂2
2
)i−q−t

(for ∂ν0 ≡ 1, Cq,t
i = i!

q!t!(i−t−q)! ). we have for the first term in the action (A23)
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−g
∫ 3

∏
i=1

ddxi A1

3

∏
i=2

δ(d)
(
x1 − xi

)
= −g

∫
ddx

[s/2]

∑
j≥0

tj

[s/2−j]

∑
i=0

j

∑
k≥0

j−k

∑
l≥0

C(l + i, h(s))
C(i, h(s))

Ck,l
j (A33)

× (s− 2j)!
i!

{ s−2j−2i

∑
u=0

(−1)u

u!(s− 2j− 2i− u)!

i

∑
q=0

i−q

∑
t=0

Cq,t
i (−2)t

[
∂ν0 . . . ∂νu

(
�q∂νu+1 . . . ∂νu+t φ(1)

)]
×
[
∂νu+t+1 . . . ∂νs−2j−2i+t

(
∂νu+1 . . . ∂νu+t�i−q−tφ(2)

)]} 1
22(j−k−l)+i

φ
(3)ν(s−2l−2i−2k)
l+i,2k

×
j−k−l

∏
r=1

ηνs−2j−2i+2r−1νs−2j−2i+2r .

Calculating by the receipt above, first, the similar rest three terms in the action (A23),
second the similar terms in the gauge transformations (A24) we obtain with accuracy up to
overall factor (−1)ss! the representations in the tensor form for the action (127)

S(m)3
1|(s)3

= ∑
J=(0;2;32;22)

S(J)
1

[
φ(1), φ(2), Φ(3)

J

]
= −2g

∫
ddx
[ [s/2]

∑
j≥0

tj

[s/2−j]

∑
i=0

j

∑
k≥0

j−k

∑
l≥0

C(l + i, h(s))
C(i, h(s))

(A34)

×Ck,l
j
(s− 2j)!

i!

{ s−2j−2i

∑
u=0

(−1)u

u!(s− 2j− 2i− u)!

i

∑
q=0

i−q

∑
t=0

(−1)tCq,t
i

22(j−k−l)+i−t

[
∂ν0 . . . ∂νu

(
�q

×∂νu+1 . . . ∂νu+t φ(1)
)][

∂νu+t+1 . . . ∂νs−2j−2i+t

(
∂νu+1 . . . ∂νu+t�i−q−tφ(2)

)]}
φ
(3)ν(s−2l−2i−2k)
l+i,2k

×
j−k−l

∏
r=1

ηνs−2j−2i+2r−1νs−2j−2i+2r .

+
[s/2]−1

∑
j≥0

tj

[s/2−j−1]

∑
i=0

j

∑
k≥0

j−k

∑
l≥0

C(l + i, h(s))
C(i, h(s))

Ck,l
j
(j + 1)!(s− 2(j + 1))!

j!i!

×
{s−2(j+1)−2i

∑
u=0

(−1)u

u!(s− 2(j + 1)− 2i− u)!

i

∑
q=0

i−q

∑
t=0

(−1)tCq,t
i

22(j−k−l)+i−t

[
∂ν0 . . . ∂νu

(
�q∂νu+1 . . . ∂νu+t φ(1)

)]
×
[
∂νu+t+1 . . . ∂νs−2(j+1)−2i+t

(
∂νu+1 . . . ∂νu+t�i−q−tφ(2)

)]}
φ
(3)ν(s−2−2l−2i−2k)
2|l+i,2k

×
j−k−l

∏
r=1

ηνs−2(j+1)−2i+2r−1νs−2(j+1)−2i+2r

+
[s/2]−2

∑
j≥0

tj

[s/2−j−2]

∑
i=0

j

∑
k≥0

j−k

∑
l≥0

C(l + i, h(s))
C(i, h(s))

Ck,l
j
(j + 2)!(s− 2(j + 2))!

j!i!

×
{s−2(j+2)−2i

∑
u=0

(−1)u

u!(s− 2(j + 2)− 2i− u)!

i

∑
q=0

i−q

∑
t=0

(−1)tCq,t
i

22(j−k−l)+i−t

[
∂ν0 . . . ∂νu

(
�q∂νu+1 . . . ∂νu+t φ(1)

)]
×
[
∂νu+t+1 . . . ∂νs−2(j+2)−2i+t

(
∂νu+1 . . . ∂νu+t�i−q−tφ(2)

)]}
φ
(3)ν(s−2(l+2)−2i−2k)
32|l+i,2k

×
j−k−l

∏
r=1

ηνs−2(j+2)−2i+2r−1νs−2(j+2)−2i+2r

−
[s/2]−3

∑
j≥0

tj

[s/2−j−3]

∑
i=0

j

∑
k≥0

j−k

∑
l≥0

C(l + i, h(s))
C(i, h(s))

Ck,l
j
(j + 3)!(s− 2(j + 3))!

j!i!

×
{s−2(j+3)−2i

∑
u=0

(−1)u

u!(s− 2(j + 3)− 2i− u)!

i

∑
q=0

i−q

∑
t=0

(−1)tCq,t
i

22(j−k−l)+i−t

[
∂ν0 . . . ∂νu

(
�q∂νu+1 . . . ∂νu+t φ(1)

)]
×
[
∂νu+t+1 . . . ∂νs−2(j+3)−2i+t

(
∂νu+1 . . . ∂νu+t�i−q−tφ(2)

)]}
φ
(3)ν(s−2(l+3)−2i−2k)
22|l+i,2k

×
j−k−l

∏
r=1

ηνs−2(j+3)−2i+2r−1νs−2(j+3)−2i+2r

]
,
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(for the naturals Ck,l
j ≡

j!
k!l!(j−k−l)! and usual convention ∂ν0 ≡ ∏0

i=1 ∂νi ≡ 1) and for the
gauge transformations (128)

δ[1]φ
(1)(x1) = −g

∫
ddx
[ [(s−1)/2]

∑
j≥0

tj

[(s−1)/2−j]

∑
i=0

j

∑
k≥0

j−k

∑
l≥0

C(l + i, h(s))
C(i, h(s))

Ck,l
j
(s− 1− 2j)!

i!
(A35)

×
{ s−1−2j−2i

∑
u=0

1
u!(s− 1− 2j− 2i− u)!

i

∑
q=0

i−q

∑
t=0

(−1)tCq,t
i

22(j−k−l)+i−t
Ξ(3)ν(s−1−2l−2i−2k)

l+i,2k (x)

×
[
∂νu+t+1 . . . ∂νs−1−2j−2i+t

(
∂νu+1 . . . ∂νu+t�i−q−tφ(2)

)][
∂ν0 . . . ∂νu

(
�q∂νu+1 . . . ∂νu+t

)]
×

j−k−l

∏
r=1

ηνs−1−2j−2i+2r−1νs−1−2j−2i+2r

}
δ(d)
(
x− x1

)

−
[(s−5)/2]

∑
j≥0

tj

[(s−5)/2−j]

∑
i=0

j

∑
k≥0

j−k

∑
l≥0

C(l + i, h(s))
C(i, h(s))

Ck,l
j
(s− 5− 2j)!

i!

×
{ s−5−2j−2i

∑
u=0

1
u!(s− 5− 2j− 2i− u)!

i

∑
q=0

i−q

∑
t=0

(−1)tCq,t
i

22(j−k−l)+i−t
Ξ(3)ν(s−5−2l−2i−2k)

12|l+i,2k (x)

×
[
∂νu+t+1 . . . ∂νs−5−2j−2i+t

(
∂νu+1 . . . ∂νu+t�i−q−tφ(2)

)][
∂ν0 . . . ∂νu

(
�q∂νu+1 . . . ∂νu+t

)]
×

j−k−l

∏
r=1

ηνs−5−2j−2i+2r−1νs−5−2j−2i+2r

}
δ(d)
(
x− x1

)]
≡ δ1|Ξ(3) φ(1)(x1) + δ

1|Ξ(3)
12

φ(1)(x1);

δ[1]φ
(2)(x2) = −δ[1]φ

(1)(x1)|[φ(1)(x1)→φ(2)(x2)]
. (A36)

Appendix C. Component Interacting Lagrangian Formulation for (m, s), (0, λi) for
λi ≤ 1

For the case of interaction of massless vector and scalar fields with massive fields:
(0, 1), (0, 0), (m, s) from the vertex (143) the interacting part of action (146) in the ghost-
independent component form looks

S(m)3
1|(1,0,s) = ∑

J=(0,2,32,22)
S(J)

1

[
φ(1), φ(2), Φ(3)

J

]
= −g

3

∏
i=2

δ(d)
(
x1 − xi

)[
0〈φ(2)∣∣(1〈φ(1)∣∣{s〈Φ(3)∣∣ (A37)

× K(3)
[s−1/2]

∑
j≥0

tj(Ľ(3)+
11 )jL(3)0s−1−2j + s−2〈Φ(3)

2 K(3)∣∣ [s−3/2]

∑
j≥0

tj(j + 1)(Ľ(3)+
11 )jL(3)0s−1−2(j+1)

+ s−4〈Φ
(3)
32 K(3)∣∣ [s−5/2]

∑
j≥0

tj(j + 1)(j + 2)(Ľ(3)+
11 )jL(3)0s−1−2(j+2)

− s−6〈Φ(3)
22 K(3)∣∣ [s−7/2]

∑
j≥0

tj(j + 1)(j + 2)(j + 3)(Ľ(3)+
11 )jL(3)0s−1−2(j+3)

}
L(31)+

11|0

− 1
2m3

0〈φ(1)
1

∣∣{s−1〈Φ
(3)
1 K(3)∣∣ [s−1/2]

∑
j≥0

tj(Ľ(3)+
11 )j

(
(L(3)s−2−2j)

′
[ p̂(3)µa(3)+µ

m3

+ d(3)+
]
+

1
m3
L(3)s−1−2j

)
− s−5〈Φ(3)

13 K(3)∣∣ [s−5/2]

∑
j≥0

tj(j + 1)(j + 2)(Ľ(3)+
11 )j

×
(
(L(3)s−2(j+3))

′
[ p̂(3)µa(3)+µ

m3
+ d(3)+

]
+

1
m3
L(3)0s−1−2(j+2)

)})
|0〉+ h.c.

]
.

The deformed gauge transformations (147), (148) for the massless fields
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δ[1]
∣∣φ(1)〉1 = −g

3

∏
i=2

δ(d)
(
x1 − xi

)
0〈φ(2)∣∣{s−1〈Ξ(3)K(3)∣∣ [s−1/2]

∑
j≥0

tj(Ľ(3)+
11 )j

[
(s− 1 (A38)

−2j)L(3)0s−2−2j L
(31)+
11|0 −

1
2m2

3
( p̂(1)µa(1)+µ )L(3)0s−1−2j

]
− s−5〈Ξ(3)

12 K(3)∣∣ [s−5/2]

∑
j≥0

tj
(j + 2)!

j!

×(Ľ(3)+
11 )j

[
(s− 5− 2j)L(3)0s−6−2j L

(31)+
11|0 −

1
2m2

3
( p̂(1)µa(1)+µ )L(3)0s−5−2j

]}
|0〉;

δ[1]
∣∣φ(1)

1 〉0 = − g
2

3

∏
i=2

δ(d)
(
x1 − xi

)
0〈φ(2)∣∣{s−1〈Ξ(3)K(3)∣∣ [s−1/2]

∑
j≥0

tj(s− 2j)(Ľ(3)+
11 )j (A39)

×L(3)0s−1−2j s−5 − 〈Ξ(3)
12 K(3)∣∣ [s−5/2]

∑
j≥0

tj(j + 1)(j + 2)(s− 4− 2j)(Ľ(3)+
11 )jL(3)0s−5−2j|

}
|0〉;

δ[1]
∣∣φ(2)〉0 = g ∏

i=1,3
δ(d)
(
x2 − xi

)[
1〈φ(1)∣∣{s−1〈Ξ(3)K(3)∣∣ [s−1/2]

∑
j≥0

tj(Ľ(3)+
11 )j

[
(s− 1 (A40)

−2j)L(3)0s−2−2j L
(31)+
11|0 −

1
2m2

3
( p̂(1)µa(1)+µ )L(3)0s−1−2j

]
− s−5〈Ξ(3)

12 K(3)∣∣ [s−5/2]

∑
j≥0

tj
(j + 2)!

j!

×(Ľ(3)+
11 )j

[
(s− 5− 2j)L(3)0s−6−2j L

(31)+
11|0 −

1
2m2

3
( p̂(1)µa(1)+µ )L(3)0s−5−2j

]}
|0〉

+
1
2 0〈φ(1)

1

∣∣{s−1〈Ξ(3)K(3)∣∣ [s−1/2]

∑
j≥0

tj(s− 2j)(Ľ(3)+
11 )jL(3)0s−1−2j

−s−5〈Ξ(3)
12 K(3)∣∣ [s−5/2]

∑
j≥0

tj(j + 1)(j + 2)(s− 4− 2j)(Ľ(3)+
11 )jL(3)0s−5−2j|

}
|0〉

+
1

2m3
0〈Ξ(1)

{∣∣s−1〈Φ
(3)
1 K(3)∣∣ [s−1/2]

∑
j≥0

tj(s− 2j)(Ľ(3)+
11 )j

(
(L(3)s−2−2j)

′
[ p̂(3)µa(3)+µ

m3

+d(3)+
]
+

1
m3
L(3)0s−1−2j

)
−s−5〈Φ(3)

13 K(3)∣∣ [s−5/2]

∑
j≥0

tj(j + 1)(j + 2)(s− 2(j + 2))(Ľ(3)+
11 )j

×
(
(L(3)s−2(j+3))

′
[ p̂(3)µa(3)+µ

m3
+ d(3)+

]
+

1
m3
L(3)0s−1−2(j+2)

)}]
|0〉,

and for the components from the massive field
∣∣χ(3)〉s (149)

δ1
∣∣Φ(3)〉s =

g
2m3

0〈A(12)
(φ(2) ,Ξ(1))

∣∣ [s−1/2]

∑
j≥0

tj(Ľ(3)+
11 )jL(3)0s−1−2j

[ p̂(3)µa(3)+µ

m3
+ d(3)+

]
|0〉, (A41)

δ1
∣∣Φ(3)

2 〉s−2 =−
g

2m3
0〈A(12)

(φ(2) ,Ξ(1))

∣∣[s−3/2]

∑
j≥0

tj(j+1)(Ľ(3)+
11 )jL(3)0s−3−2j

[ p̂(3)µa(3)+µ

m3
+d(3)+

]
|0〉, (A42)

δ1
∣∣Φ(3)

22 〉s−6 =−
g

2m3
0〈A(12)

(φ(2) ,Ξ(1))

∣∣[s−7/2]

∑
j≥0

tj
(j+3)!

j!
(Ľ(3)+

11 )jL(3)0s−7−2j

[ p̂(3)µa(3)+µ

m3
+d(3)+

]
|0〉, (A43)

δ1
∣∣Φ(3)

32 〉s−4 = − g
2m3

0〈A(12)
(φ(2) ,Ξ(1))

∣∣[s−5/2]

∑
j≥0

tj
(j+2)!

j!
(Ľ(3)+

11 )jL(3)0s−5−2j

[ p̂(3)µa(3)+µ

m3
+d(3)+

]
|0〉 (A44)

δ1
∣∣Φ(3)

1 〉s−1 =
g
2 0〈A(12)

(φ(2) ,Ξ(1))

∣∣ [s−1/2]

∑
j≥0

tj(Ľ(3)+
11 )jL(3)0s−1−2j|0〉, (A45)

δ1
∣∣Φ(3)

13 〉s−5 =
g
2 0〈A(12)

(φ(2) ,Ξ(1))

∣∣ [s−5/2]

∑
j≥0

tj
(j + 2)!

j!
(Ľ(3)+

11 )jL(3)0s−5−2j|0〉, (A46)

(for 0〈A
(12)
(φ(2),Ξ(1))

∣∣ = ∏2
i=1 δ(d)

(
x3 − xi

)
0〈φ(2)

∣∣0〈Ξ(1)
∣∣).
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Appendix D. On Consistency of Lagrangian Dynamics for Interacting Higher-Spin
Fields in Constrained BRST Approach

Let the field and gauge parameter vectors with given spins s1, s2, s3 be traceless,
and the incomplete total BRST operator Qtot

c = ∑j Q(j)
c forms with traceless constraints and

constrained spin operators closed superalgebra:

L(i)
11

(
|χ(j)

c 〉sj , |Λ
(j)
c 〉sj

)
= 0, (A47)

σ
(i)
c

(
|χ(i)

c 〉si , |Λ
(i)
c 〉si

)
=
(

si − 1 +
d + θmi ,0

2

)(
|χ(i)

c 〉si , |Λ
(i)
c 〉si

)
, (A48)

(Qtot
c )2 = [Qtot

c , L(i)
11 } = [Qtot

c , σ
(i)
c } = 0, [σ

(i)
c , L(j)

11 } = −2δijL(j)
11 , (A49)

(for i, j = 1, 2, 3) where with account for (6), (7), (10)

L(i)
11 = L̂(i)

11 |b(i)+=b(i)=0 = l(i)11 − (1/2)(d(i))2 + η
(i)
1 P

(i)
1 ≡ l̂(i)11 + η

(i)
1 P

(i)
1 , (A50)

σ
(i)
c = σ(i)|

b(i)+=η
(i)+
11 =P (i)+

11 =0
= g(i)0 + θmi ,0d(i)+d(i) +

1
2
+ η

(i)+
1 P (i)

1 − η
(i)
1 P

(i)+
1 , (A51)

|χ(i)
c 〉si = |χ

(i)〉si |b(i)+=η
(i)+
11 =P (i)+

11 =0
= |Φ(i)〉si −P

(i)+
1

(
η
(i)
0 |Φ

(i)
1 〉si−1 + η

(i)+
1 |Φ(i)

2 〉si−2
)
, (A52)

|Λ(i)
c 〉si = |Λ

(i)〉si |b(i)+=η
(i)+
11 =P (i)+

11 =0
= P (i)+

1 |Ξ(i)〉si−1, (A53)

Q(i)
c = Q(i)|

b(i)+=η
(i)+
11 =P (i)+

11 =0
= η

(i)
0 l(i)0 + η

(i)+
1 ľ(i)1 + ľ(i)+1 η

(i)
1 + ıη(i)+

1 η
(i)
1 P

(i)
0 . (A54)

Then, the Lagrangian formulation for free irreducible higher spin fields of spins
(s1, s2, s3) (massless or massive) is determined by the gauge-invariant Lagrangian with
holonomic (traceless) constraints

∑
i
Smi

0C|si
[|χ(i)

c 〉si ] = ∑
i

∫
dη

(i)
0 si 〈χ

(i)
c |Q(i)|χ(i)

c 〉si , δ0
(
|χ(i)

c 〉si , |Λ
(i)
c 〉si

)
=
(
Q(i)|Λ(i)

c 〉si , 0
)
. (A55)

Note, that any field representative (
∣∣χ̃(i)

c 〉si ) from the gauge orbit

O
0|χ(i)

c
=
{∣∣χ̃(i)

c 〉si

∣∣ ∣∣χ̃(i)
c 〉si =

∣∣χ(i)
c 〉si + Q(i)

c
∣∣Λ(i)

c 〉si , ∀
∣∣Λ(i)

c 〉si

}
(A56)

remains by traceless if the field
∣∣χ(i)

c 〉 and any gauge parameter
∣∣Λ(i)

c 〉 are traceless because

of the commutation of L(i)
11 with Qtot

c (A49).
In case of cubic interaction adopted for constrained BRST approach the interacting

action and deformed gauge transformations are defined according to (21), (22) without
ghost and auxiliary oscillators associated with trace constraints

S(m)3
[1]C|(s)3

[χ
(1)
c , χ

(2)
c , χ

(3)
c ] =

3

∑
i=1
Smi

0C|si
+ g

∫ 3

∏
e=1

dη
(e)
0

(
se 〈χ

(e)
c
∣∣V(3)

c 〉
(m)3
(s)3

+ h.c.
)

, (A57)

δ[1]
∣∣χ(i)

c 〉si = Q(i)
c
∣∣Λ(i)

c 〉si − g
∫ 2

∏
e=1

dη
(i+e)
0

(
si+1 〈Λ

(i+1)
c

∣∣si+2 〈χ
(i+2)
c

∣∣
+ (i + 1↔ i + 2)

)∣∣Ṽ(3)
c 〉

(m)3
(s)3

(A58)

with unknown vertex operators |V(3)
c 〉

(m)3
(s)3

, |Ṽ(3)
c 〉

(m)3
(s)3

. In particular case, when these op-

erators coincide: V(3)
c 〉

(m)3
(s)3

= Ṽ(3)
c 〉

(m)3
(s)3

, the requirement of consistent deformation for the
classical action and initial gauge transformations means the validity of the equations (for
i = 1, 2, 3)

Qtot
c
∣∣V(3)

c 〉
(m)3
(s)3

= 0, L(i)
11

∣∣V(3)
c 〉

(m)3
(s)3

= 0, (A59)

σ
(i)
c
∣∣V(3)

c 〉
(m)3
(s)3

=
(

si +
d− 2 + θmi ,0

2

)∣∣V(3)
c 〉

(m)3
(s)3

. (A60)
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Let us verify that any representative (
∣∣χ̃(i)

c 〉si from arbitrary gauge orbit O
[1]|χ(i)

c

O
[1]|χ(i)

c
=
{∣∣χ̃(i)

c 〉si

∣∣ ∣∣χ̃(i)
c 〉si =

∣∣χ(i)
c 〉si + δ[1]|χ(i)〉si , ∀

∣∣Λ(j)
c 〉si , j = 1, 2, 3

}
(A61)

for interacting fields remains by traceless after applying the deformed gauge transforma-
tions (as it was conducted for the undeformed fields) and also check the same for the
deformed field equations. Then, it is sufficient to find that

L(i)
11 δ[1]|χ

(i)
c 〉si = L(i)

11 Q(i)
c |Λ

(i)
c 〉si − g

∫
dηi+1

0 dηi+2
0

(
si+1 〈Λ

(i+1)
c

∣∣si+2 〈χ
(i+2)
c

∣∣
+ (i + 1↔ i + 2)

)
L(i)

11

∣∣V(3)
c 〉

(m)3
(s)3

= 0, (A62)

L(j)
11

−→
δ S(m)3

[1]C|(s)3

δsi 〈χ
(i)
c
∣∣ = L(j)

11 Q(i)
c |χ

(i)
c 〉si + g

∫ 2

∏
e=1

dη
(i+e)
0 si+e 〈χ

(i+e)
c

∣∣L(j)
11

∣∣V(3)
c 〉

(m)3
(s)3

= 0. (A63)

We proved, that imposing of only traceless constraints on fields and gauge parameters
(A47) represents the necessary but not sufficient condition for the consistency of deformed
(on cubic level) Lagrangian dynamics. Indeed, in this case the latter term in (A62), (but not
in (A63)) does not vanish leading to L(i)

11 δ[1]|χ
(i)
c 〉si 6= 0 (but L(j)

11
−→
δ S(m)3

[1]C|(s)3
/δsi 〈χ

(i)
c
∣∣ = 0).

Indeed, due to solutions for traceless constraints (A50) the fields and gauge parameters
take the form (for l̂(i)11

(∣∣Φ(i)
1 〉,

∣∣Ξ(i)〉
)
≡ 0)

(∣∣χ(i)
c 〉si ,

∣∣Λ(i)
c 〉si

)
=
(∣∣Φ(i)〉si −P

(i)+
1

[
η
(i)
0

∣∣Φ(i)
1 〉si−1 − η

(i)+
1

∣∣l̂(i)11 Φ(i)〉si−2
]
,P (i)+

1

∣∣Ξ(i)〉si−1

)
. (A64)

In view of completeness of the inner product in the total Hilbert space in question the
solutions (A64) generate (hermitian) projectors P(j)

m|11, m = 0, 1 on the subspaces of traceless
field and gauge vectors:(

si 〈χ
(i)
c
∣∣, si 〈Λ

(i)
c
∣∣) ≡ (si 〈χ

(i)
c
∣∣P(j)

0|11, si 〈Λ
(i)
c
∣∣P(j)

1|11

)
, (A65)

such that the following cubic vertices:

(∣∣V(3)
c 〉

(m)3
(s)3

, V̂(3)
c 〉

(m)3
(s)3

)
=

(
3

∏
j=1

P(j)
0|11

∣∣V(3)
c 〉

(m)3
(s)3

, P(i+1)
0|11 P(i+2)

1|11

∣∣V(3)
c 〉

(m)3
(s)3

)
, (A66)

survive, respectively, in the action (A57) and in the gauge transformations (A58). Namely,
the vertex

∣∣V(3)
c 〉

(m)3
(s)3

respects the irreducibility of the triple of interacting higher spin fields,

whereas V̂(3)
c 〉

(m)3
(s)3

does not respect that property, because of

L(i)
11

∣∣V̂(3)
c 〉

(m)3
(s)3
6= 0. (A67)

Therefore, if the cubic vertex is not vanishing at acting of L(i)
11 constraints, then, first,

the deformed Lagrangian dynamics is contradictory; second, the interacting fields do
not belong to the Poincaré group irreducible space of a certain mass and spin (they do
not satisfy the traceless condition (A61) along the any entire gauge orbit O

[1]|χ(i)
c

); third,

the supermatrix of second derivatives of the deformed action with respect to all the fields
evaluated on the deformed mass shell has proper eigen-vectors not respecting traceless
properties (A67), albeit for the undeformed action. Therefore, the number of physical
degrees of freedom, which is determined by one of the independent initial data for the
equations of motion (partial differential equations) due to (A63) for the interacting model is
differed with that for the undeformed model with vanishing traceless constraints evaluated
on respecting equations of motion.
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We emphasize, the problem of deriving covariant cubic vertices for interacting higher
integer spin fields realizing irreducible Poincare group representations has not been com-
pletely solved in the BRST approach with an incomplete BRST operator [18].

It is easy to find L(i)
11 -traceless solution

∣∣V(3)
c 〉

(m)3
(s)3
≡ |VM(3)

irrep 〉 of the Equations (A59)

with Qtot
c -closed vertex

∣∣V(3)
c 〉

(m)3
(s)3

as follows

∣∣V(3)
c 〉

(m)3
(s)3

=

(
1−∑

i

1
si − 2 + d/2

L(i)+
11 L(i)

11 (A68)

+∑
i1

[ 2

∏
k=1

1
k(si1 − 1− k + d/2)

(L(i1)+
11 )2(L(i1)

11 )2 + ∑
i2>i1

2

∏
k=1

1
(sik − 2 + d/2)

L(ik)+
11 L(ik)

11

]

−∑
i1

[ 3

∏
k=1

1
k(si1 − 1− k + d/2)

(L(i1)+
11 )3(L(i1)

11 )3 + ∑
i2>i1

2

∏
k=1

1
k(si1 − 1− k + d/2)

×

× 1
(si2 − 2 + d/2)

(L(i1)+
11 )2L(i2)+

11 (L(i1)
11 )2L(i2)

11 +
3

∏
k=1

1
(sk − 2 + d/2)

L(k)+
11 L(k)

11

]
+ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+(−1)∑i
[ si

2

] 3

∏
i=1

{ [ si
2

]
∏
k=1

1
k(si − 1− k + d/2)

(L(i)+
11 )

[ si
2

]
(L(i)

11 )

[ si
2

]})∣∣V(3)
c 〉

(m)3
(s)3

.

The substituting of found cubic vertex
∣∣V(3)

c 〉 (A68) into (A57) and (A58), leads for the
same properties of the Lagrangian formulation for interacting fields with given spins as
ones for undeformed model for triple of free fields (In case of the BRST-BV approach with
incomplete BRST operator when the field and transformed (into ghost field) gauge param-
eter are combined together with theirs antifield vectors within unique generalized field-
antifield vector, |χ(i)

g|c〉si , the deformed minimal BRST-BV action,S(m)3
[1]C|(s)3

[χ
(1)
g|c , χ

(2)
g|c , χ

(3)
g|c ] =

S(m)3
[1]C|(s)3

[χ
(1)
c , χ

(2)
c , χ

(3)
c ]
∣∣
(χ

(i)
c →χ

(3)
g|c )

obtained from deformed classical action (A57) (see for

details [81] to be applicable for the method with off-shell constraints) will completely select
the traceless parts from the vertex

∣∣V(3)
c 〉

(m)3
(s)3

in the form
∣∣V(3)

c 〉
(m)3
(s)3

(A66) or (A68) without

the vertex V̂(3)
c 〉

(m)3
(s)3

being by the source for destroying an irreducibility for interacting
higher spin fields in the constrained BRST approach [18]).

Finally, when expressing of the ghost-independent fields |Φ(i)
k 〉si−k, k = 1, 2 in the

triplet (A52) in terms of the single Fronsdal field |Φ(i)〉si (for simplicity for triple of mass-
less fields, i.e., for vanishing d(i)+) from undeformed equations of motion and traceless
constraints as

|Φ(i)
1 〉si−1 = l(i)1 |Φ

(i)〉si − l(i)+1 |Φ(i)
2 〉si−2, l(i)11 |Φ

(i)〉si = −|Φ
(i)
2 〉si−2 (A69)

we obtain Fronsdal Lagrangians with single double traceless fields |Φ(i)〉si for the actions

Smi
0C|si

, so that the components of the cubic vertex
∣∣V(3)

c 〉
(m)3
(s)3

after calculating of ghost-
pairings in (A57) and (A58) should satisfy to the consequences from the traceless equations
to obtain the interacting action which encodes the noncontradictory dynamics. Unfortu-
nately, we can not find a solution of this problem elsewhere, see e.g., in [19–21] where the
cubic vertices have been constructed in the Lorentz covariant form.
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