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Abstract: In the realm of data analysis and machine learning, achieving an optimal balance of feature
importance, known as feature weighting, plays a pivotal role, especially when considering the
nuanced interplay between the symmetry of data distribution and the need to assign differential
weights to individual features. Also, avoiding the dominance of large-scale traits is essential in
data preparation. This step makes choosing an effective normalization approach one of the most
challenging aspects of machine learning. In addition to normalization, feature weighting is another
strategy to deal with the importance of the different features. One of the strategies to measure the
dependency of features is the correlation coefficient. The correlation between features shows the
relationship strength between the features. The integration of the normalization method with feature
weighting in data transformation for classification has not been extensively studied. The goal is to
improve the accuracy of classification methods by striking a balance between the normalization step
and assigning greater importance to features with a strong relation to the class feature. To achieve
this, we combine Min–Max normalization and weight the features by increasing their values based
on their correlation coefficients with the class feature. This paper presents a proposed Correlation
Coefficient with Min–Max Weighted (CCMMW) approach. The data being normalized depends
on their correlation with the class feature. Logistic regression, support vector machine, k-nearest
neighbor, neural network, and naive Bayesian classifiers were used to evaluate the proposed method.
Twenty UCI Machine Learning Repository and Kaggle datasets with numerical values were also used
in this study. The empirical results showed that the proposed CCMMW significantly improves the
classification performance through support vector machine, logistic regression, and neural network
classifiers in most datasets.

Keywords: data normalization; data standardization; feature weighting; correlation matrix; correla-
tion coefficient; classification method; regression method

1. Introduction

Data preprocessing is one of the most crucial steps in machine learning. Using impor-
tant and necessary methods to prepare raw data correctly will positively affect the output
and improve a model’s performance [1,2]. The data preparation stage includes many tasks,
such as removing outliers and noise, integrating data from diverse sources, dealing with
missing data, and transforming data into a scale suitable for analysis. This stage aims to
eliminate the impact of systematic sources of variation as much as is feasible [3,4]. While
data scaling is considered a treatment for domination issues in most cases, it will have
a reverse impact when giving the same contribution to a feature that is irrelevant to the
target feature. In this case, using feature weighting to select essential features is one of the
solutions, and using it to balance a feature based on its importance is the other possible solu-
tion. In many data-mining algorithms, such as neural network algorithms, clustering, and
distance-based algorithms, data rescaling is an essential stage prior to the training phase
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to avoid misleading results and speed up the learning process [5–7]. To avoid numeric
features dominating other numeric values, transforming all feature values into a standard
range will give equal importance to all features [4,6]. Many research findings suggest that
data normalization and standardization substantially impact classification and clustering
results [8]. The effect of data normalization on the results of many machine learning
(ML) methods has been studied, such as its effect on classification accuracy [9,10], neural
network training [11,12], the clustering process [8], and outlier detection methods [13].
When data have been normalized, all features have an equal contribution to ML results,
but it does not mean that these features are equally important. In some cases, data have
many irrelevant and redundant features. Ref. [14] proposed the Adaptive Distinct Feature
Normalization Strategy, which enhances the fusion of sparse topics and deep features by
adaptively normalizing them separately. This results in a clearer feature description and
decreases confusion in complex scenes. The presence of undesired features makes learning
difficult and increases the feature’s space. Generally, normalization gives all features the
same contribution to a model. But removing any dominant features may reduce the model’s
performance. In this case, the behavior of data plays a vital role in the performance [15].

In the same context, feature weighting is one of the essential stages since it is used to
adjust the feature values based on their contribution to the model and the result [16]. Many
variable importance measurements are presented and categorized into sub-categories
based on the techniques used. One of those techniques is the correlation coefficient, a
parametric regression technique. Another different strategy is the nonparametric strategy
which includes multiple techniques; one example is Random Forest [17]. Many researchers
have used variable importance measurement strategies and applied them to enhance the
classifier’s performance, such as [18], naive Bayes text classifiers [19,20], the fuzzy clustering
method, and feature weighting used for the neural network [21,22], with SVMs [23]. Also,
feature weighting has been used as a feature selection strategy to know the influence of
features on results and then exclude irrelevant, redundant features [24–26], as well as the
information gain attribute [27].

In contrast, a correlation coefficient is a measurement tool used to look for relationship
patterns between different characteristics [28]. Therefore, a bivariate study measures the
degree of association between two variables and the direction of the relationship [29]. In
this context, the correlation coefficient can be considered as a variable importance method
amongst parametric regression techniques when used to indicate linear dependence [17].
Various types of correlation coefficient formulas have been presented depending on the
data type (numerical, ordinal, or nominal) and the type of correlation (linear or non-
linear relationship) [30]. Pearson’s correlation coefficient is a measurement method to
explore the linearity of a correlation [31] for numerical data only. Although the correlation
coefficient has been used mainly in statistical analysis to discover relationships among
variables, there are many other uses for correlation metrics, especially in data mining. For
example, correlation coefficients have been used for feature selection [32–34], missing data
imputation methods [35–37], and feature quality measurement to find the best splitting
features and points of decision trees [38].

Normalization is a preprocessing step applied to data to give features equal impor-
tance and prevent the domination of a few features. The impact of normalization methods
has been studied in many works [39–41]. The Min–Max normalization method is one
of the best normalization methods that has been found to improve the performance of
classifiers [42,43]. Data standardization has also produced better outcomes in neural net-
work training, though the benefit decreases with increasing network and sample sizes [11].
Choosing the appropriate normalization method is essential, as it affects the performance
of supervised learning algorithms [44]. Also, Ref. [40] examined the impact of four normal-
ization techniques on forecasting. They found that standardization calculations have a high
affectability, and that a cautious approach is needed to deal with the outcomes. The impact
of normalization on the performance of different methods such as outlier detection, violent
video classification, backpropagation neural networks, and classification performance has
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been studied, and it was found that the performance of normalization depends on both
the data and the technique used [13,45]. Due to the importance of normalization, [46]
proposed a new normalization method to only deal with integer values. The authors of [47]
proposed two normalization methods, a “new approach to Min-Max” and a “new approach
to Decimal Scaling,” to reduce the impact of large feature values and represent them in a
small range. These methods are based on the Min–Max and Decimal Scaling normalization
techniques. The study performed well with the k-means clustering method, but only that
method was used for evaluation.

At the same time, feature weighting is another best strategy to prepare data to improve
a method’s accuracy. Feature weighting methods are strategies for correlation analysis
and dimension reduction, where the weight represents the contribution of each feature
dimension to classification [48]. Ref. [49] proposed feature weighting methods based on
similarity calculations using k-means, fuzzy c-means, and mean shift clustering. The
weight of each feature is obtained by calculating the difference between original data and
cluster centers, dividing by the mean of differences, and multiplying by the feature value
in the dataset.

Ref. [50] proposed a support vector machine (SVM) with an information gain approach
to improve fraud detection accuracy in card transactions. The approach involves normal-
izing the data using Min–Max normalization and reducing features through information
gain-based feature selection. Discretization is carried out before normalization. Ref. [51]
proposed a two-stage strategy combining normalization and supervised feature weighting
using the Pearson correlation coefficient (PCC) and Random Forest Feature Importance
estimation. The first stage involves normalizing the data using standardization. In contrast,
the second stage involves calculating feature weights through the PCC and Random Forest
Feature Importance and multiplying each feature value by weight. Ref. [52] proposed a
dynamic feature-weighting algorithm to address multi-label classification by minimizing an
objective function to bring together samples with the same label and separate samples with
different labels. The weight function is used to evaluate the method with a multi-label clas-
sifier. Ref. [53] proposed a Correlation-Based Hierarchical k-Nearest Neighbor Imputation
(CoHiKNN) method that weights the distance based on the correlation between the features
and the label. The correlation coefficient is used to weigh the distance and impute missing
values using k-NN. The weighting strategy multiplies each difference between two points
by the correlation coefficient value of the feature. Ref. [54] proposed a hybrid data-scaling
method combining Min–Max and Cox-Box to improve fault classification performance in
compressors. The Min–Max method rescales data to one range, while Cox-Box transforms
non-linear distributions into normal ones.

However, although it is essential to normalize the data and give all features the same
contribution to override the feature’s dominance over the results of the model, in many
cases, the importance of variables varies from one feature to another. Also, normalization
has some limitations, such as destroying the original structure of the dataset [50]. In
addition, using the feature weight for selecting important features has some limitations,
in that the selected features still have an equal contribution. Also, using a subset of the
dataset can decrease the quality and results of the correlation coefficient due to low instance
numbers, affecting the correct weight assigned to each feature [53].

In this work, we tried to balance the importance of normalization with the various
importance of features and reduce feature domination by employing data standardization,
as well as maximizing the feature contribution by maximizing the value based on its
correlation coefficient. The maximization limit parameter is proposed to control the new
range of feature values. We investigate the influence of normalization on the classification
and regression methods using three data types in two phases. First, we implement the
un-normalized data (raw data) and normalized data using one normalization method. In
the second phase, the normalized data are used to weight the values depending on the
association among the values with the class feature. This step calculates the correlation
coefficient between the class feature and the rest of the features. This step increases the
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contribution of each feature based on its relationship with the class. Each value will increase
based on its correlation, where features with higher correlation will experience a greater
increase compared to features with lower correlation. This weighting strategy significantly
influences the model construction, directing more attention towards features exhibiting
high correlation. The features with strong correlation will potentially increase the model’s
accuracy and achieve more power in classification algorithms.

2. Materials and Methods

A new weighting strategy is proposed using the correlation value between features
for data representation. The new data representation values are used to increase the
contribution of data. Each value will be maximized depending on the feature’s actual value
and Pearson correlation coefficient. Calculating the correlation between the class and the
rest of the features is the initial step for weighting the feature values. The new maximum
values will be calculated based on the actual and correlation coefficient values. First,
all features will be normalized using Min–Max (0,1) to give the same contribution to all
features, then increase the values using its correlation coefficient. The ensuing maximization
step carefully calculates new maximum values by considering both the original feature
values and their corresponding correlation coefficients. This dual-factor approach ensures
that the augmented values strike a balance between the inherent importance of features
and their contextual significance, enhancing the robustness of the data representation
methodology. The strategy’s dual consideration of raw feature values and correlation
coefficients establishes a nuanced approach that not only maximizes the impact of each
feature but also captures the intricacies of their relationships within the dataset.

As the Min–Max (0,1) normalization method represents all features in the same range
(0–1), the proposed method will modify this concept, where each feature will have its own
range. If we assume that f1 is a feature with 0 correlation, all the values will represent the
same value due to having no correlation with the class label. On the other hand, the features
with a correlation of 1 with the class label will represent the new maximum value. The
maximum value is determined based on the coefficient of change (C) and the correlation
R-value. The relationship is direct between the coefficient of change and the maximum
value, indicating that as the coefficient increases, the maximum value also increases, and
vice versa. The maximum possible value for each feature corresponds to the correlation
value of 1 (strong correlation) for that feature. In this scenario, strong correlation is the only
case where new values can attain the maximum values.

Datasets and Experiments

The proposed method will calculate the correlation among features using the Pear-
son correlation coefficient (PCC) (Equation (1)) and Min–Max normalization (MMN)
(Equation (2)). new_min and new_max denote the updated range of feature values, with
new_min set to 0 and new_max set to 1 in the context of Min–Max scaling (0,1). The new
weighted value is created using Equation (3).

r =
∑ m

i=1(xi − x)(yi − y)√
∑m

i=1(xi − x)2
√

∑ m
i=1(yi − y)2

. (1)

MMN, x
′
i,n =

xi,n −min(xi)

max(xi)−min(xi)
(new_Max− new_Min) + new_Min. (2)

New weighted value, v
′

=
( Vi,j−mij

maj−mij
(new_max− new_min) + new_min

)
+C
( Vi,j−mij

maj−mij
(new_max− new_min) + new_min

)
.Corr

(
Vj, Vtarget

)
.

(3)
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where the following are defined in Table 1:

Table 1. Definition of parameters in Equation (3).

v′ the new weighted value mij Minimum value of column j

Vi,j each original value maj Maximum value of column j

C the parameter to adjust the new range new_min New minimum value (0)

Corr
(

Vj, Vtarget

) the correlation coefficient among column j and
column label using PCC new_max New maximum value (1)

The following, Algorithm 1 explains the steps of the proposed method CCMMW.

Algorithm 1 CCMMW algorithm

Algorithm: Normalization + Weighting data using Min-Max01 and CC
to improve the accuracy of classification methods
Input: Un-Data: un-normalize data
Output: CCoT Correlation Coefficient of Label feature, Normalized data (No-Data), Correlation
Weighted
Normalized Data (CCMMW-Data)
CCoT = Calculate the correlation coefficient of each feature with the Label feature corr(Vj,VTarget)
using
the PCC method as in Equation (1)
Calculate No-Data using MMN normalization method, Equation (2)
For i = 1 to n− 1, where n is the number of features in the data
Calculate CCMMW-Data using the proposed method as in Equation (3)

Assume a dataset (D) with six features (F1 to F6) where D is the normalized Min–Max
(0,1) data. As a result of the MMN method, each small value of features is presented as 0,
and the maximum value is presented as 1, as in the original normalized Min–Max 0,1 data
in Table 2. Also, the correlation among the complete dataset is shown in Table 3, where
each correlation coefficient (CC) value represents the correlation coefficient value between
the feature and the class label feature. Table 2 shows three sets of values as the results of
CCMMW. The first is CCMMW(1), where the table is produced with a C parameter value
of 1. Also, CCMMW(5) is produced using the CCMMW method with a value of 5 for the C
parameter. Finally, CCMMW(10) is the results of the CCMMW method using a value of 10
for the C parameter.

Table 2. CC values among features and the label feature using the proposed weight feature.

Original Normalized
Min–Max (0,1) Data CCMMW (1) CCMMW (5) CCMMW (10)

F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6 F1 F2 F3 F4 F5 F6

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.28 0.31 0.38 0.45 0.50 0.25 0.38 0.56 0.88 1.25 1.50 0.25 0.50 0.88 1.50 2.25 2.75
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.55 0.63 0.75 0.90 1.00 0.50 0.75 1.13 1.75 2.50 3.00 0.50 1.00 1.75 3.00 4.50 5.50
0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.83 0.94 1.13 1.35 1.50 0.75 1.13 1.69 2.63 3.75 4.50 0.75 1.50 2.63 4.50 6.75 8.25
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.25 1.50 1.80 2.00 1.00 1.50 2.25 3.50 5.00 6.00 1.00 2.00 3.50 6.00 9.00 11.00

Table 3. CC among features and the label feature.

Feature F1 F2 F3 F4 F5 F6

CC value 0.00 0.10 0.25 0.50 0.80 1.00

As shown in Figure 1, the algorithm aims to improve the accuracy of classification
methods by applying normalization and correlation-based weighting techniques to the
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input data. It starts by calculating the correlation coefficient between each feature and the
target feature using the PCC method. Then, it normalizes the data using the Min–Max
method to scale the values between 0 and 1. Next, it calculates the correlation-weighted
normalized data for each feature, incorporating the correlation coefficients obtained. The
algorithm outputs the correlation coefficient of the target feature, the normalized data,
and the correlation-weighted normalized data. By normalizing the data and incorporating
feature–target correlations, the algorithm aims to enhance the classification accuracy by
giving more importance to relevant features in the classification process.
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Figure 1. The general CCMMW methodology.

The general research methodology is presented in Figure 1; two strategies are used
to transform the data prior to new data creation. One is transformed using existing and
new approaches to normalization methods. The second uses CC values to weigh the
features for representing the data, and then uses the new data to improve the accuracy
of classification approaches. Then, the performance of the proposed method is compared
using un-normalized and normalized data with different classifiers.

Experiments were conducted on twenty datasets comprising both discrete and contin-
uous features to assess the proposed method’s consistency. These datasets were carefully
selected from reputable sources, including the Machine Learning Repository UCI and Kag-
gle Repository databases. These databases are renowned for their diverse and well-curated
datasets, making them valuable resources for empirical studies in this field. Table 4 pro-
vides an overview of the datasets. Also, various data sizes are considered, where various
instances and features are used in the study.

In this experiment, to analyze the effect of weighting features based on its CC on
the classification results, comparisons are made between the un-normalized (RAW) data,
the normalized Min–Max (0,1) (MM) method, the Two-Stage Min–Max with Pearson (2S-
P) method, the Two-Stage Min–Max with RF Feature Importance (2S-RF) method, the
New Approach Min–Max Normalization method (NAMM), and the proposed CCMMW
approach. All codes are written in Python 3.7. Jupyter (Anaconda 3). The SciKitLearn



Symmetry 2023, 15, 2185 7 of 18

Library was used to implement all methods in this study. Five classification methods were
used to investigate the impact on the performance and the improvement of the proposed
method. The classifiers are the logistic regression (LR), SVM, k-nearest neighbor (kNN),
neural network (NN), and naive Bayes (NB) classifiers. Finally, all experimental results
were performed on numerical datasets.

Table 4. Experiment datasets.

Datasets Type of Data # of Instances # of Features # Classes

Breast Cancer 1 real 569 30 2
QSAR real 1055 41 2
Sonar real 208 60 2

PARKINSON real 195 22 2
Wine Integer + real 6463 12 2

Monkey Integer 556 6 2
German real 1000 24 2

Musk Integer 6598 166 2
liver Integer + real 345 6 2

wholesale Integer 440 8 2
Spam real 4601 57 2

Heart s Cleveland Integer + real 1190 11 2
Magic real 19,020 10 2
Blood Integer 748 4 2

Breast Cancer Coimbra real 116 9 2
Vehicle Integer 846 18 4
Bupa Integer + real 345 6 2
Glass real 214 9 6
Letter Integer 20,000 16 26
Ecoli real 336 7 8

In the evaluation stage, the effect of using the CC to weigh the normalized values was
evaluated based on the type of algorithm that was applied to the data. For classification
purposes, the result was evaluated based on the accuracy rate. Ten cross-validations and
the experiment were repeated ten times, and the results were averaged for further analysis.
For the k-NN classifier, 3 neighbors were considered as k values. In the kernel function
of the SVM, RBF was used as the kernel parameter value, and all other settings used the
default values.

3. Results
3.1. The Evaluation of Different Classifiers Based on the Best Result of CCMMW

The best results of CCMMW from 10 available values in the experiment results are
shown in Figure 2. The ten results were due to the setting of the C parameter, which we
used to adjust the new range of data. The impact of the various values of C is discussed in
the further section of this discussion.

In the following results, the classification accuracy is presented. Bold values are the
highest out of the six methods, and the CCMMW values are underlined when the value is
the highest value after the raw values.

3.2. Logistic Regression (LR) Classifier

Table 5 shows that the CCMMW method obtained the highest accuracy in 12 out of
the 20 datasets, and an extra four datasets if the raw data are excluded. It shows that the
best accuracy improvement using the CCMMW + LR classifier compared with the MM
method was 5.46%, obtained from the Letter dataset. The accuracy of MM was 71.46%,
whereas CCMMW gave 76.92%. Although this case had the best raw data accuracy, the
proposed method was still better than the other strategies. Also, the accuracy decreased in
three cases out of twenty, whereas the worst was −1.24%.
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Figure 2. The CCMMW performance on different classifiers. (a) LR. (b) SVM. (c) k-NN. (d) NN.
(e) NB.

As in Figure 2a, we find that, through a comparison between the proposed method
and the MM normalization method, the proposed method excelled in most cases, as it
excelled with 17 databases in this study, while MM excelled in only three cases, with an
outperformance that did not exceed 1.24%. In addition, 2S-P outperformed in three cases
while CCMMW outperformed in 17 cases, with a high difference in the Letter dataset,
where 2S-P was 49.96% while CCMMW was 76.92%. Also, when comparing the results
with 2S-RF, we find that, the same as with 2S-F, the proposed method outperformed 2S-RF
with 17 datasets. In comparison, only 2S-RF outperforms in the Breast Cancer 1, German,
and Blood datasets. The last compared method is the NAMM, where the proposed method
performed well in all datasets except German, where the NAMM result was 73.53% while
that of CCMMW was 72.56%. Only three differences between the NAMM and CCMMW
had a less than 1% improvement, while all other results obtained were between 1.27 and
26.78% with Spam and Letter.
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Table 5. Performance of CCMMW on logistic regression classifier.

Dataset RAW MM 2S-P 2S-RF NAMM CCMMW

Breast Cancer 1 93.29 97.05 97.73 97.29 94.97 96.89
QSAR 88.11 87.46 85.69 84.61 86.33 87.75
Sonar 82.16 79.42 73.19 74.02 80.32 83.56

PARKINSON 84.13 88.35 82.08 81.58 86.98 91.27
Wine 98.82 99.25 98.87 98.93 94.66 99.47

Monkey 91.88 90.64 74.55 82.59 89.34 91.50
German 73.82 72.35 76.66 76.20 73.53 72.56

Musk 94.33 99.12 93.18 92.38 90.26 99.27
liver 65.33 69.17 62.26 63.91 57.98 70.85

wholesale 84.98 90.75 90.59 90.61 67.73 91.14
Spam 94.10 93.47 92.72 92.86 92.41 93.68

Heart s Cleveland 82.58 83.86 82.99 83.13 83.65 83.83
Magic 84.22 85.87 84.28 84.21 83.48 86.40
Blood 76.88 78.22 77.16 77.38 76.21 76.98

Breast Ca Coimbra 71.49 74.80 70.28 66.74 55.19 77.05
Vehicle 68.14 78.68 70.24 76.08 73.85 79.41
Bupa 65.23 70.94 62.09 64.35 57.98 71.25
Glass 64.88 61.98 62.11 57.65 64.87 65.45
Letter 81.94 71.46 49.96 49.81 50.14 76.92
Ecoli 78.51 79.55 80.22 77.80 78.00 81.65

3.3. Support Vector Machine Classifier

Table 6 shows that CCMMW obtained the highest accuracy in 16 out of the 20 datasets,
and an extra four datasets when raw data are excluded, when using model building
based on weighting correlation features. When comparing CCMMW + SVM with the MM
normalization method, as in Figure 2b, all the CCMMW results outperformed the MM
results. The minimum increase was obtained with the German dataset, which was 0.38%,
while the best result obtained was with Breast Ca Coimbra, which increased by 19.64%.
Also, CCMMW outperformed 2S-P with all datasets. Some large differences were observed,
such as 76.22%, 50.15%, 43.50%, and 27.49% with the Letter, Vehicle, Ecoli, and Sonar
datasets, due to the bad performance of 2S-P with the SVM. The same was observed with
2S-RF, where some large differences in accuracy were obtained compared with CCMMW.
Also, due to the bad performance of 2S-RF with the SVM, the difference reached 77.12%
with the Letter dataset. The lower difference obtained with 2S-RF was 0.49%. Finally,
compared with the NAMM, all CCMMW results outperformed the NAMM results. Overall,
CCMMW+SVM outperformed the other data preparation methods, increasing the accuracy
compared with the rest of the normalization and feature weighting methods. The significant
results obtained from all datasets showed an improvement in accuracy. Only the raw data
and CCMMW produced the best results with all datasets. The performance of CCMMW
with the SVM increased significantly, such as 19.64%, 14.24%, 11.97%, and 11.18 with Breast
Ca Coimbra, Vehicle, PARKINSON, and Monkey, respectively.

3.4. k-Nearest Neighbor (k-NN) Classifier

Table 7 shows that CCMMW obtained the highest accuracy in only two out of the
20 datasets, and an extra two datasets if the raw data are excluded. As shown in Table 7
and Figure 2c, the performance of CCMMW with the k-NN classifier compared with MM
shows us that CCMMW was only improved with the QSAR, Liver, Breast Ca Coimbra,
and Bupa datasets. The accuracy of other datasets obtained by CCMMW was less than the
accuracy of MM. Also, compared to 2S-P and 2S-RF, CCMMW only outperformed six and
eight datasets, respectively. The NAMM was the only method that CCMMW outperformed,
whereas the proposed method outperformed in 14 out of 20 datasets.
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Table 6. Performance of CCMMW on SVM classifier.

Dataset RAW MM 2S-P 2S-RF NAMM CCMMW

Breast Cancer 1 62.74 95.11 62.74 62.74 91.79 96.61
QSAR 85.41 78.34 66.25 66.25 66.25 84.47
Sonar 63.19 71.54 53.38 52.69 66.13 80.87

PARKINSON 78.86 75.89 75.38 75.39 83.07 87.86
Wine 95.03 98.81 75.35 90.77 94.37 99.30

Monkey 91.37 75.30 66.56 66.54 66.55 86.48
German 71.78 74.07 70.00 70.00 70.00 74.45

Musk 90.39 91.93 84.59 84.59 84.59 94.16
liver 59.28 57.97 57.98 57.95 58.00 67.80

wholesale 67.73 79.27 67.73 69.32 67.73 79.93
Spam 83.90 80.92 60.60 60.60 60.60 84.30

Heart s Cleveland 76.97 82.62 79.50 59.96 75.10 83.03
Magic 65.87 82.28 76.38 76.49 64.84 85.08
Blood 75.24 76.21 76.21 76.21 76.20 76.70

Breast Ca Coimbra 55.20 54.67 55.18 55.17 54.69 74.31
Vehicle 23.99 58.22 22.33 22.03 22.31 72.48
Bupa 59.34 57.98 57.95 57.97 57.97 67.05
Glass 65.75 44.93 32.88 31.06 48.97 51.95
Letter 97.52 74.82 5.20 4.30 3.85 81.42
Ecoli 75.84 76.22 42.55 42.56 77.71 86.05

Table 7. Performance of CCMMW on k-NN classifier.

Dataset RAW MM 2S-P 2S-RF NAMM CCMMW

Breast Cancer 1 93.75 97.24 97.38 95.36 91.20 97.02
QSAR 83.47 86.06 85.43 86.53 83.25 86.97
Sonar 83.34 86.53 87.83 84.40 63.02 80.28

PARKINSON 85.75 95.86 95.89 93.01 86.20 92.37
Wine 95.34 99.23 99.32 98.71 97.42 99.23

Monkey 97.59 90.61 97.88 100.00 93.27 96.50
German 71.00 72.12 73.48 76.05 70.87 72.89

Musk 96.92 97.08 96.97 96.84 96.87 96.48
liver 69.20 64.15 60.30 67.44 63.37 67.87

wholesale 90.39 91.55 91.50 91.43 92.70 91.20
Spam 82.47 90.88 90.55 91.83 89.20 89.57

Hearts Cleveland 80.74 89.79 90.86 90.78 88.71 82.89
Magic 81.23 83.99 84.67 84.56 75.24 84.64
Blood 77.23 78.00 77.85 77.92 78.06 77.05

Breast Ca Coimbra 59.97 73.64 76.78 80.84 67.82 81.82
Vehicle 65.50 72.26 70.12 72.32 68.31 69.73
Bupa 69.24 64.12 60.89 66.84 63.24 67.75
Glass 73.33 70.18 69.50 70.74 63.68 67.61
Letter 96.00 96.01 88.73 95.09 95.93 94.11
Ecoli 86.71 87.09 86.14 83.73 87.47 87.26

Overall, the two improvements of the CCMMW + k-NN classifier were with the
Breast Ca Coimbra dataset, while the improvement with QSAR was 0.91%. Another two
improvements compared with the other methods (except for the raw data) were the liver
and Bupa datasets, which reached 3.72% and 3.63% improvement, respectively. As seen
in Figure 2c, the performance of CCMMW with the k-NN method had no improvement
in general, where the results obtained by CCMMW were the worst when comparing
most numbers.

3.5. Neural Network (NN) Classifier

The first thing we figured out from Figure 2d is that the raw data did not produce any
of the best values in all datasets. Also, Table 8 show that Improvements were obtained with
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most of the datasets, where the accuracy increased with 15 datasets. The best improvement
when using CCMMW with the NN classifier was 9.91% with the Letter dataset, while the
second-best improvement was with Breast Ca Coimbra. The worst decrease with the NN
classifier was 7.30%, where the accuracy decreased from 84.91% to 77.61%. Also, compared
with the 2S-P method, the results show that CCMMW outperformed 2S-P, whereas, with
16 datasets, CCMMW produced higher accuracy than 2S-P. As with 2S-P, the comparison
between 2S-RF and CCMMW favored the proposed method as it also outperformed when
applied to most of the datasets. Although the NAMM outperformed CCMMW in three
datasets (Monkey: 2.62% higher; Hearts Cleveland: 0.24% higher; and Blood: 0.32% higher),
CCMMW performed as expected with the rest of the datasets. Some of the performance
differences were high, such as 24% higher with Wholesale, 23.78% with Sonar, and 22.39%
with Vehicle. Overall, we can conclude that CCMMW performed better when applied to
data when using the NN classifier.

Table 8. Performance of CCMMW on neural network classifier.

Dataset RAW MM 2S-P 2S-RF NAMM CCMMW

Breast Cancer 1 91.39 96.70 97.50 96.73 92.20 96.77
QSAR 85.48 87.19 85.33 84.67 86.01 87.44
Sonar 80.45 80.39 77.64 76.68 57.38 81.16

PARKINSON 78.28 87.30 84.36 86.14 83.29 89.54
Wine 96.11 99.55 99.16 98.00 96.23 99.57

Monkey 77.13 84.91 78.32 86.33 80.23 77.61
German 76.02 72.73 76.58 76.26 71.52 72.62

Musk 94.36 97.26 91.64 90.23 84.59 97.50
liver 67.29 70.72 69.10 69.36 57.99 71.38

wholesale 83.55 90.66 90.50 90.86 67.73 91.73
Spam 83.64 93.18 90.16 90.16 89.51 93.40

Heart s Cleveland 73.61 85.08 82.89 83.77 83.90 83.66
Magic 77.93 84.25 82.35 82.32 76.60 85.65
Blood 78.20 79.05 78.34 78.14 76.27 75.95

Breast Ca Coimbra 64.01 67.11 71.56 71.83 68.85 75.40
Vehicle 50.64 79.14 61.62 63.87 54.78 77.17
Bupa 65.89 71.17 69.47 69.45 57.97 71.51
Glass 54.53 60.36 62.09 55.73 54.68 63.57
Letter 24.62 34.36 21.77 33.60 34.11 44.27
Ecoli 81.34 82.67 71.16 75.06 82.31 82.82

3.6. Naive Bayes Classifier

Table 9 shows that CCMMW obtained the highest accuracy in 10 out of the 20 datasets.
Compared with the rest of the normalization and raw methods, as in Figure 2e, CCMMW
produced high accuracy, outperforming others. Ten datasets were given high accuracy
when using CCMMW with the NB classifier, while MM exceeded with only two datasets:
Wine and Magic. The best accuracy increase for CCMMW with the NBC was 2.44% with
Blood. Weighting features using 2S-P produced higher accuracy than CCMMW with eight
datasets, while 2S-RF outperformed with eleven datasets. The same happened with the
NAMM, which obtained the two best accuracies overall, 97.86% with the Musk dataset and
79.86% with the Glass dataset.

Table 9. Performance of CCMMW on naive Bayes classifier.

Dataset RAW MM 2S-P 2S-RF NAMM CCMMW

Breast Cancer 1 96.08 95.91 96.33 96.22 96.24 96.45
QSAR 87.00 87.13 87.20 87.05 87.17 87.13
Sonar 82.73 82.77 83.16 82.42 82.38 83.71

PARKINSON 91.06 90.85 90.38 90.70 90.63 91.58
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Table 9. Cont.

Dataset RAW MM 2S-P 2S-RF NAMM CCMMW

Wine 99.52 99.50 99.50 99.52 99.50 99.51
Monkey 99.79 99.68 99.66 99.87 99.53 100.0
German 76.22 76.33 76.47 76.39 76.28 76.81

Musk 97.81 97.81 97.84 97.83 97.86 97.86
liver 72.36 72.88 73.46 72.99 72.80 70.76

wholesale 91.23 91.11 91.25 91.18 90.80 91.39
Spam 95.44 95.49 95.47 95.42 95.41 95.55

Heart s Cleveland 93.79 93.85 93.57 93.71 93.41 90.01
Magic 88.15 88.05 88.09 88.12 88.09 87.85
Blood 73.88 74.25 73.82 73.95 73.89 76.69

Breast Ca Coimbra 70.39 71.61 71.47 69.48 71.67 73.58
Vehicle 74.93 74.77 74.96 74.98 74.82 74.96
Bupa 72.42 73.23 72.47 72.91 72.77 70.81
Glass 78.78 78.40 78.61 79.39 79.86 78.98
Letter 96.62 96.60 96.57 96.61 96.60 96.18
Ecoli 86.79 86.91 87.13 86.63 86.73 85.89

4. Discussion

For an overall discussion, we calculated the average accuracy of the methods with the
twenty datasets.

As shown in Figure 3, the average accuracy is presented as an indicator of the accuracy
results on various datasets. Also, Table 10 shows the average accuracy in numbers. the
Logistic regression outperformed other preparation methods, where it had the best results
in 12 out of the 20 datasets, and an extra four results outperformed other methods, except
for the raw data. In the second method, the SVM classifier shows a clear improvement
in accuracy when using the CCMMW strategy. Out of the 20 datasets, 16 gave the best
accuracy with the SVM. In comparison, an extra four datasets gave the best accuracy when
raw data are excluded. For the k-NN classifier, the proposed method’s accuracy was slightly
lower than the others. For the NN classifier, the results still show a good improvement
in the accuracy of CCMMW. In 15 out of 20 datasets, its accuracy outperformed the other
methods. Finally, although the averaged results present the proposed method as the fourth-
best result, this is in part due to a lower difference between the results, where its accuracy
with 11 datasets outperforms all other methods.

Symmetry 2023, 15, x FOR PEER REVIEW  14  of  19 
 

 

Table 10. Average classification accuracy of data preparation method. 

Method  RAW  MM  2S‐P  2S‐RF  NAMM  CCMMW 

Logistic Regression  81.24  82.62  78.34  78.61  76.9  83.84 

SVM  72.27  74.36  59.44  59.13  64.54  80.72 

KNN  81.96  84.32  84.10  85.22  80.79  84.16 

NN  74.22  80.19  77.08  77.96  72.81  80.94 

NB  86.25  86.36  86.37  86.27  86.32  86.29 

 

Figure 3. CCMMW performance: average accuracy (20 datasets) of five classification methods (clas-

sifiers). 

The Effect of C Parameter on the CCMMW Results 

As we see in Figures 4a–e and 5a–e, the primary role of parameter C is to adjust the 

range of the data, since the relationship between C and the maximum value of the new 

range is direct, so the range increases as the value of C increases. 

     

(a)  (b)  (c) 

   

(d)  (e) 

Figure 4. The value of C. (a) LR. (b) SVM. (c) k-NN. (d) NN. (e) NB. 

   

55

59

63

67

71

75

79

83

87

LR SVM KNN NN NB

RAW MM 2S‐P 2S‐RF NAMM CCMMW

Figure 3. CCMMW performance: average accuracy (20 datasets) of five classification methods
(classifiers).



Symmetry 2023, 15, 2185 14 of 18

Table 10. Average classification accuracy of data preparation method.

Method RAW MM 2S-P 2S-RF NAMM CCMMW

Logistic Regression 81.24 82.62 78.34 78.61 76.9 83.84
SVM 72.27 74.36 59.44 59.13 64.54 80.72
KNN 81.96 84.32 84.10 85.22 80.79 84.16
NN 74.22 80.19 77.08 77.96 72.81 80.94
NB 86.25 86.36 86.37 86.27 86.32 86.29

The Effect of C Parameter on the CCMMW Results

As we see in Figures 4a–e and 5a–e, the primary role of parameter C is to adjust the
range of the data, since the relationship between C and the maximum value of the new
range is direct, so the range increases as the value of C increases.
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As we see in Figure 4a, the best results of CCMMW were obtained with a high C
value of 10. Most of the best results were obtained with C values of more than 5, as in
Figure 4a (around 80%). Only three of the best results were obtained with C values less
than 5, meaning that increasing the range of values by increasing the C parameter values
will positively impact the results with the LR classifier. Like LR, CCMMW with a high
C parameter value gave good results with the SVM classifier. As shown in Figure 4b,
most of the best results with the SVM were obtained specifically with a C value of 10,
which is 67% of the result, as shown in Figure 5b. Only with the German and Wholesale
datasets was the best accuracy result reached with a C value of 1. In some cases, multiple
C values obtained the same result. All results of the SVM show that increasing the C
parameter’s value positively impacted the classifier’s results, where all results showed
increasing accuracy. Although the results of CCMMW with the k-NN classifier did not
outperform other classifiers, where it is considered as having a weak impact on the results
among the classifiers, the best results with CCMMW were obtained by setting a high C
parameter value of 10, as seen in Figure 5c, where it represents 80% of the high results. All
of the higher results were obtained with C values of 10, as seen in Figure 4c. In contrast
to the previous methods, most of the good results of the proposed method were obtained
by using a value of 5 or less for C, which is around 62% of the higher results, as seen in
Figure 5d. Although some of the higher accuracies of CCMMW were obtained with C
values greater than 5, the best results of the other methods with the NN were with C values
less than 5. We can conclude that the impact of the C values on the NN were not clearly
impactful, which means that adjusting the range towards higher possible values is not the
best approach, as seen in Figure 4d. Figure 5e illustrates that higher accuracy was mostly
achieved with small C values. For the naive Bayes (NB) model, the optimal result was
obtained at C = 1, yielding 16%, whereas for C values of 2, 3, 4, and 5, the accuracy remained
consistent at 12% each. This cumulative value amounts to 64% in total. According to the
experimental results, data normalization has the potential to develop prediction models
with the highest prediction accuracy. However, compared to the results of models with
normalized and non-normalized data, the accuracy was improved based on many factors
such as the used normalization method, the type of data, and the classification methods.

5. Conclusions

Our experiment discusses the impact of the maximization of the role of features based
on their correlation. The impact of the combined data normalization and feature weight
is apparent. Although normalization impacted the results positively by giving an equal
contribution of features to avoid eliminating features with high range values, the weighted
features outperform those methods by increasing the contribution of the features based on
the dependency measurement of features, such as the CC of importance of feature mea-
surement. In this study, we have presented a novel feature weighting with normalization
method named the Correlation Coefficient Min–Max Weighted (CCMMW) method. The
relation between the correlation in the normalization area has not received much attention
in the literature. We used the CC values to give features with a strong association more
contribution to the learning step in ML methods to improve the performance of those
methods. We used the LR, SVM, k-NN, NN, and NB classification methods to evaluate
the effect of CCMMW. The performance improvement of the SVM, NN, and LR classifiers
was clear, as most results showed increased accuracy. Only the k-NN classifier’s accuracy
results were unsuitable, where the proposed method outperformed the Min–Max normal-
ization method in 40% of the datasets. Still, other normalization and weighted methods
outperform CCMMW in most cases. Also, adjusting the upper limit of the feature’s max-
imum value plays the main role in reaching the best result of the proposed method. In
future work, various normalization methods could be explored, as each method offers
distinct advantages that may impact the outcomes of data transformation. Additionally,
incorporating alternative weight measurement methods may enhance the significance of
features in constructing classification models, potentially leading to improved accuracy.
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