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Abstract: We suggest a new solution to the strong CP problem. The solution is based on the
proper use of the boundary conditions for the QCD-generating functional integral. We expand the
perturbative boundary conditions to both perturbative and nonperturbative fields integrated into the
QCD-generating functional integral. It allows us to nullify the CP odd term in the QCD Lagrangian
and, thus, to solve the strong CP problem. The presently popular solution to the strong CP problem
of introducing axions violates the principle of renormalizability of the Quantum Field Theory, which
is very successful phenomenologically. Our solution obeys the principle of renormalizability of the
Quantum Field Theory and does not involve new exotic particles like axions.

Keywords: quantum chromodynamics; renormalizability; axions; CP violation; charge conjugation C;
space reflection P

1. Introduction

The strong CP problem for a long time is considered, in fact, an unsolved, or at least
not completely satisfactorily solved, outstanding problem of the Quantum Field Theory
and Elementary Particle Physics. For an excellent review of the subject, see [1], where one
can find various aspects of this problem. The most popular present solution [2,3] to the
strong CP problem introduces new particles—axions [4,5]. Axions became so popular that
they are even considered real candidates for the dark matter of the universe. But, presently,
only restrictions on their possible properties are established, in spite of the numerous
experimental efforts to discover such exotic particles; see, e.g., [6–8]. In addition, the axion
solution of the strong CP problem violates the fundamental principle of renormalizability
of the Quantum Field Theory. This basic principle is, presently, one of the most phenomeno-
logically successful principles of Elementary Particles Theory. For example, it ensured, in
Quantum Electrodynamics, the agreement between the theory and the experiment for the
anomalous magnetic moment of the electron within ten decimal points. This impressive
agreement convinces us that renormalizable Quantum Field Theory is a correct physical
theory. Therefore, in our opinion, it seems to be interesting to find a solution to the strong
CP problem that also obeys the principle of renormalizability of the Quantum Field Theory.
In addition, it is desirable to find a solution that does not introduce new exotic particles
like axions. This is the goal of this present paper.

To find such a solution, we will use, in a proper way (a proper way in our opinion),
the boundary conditions in the generating functional of Green functions of Quantum
Chromodynamics. It is well-established what kind of boundary conditions are imposed
on the fields of the theory in the functional integral within the perturbative approach.
These are known boundary conditions that produce the correct form of the perturbative
propagators of the fields of the Lagrangian in the considered theory. The derivation of
the perturbative propagators using the boundary conditions of the generating functional
of Green functions of Quantum Chromodynamics can be found in [9]. We will assume
that the same boundary conditions are valid for all fields of the theory that are integrated
into the functional integral. We will suppose that perturbation theory calibrates the whole
nonperturbative functional integral.
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Our solution will obey the principle of renormalizability of the Quantum Field Theory
and will not involve new exotic particles like axions.

The CP problem is the question of why the strong interaction does not violate the
charge–parity (CP) symmetry, which is the combination of charge conjugation (C) and
parity (P) symmetries. The CP symmetry states that the laws of physics should be the
same if a particle is replaced by its antiparticle and its spatial coordinates are inverted (P).
However, the weak interaction is known to violate the CP symmetry, and there is no
fundamental reason why the strong interaction should not perform in the same way.

The CP problem is also related to the origin of the matter–antimatter asymmetry in
the universe, which is another unsolved mystery in physics. The CP violation involves
scalar fields that couple to the quarks and induce a complex phase in the quark mass
matrix. This phase could affect the properties of the neutron stars and black holes in
X-ray binaries, such as their mass, radius, magnetic field, and spin; see, e.g., [10]. Another
possible connection is that some models of CP violation involve new particles that have
spin-1/2 and interact with the standard model particles via a new force [11]. These particles
could affect the X-ray spectrum or the gravitational waves emitted by the system.

The CP violation in the early universe could have generated primordial magnetic
fields that were amplified by the collapse of stars into neutron stars. These fields could
then explain the existence of magnetars powered by extremely strong magnetic fields; see,
e.g., [12]. However, this scenario is highly speculative and requires more theoretical and
observational support.

2. Materials and Methods

In this present work, we will deal with the Quantum Chromodynamics (QCD) gener-
ating functional of Green functions, which will be the basic object of our considerations:

Z(J) =
∫

dΦ exp
(

i
∫

d4x
(

LQCD + Jk ·Φk
))

, (1)

where dΦ denotes the integration measure of the functional integral Z(J) over all fields
Φk of the theory, gluons, and quarks. Jk are the sources of the fields. The symbol J in Z(J)
denotes the full set of sources Jk of the fields.

Within perturbation theory, the QCD Lagrangian LQCD is invariant, particularly under
the combined symmetry transformations CP, where C is the charge conjugation operator
and P is the space reflection. More precisely, the QCD Lagrangian within perturbation
theory is invariant under both the charge conjugation C and the space reflection C.

The essence of the CP problem is that in full nonperturbative QCD, one can add to the
QCD Lagrangian the CP odd gauge invariant term, which seems to be not forbidden from
the first principles:

∆Lθ =
θ

32π2 Ga
µνG̃a

µν. (2)

It is invariant under the charge conjugation C and is not invariant under the space
reflection P; hence, it is also noninvariant under the combined CP transformation. But, this
term is forbidden by experiments with a rather high precision, as we will see below. The
dual field strength tensor G̃a

µν in (2) is defined in the standard way:

G̃a
µν =

1
2

εµνρσGa
ρσ. (3)

The θ-term in (2) is purely nonperturbative since it is invisible in perturbation theory
because it can be rewritten as a total derivative:

∆Lθ = θ∂µKµ. (4)

Here, Kµ is the known Chern–Simons current:

Kµ =
1

16π2 εµνρσ

(
Aa

ν∂ρ Aa
σ +

1
3

f abc Aa
ν Ab

ρ Ac
σ

)
. (5)
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The θ-term can be discarded within perturbation theory. It can be easily seen in
the Euclidean space since the fields of the theory decrease in the Euclidean space at the
time infinities and the total derivative (4) does not contribute to the QCD action. But,
with the discovery of instantons [13], it was realized that the field configurations with the
instanton boundary conditions give nonzero nonperturbative contributions to the action.
In particular, the one instanton contribution looks like

∆Sθ =
∫

d4x∆Lθ = θ. (6)

The key notion, here, is the famous topological charge that has the following form:

V =
∫

d4x∂µKµ =
∫

d3xK0(~x, t)|t=+∞
t=−∞ = K(t→ +∞)−K(t→ −∞), (7)

where K is the Pontryagin number. The topological charge is zero for perturbative fields,
i.e., in perturbation theory. But, instanton fields, for example in the A0 = 0 gauge, interpo-
late between the zero gluon fields Ai(~x, t = −∞) = 0, i = 1, 2, 3 and the nonzero gluon
fields Ai(~x, t = +∞) = U+∂iU, i = 1, 2, 3. Here, the matrix U is the Polyakov hedgehog:

U(~x) = exp

(
− iπ~x ·~σ√

~x2 + ρ2

)
. (8)

For this instanton configuration, the Pontryagin number and, correspondingly, the
topological charge are equal to unity:

V = K(t = +∞) = 1. (9)

Thus, the θ-term gives the nonzero nonperturbative contribution to the QCD action.
In the full QCD, with quarks, there are also contributions to the CP odd part of the

QCD Lagrangian from the imaginary phases of the quark mass matrix. The phases can
be rotated away by the chiral transformations of the quark fields. But, there is the famous
axial anomaly [14,15]. It generates noninvariance of the measure of the Feynman functional
integral under chiral transformations [16]. Therefore, the phases of the quark mass matrix
arise before the GG̃ term in the Lagrangian. Hence, the parameter that determines the
value of the CP violation is in fact

θ + arg(detM), (10)

whereM is the quark mass matrix.
Below, we shall use the same symbol θ for this parameter to simplify the notations,

assuming that it already includes the effects of the quark mass matrix.
Probably the most essential phenomenological effect of the θ-term is a nonzero electric

dipole moment of the neutron dn. The electric dipole moment is given by the effective
interaction Lagrangian

LnEDM =
dn

2
n̄iγ5σµνnFµν, (11)

where Fµν = ∂µ Aν − ∂ν Aµ is the photon field strength tensor, n stands for the neutron field,
and σµν = 1

21 [γmuγnu] is the standard antisymmetric product of the Dirac gamma matrices.
The θ-term generates the following electric dipole moment of the neutron dn:

< n(p f )γ(k)|eJem
µ Aµi

∫
d4x∆Lθ |n(pi) >= dnn̄(p f )γ5σµνn(pi)kµεµ(k). (12)

Here, Jµ is the quark electromagnetic current. kµ = pµ
f − pµ

i , where pµ
i is the incoming

momentum of the neutron and pµ
f is the outgoing momentum of the neutron. εµ(k) is the

photon polarization.
The matrix element on the left-hand side of Equation (12) is zero in perturbative theory

and is calculated within purely nonperturbative QCD. There are several nonperturbative
methods by which the electric dipole moment of the neutron dn was estimated; for a detailed
overview, see [1] and the references therein. Here, we give a short summary of the results of the
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corresponding nonperturbative approaches. The performed bag model calculations produced
the following result: dn ≈ θ2.7 · 10−16 e · cm. Shortly after this result, the chiral logarithms
approach was used to obtain the following estimate: dn ≈ θ5.2 · 10−16 e · cm. The approach
of chiral perturbation theory was further developed to produce the slightly lower result
dn ≈ θ3.3 · 10−16 e · cm. Last but not least, the calculations based on the QCD sum rules
method gave the following, again slightly lower, estimate: dn ≈ θ1.2 · 10−16 e · cm. All these
results have considerable uncertainties of the order of 50 percent because of the essential
difficulties of nonperturbative QCD calculations.

But anyway, the average theoretical value for dn can be confidently estimated within
the same order of 50 percent uncertainty as

dn,theor ≈ θ · 10−16 e · cm.
This should be compared with the most recent experimental value [17] for the electric

dipole moment of the neutron dn, which is
dn = (0.0± 1.1)× 10−26 e · cm.
Thus, one obtains an extremely strong restriction on the value of the θ coupling:

|θ| ≤ 10−10. (13)

The explanation of this practically zero value of the coupling θ is the essence of the
solution to the strong CP problem.

The presently popular solution to the problem is the famous axion solution. It assumes
the addition to the QCD Lagrangian of the term with the new axion field a(x), which, in
fact, reduces the shift of the coupling θ in the QCD Lagrangian θ → a(x)/ fa + θ. So, the
corresponding term ∆Lθ of Equation (2) in the QCD Lagrangian becomes as follows:

∆Lθ →
(

a(x)
fa

+ θ

)
1

32π2 Gb
µνG̃b

µν. (14)

After the spontaneous symmetry breaking of the global Peccei Quinn symmetry [2,3],
one calculates the effective potential for the axion field a(x). Then, one finds that when the
axion rests at the minimum of this potential, the CP violating term (14) nullifies. This is the
known axion solution to the strong CP problem.

There are different types of axions suggested in the literature. Let us consider some
of them. As the scalar Higgs fields produce vacuum expectation values, the electroweak
local symmetry group is broken spontaneously. This develops masses of the gauge W and
Z intermediate vector bosons. At the same time, the global Peccei Quinn U(1) group is also
spontaneously broken. This spontaneous breaking of the U(1) global symmetry leads to the
appearance of the massless Goldstone boson, which is called the Weinberg–Wilczek (WW)
axion in this case [4,5]. In the Standard Model, including two Higgs doublets, this axion is
presented as the following superposition:

a = 1/v(vφ Imφ0 − vχ Imχ0).
Here, φ0 and χ0 are neutral components of the two Higgs doublets. In addition, v =√

v2
φ + v2

χ ≈ 250 GeV, where vφ and vχ denote vacuum expectation values of the fields
φ and χ, correspondingly. Within the considered approximation, the WW axion is massless.
But, as mentioned above, the nonperturbative effects of Quantum Chromodynamics (for
example instantons) can generate the potential for the WW axion. In this way, the WW axion
obtains the nonzero mass value, which is estimated according to [4,5] as follows:

ma ≈ fπmπ/v ≈ 100 KeV.

In addition, the decay constant of the WW axion is 1/v. Hence, it is clear that the
mass and the decay constant of the WW axion are connected to the breaking scale v of
electroweak symmetry. This constraint turns out to be too strong and, correspondingly, the
WW axion turns out to be excluded by the existing experimental data.

If the scale of the breaking of the Peccei Quinn symmetry is much more than the
electroweak scale v, then, according to the above formula, the axion is essentially lighter
and the decay constant of the axion is much smaller. This type of light axion could be in
agreement with the existing experimental data.
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A solution with the light “invisible” axion was first suggested in [18,19] (the so-called
KSVZ axion). In Ref. [19], this type of axion is named the phantom axion. It should
be underlined that in order to uncouple the “phantom” from the electroweak scale, it is
necessary to decouple the proper scalar fields from the standard quarks and couple these
fields to very heavy hypothetical fermions carrying color.

To be more precise, one should introduce a complex scalar Φ that is coupled to the hy-
pothetical quark field Q, which is the electroweak singlet in the fundamental representation
of the SU(3) color group.

Then, the modulus of the scalar Φ is supposed to produce the large vacuum expectation
value f /

√
2, and the argument of the field Φ is just the axion field a up to normalization:

a(x) = f α(x), α(x) = ArgΦ(x), f >> Λ.

Further, the low energy coupling of this axion to the gluons is as follows:

∆L =
1
f

a
1

32π2 Ga
µνG̃a

µν.

In this way, the Lagrangian of QCD depends on the expression θ + α(x).
More generally, it is possible to introduce more than one quark field Q or to introduce

these fields in a higher representation of the SU(3) color group. In this case, the coupling of
the axion to gluons obtains an integer number N:

∆L =
1
f

aN
1

32π2 Ga
µνG̃a

µν.

This multiplier N (which should not be confused with the color number Nc) is usually
called the axion index. Hence, in general, the Lagrangian of Quantum Chromodynamics
depends on the sum θ + Nα(x). It can be assumed that the nonperturbative QCD effects
produce the potential for θ + Nα(x). The latter sum is minimized at the point θ + Nαvac = 0.
Hence, the strong CP problem is solved in this way.

One more way to produce an “invisible” axion is suggested in [20,21] (the so-called
ZDFS axion). In this case, one keeps the Peccei Quinn symmetry of the two doublet
Standard Model but splits the scales of the Peccei Quinn and electroweak breaking. For
this purpose, the Lagrangian of the Standard Model is extended, and one adds the scalar
Standard Model singlet field Σ.

Then, one notes that this Lagrangian is invariant under the axial transformations

qL → eiαqL, qR → eiαqR, φ→ e2iαφ, χ→ e−2iαχ, Σ→ e2iαΣ.

After the spontaneous breaking of this axial symmetry, the Goldstone particle, the
axion appears as the superposition

a =
1
V
(vφ Imφ0 − vχ Imχ0 + vΣ ImΣ).

Here, V =
√

v2
φ + v2

χ + v2
Σ, and vφ, vchi, and vΣ represent vacuum expectation values

of the fields φ, χ, and Σ, correspondingly. The vacuum expectation value of the field Σ is
not necessarily connected to the scale of the electroweak symmetry breaking. Actually, it
can be chosen as large as the Grand Unification scale. In this case, the considered axion is
very light and its decay constant is small.

But, first of all, the term with the axion field a(x) in (14) has the dynamical dimension
(which is the dimensions of the fields plus the dimensions of the derivatives of the fields)
of five instead of four necessary for renormalizability. Hence, the term with the axion field
a(x) violates the renormalizability of the Lagrangian. As we already have mentioned in
the introduction, the renormalizability of the Lagrangian is a rather important principle of
Quantum Field Theory. This principle turned out to be very successful phenomenologically
as is demonstrated, for example, by the famous case of the anomalous magnetic moment of
the electron. Therefore, it is quite important to preserve the principle of renormalizability
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when solving the strong CP problem. Secondly, the axion is not found experimentally, in
spite of numerous experimental attempts, as we also have underlined in the introduction.

Therefore, we find it necessary to suggest a new solution to the strong CP problem
that preserves the renormalizability of the theory and does not involve new exotic particles
like axions.

Let us now, again, consider the QCD-generating functional (1). It is well-known that
this integral is not defined yet completely if only the QCD Lagrangian is defined with the
corresponding gauge condition. At least within perturbation theory, one should impose on
the Lagrangian fields the proper boundary conditions.

In perturbation theory, one has well-known boundary conditions. For example, for
the gluon fields, one has the following conditions:

Aa
µ(~x, t→ −∞)→ Aa

µ,in(x), (15)

Aa
µ(~x, t→ +∞)→ Aa,out

µ (x).

Here, the incoming asymptotic gluon fields Aa
µ,in(x) contain only the positive fre-

quency part and the outgoing gluon fields Aa,out
µ, (x) contain only the negative frequency part:

Aa
µ,in(x) =

1
(2π)3/2

∫
d3k ei(~k~x−ωt)vi

µ(k)ai(k)/
√

2w, (16)

Aa,out
µ, (x) =

1
(2π)3/2

∫
d3k ei(~k~x+ωt)vi

µ(k)a∗i (k)/
√

2w,

where ω =
√
~k2 and vi

µ(k) are polarization vectors of the gluons. Here, the sums over the
gluon polarizations i = 1, 2 are assumed.

These are the known Feynman boundary conditions. They are necessary to obtain
the correct form of the perturbative propagators of the fields of the type 1/(k2 + iε) with
the correct plus iε prescription. Thus, with these boundary conditions, the gluon fields
(the quark fields also) oscillate at the time infinities. After transitioning to the Euclidean
space by means of the Wick rotation t → ix4, the fields decrease at the time infinities, so
in the Euclidean space, it is easy to see that in perturbation theory, total derivatives in the
Lagrangian are zero.

Hence, one can write perturbative boundary conditions (15) for all fields Φi of the
QCD Lagrangian symbolically as follows:

Φ(t→ ±∞)→ Φout
in (x). (17)

This helpful notation will be used below to formulate the QCD-generating functional
integral as a compact formula.

3. Results

Let us now formulate our solution to the strong CP problem. As already under-
lined above, the solution is based on the proper use of the boundary conditions for all
Lagrangian fields in the QCD-generating functional integral. So, let us now again consider
the QCD-generating functional integral (1). In our opinion, it is necessary and natural to
generalize the boundary conditions (17) for the perturbative fields to all fields Φi of the
QCD Lagrangian, which are integrated into the generating functional integral (1). Then, all
Lagrangian fields will decrease in the Euclidean space at the time infinities. Hence, such a
definition of the boundary conditions nullifies all the total derivatives in the Lagrangian
both for the perturbative contributions and the nonperturbative contributions. Thus, the
CP odd term in the QCD Lagrangian will be nullified and it solves the strong CP problem.
In addition, this definition allows us to formulate exactly the complete (the perturbative
part plus the nonperturbative part) QCD-generating functional integral as one compact
mathematical formula:

Z(J) =
∫

Φ(t→±∞)→Φout
in

dΦ exp
(

i
∫

d4x
(

LQCD + Jk ·Φk
))

. (18)
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4. Discussions

The strong CP problem for a long time is in fact considered as the still unsolved (or
not completely adequately solved) prominent problem of the Quantum Field Theory and
Elementary Particle Physics. For an excellent review of the CP problem and related topics,
see the first reference of this present paper, where one can discover different aspects of
this subject. The presently most popular axion solution [2,3] to the strong CP problem
introduces new exotic elementary particles—axions. Axions are now so popular that they
are presently considered as the real candidates for the dark matter of the universe. A
lot of advanced experiments are performed to discover some sorts of these axions. But,
presently, only some kinds of restrictions on their possible properties are obtained in
spite of the numerous huge experimental efforts to find such exotic elementary particles;
see, for example [6–8]. In addition, the axion solution of the strong CP problem is in
contradiction with the fundamental, in our opinion, principle of renormalizability of the
Quantum Field Theory. This basic, in our opinion, principle is, presently, one of the
most experimentally successful principles of the Quantum Field Theory and Elementary
Particle Physics. For example, this principle produced, for the famous anomalous magnetic
moment of the electron within renormalized Quantum Electrodynamics, the outstanding
agreement between the theoretical value and the experimental value within ten decimal
points. This prominent agreement between the theory and the experiment convinces us that
renormalizable Quantum Electrodynamics and, more generally, renormalizable Quantum
Field Theory are the proper physical theories.

Therefore, in our opinion, it seems to be important to have a solution to the strong CP
problem, which is in agreement with the principle of renormalizability of the Quantum
Field Theory. In addition, we suppose that it is desirable to find a solution to the strong CP
problem that does not involve new exotic elementary particles like axions or something
similar. Therefore, the goal of this present paper is to find the solution that satisfies these
two conditions (renormalizability and the absence of new exotic particles).

To find such a solution, we have used in this paper, in a proper way, the boundary
conditions for the Lagrangian fields in the generating functional of the Green functions of
Quantum Chromodynamics (a proper way in our opinion). It is well understood what kind
of boundary conditions should be imposed on the fields of the theory in the generating
functional integral within the perturbation approach. These are the known boundary
conditions that generate the necessary form of the perturbative propagators of the fields
of the Lagrangian of Quantum Chromodynamics. These boundary conditions produce
the correct “+iε” prescription for the perturbative propagators of the fields. We have
suggested that the same boundary conditions should be valid for all Lagrangian fields
integrated into the QCD-generating functional integral, i.e., for both perturbative and
nonperturbative contributions. We have supposed that perturbation theory calibrates the
whole nonperturbative functional integral, i.e., it calibrates both the perturbative and the
nonperturbative parts of the generating functional integral.

Our solution satisfies two important criteria. The solution obeys the principle of
renormalizability of the Quantum Field Theory and does not involve new exotic particles
like axions.

Let us make now, here, necessary remarks concerning the famous U(1) problem.
The essence of this problem is that the mass of the flavor singlet pseudo-scalar η′ meson
mη′ ≈ 958 MeV is surprisingly heavier than the masses of the flavor octet pseudo-scalar
mesons. One can argue that it is not possible to extend the perturbative boundary conditions
for the fields discussed above, which are well-established within perturbation theory, to
all the fields that are integrated into the QCD-generating functional integral. Such an
extension excludes from the generating functional integral, for example, the instanton
contributions not obeying the perturbative boundary conditions. In particular, there is the
well-known statement [22,23] that instantons solve the U(1) problem. Hence, it seems that
they should not be excluded from the theory. But, one can note that there is also the well-
known solution [24,25] to the U(1) problem using the axial anomaly, which was suggested
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before the discovery of instantons. Therefore, one can argue that the U(1) problem can be
solved without involving the instantons. Thus, the extension of the perturbative boundary
conditions to all the fields of the generating functional integral is well-allowed.

5. Conclusions

We have suggested a new solution to the strong CP problem. To find such a solu-
tion, we use, in a new way, the boundary conditions in the Quantum Chromodynamics
generating functional of Green functions. It is well-established what kind of boundary
conditions are imposed on the fields of the QCD Lagrangian in the functional integral
within perturbation theory. We assume that the same boundary conditions are valid for
all Lagrangian fields of the functional integral, i.e., for both perturbative and nonperturba-
tive fields. This allows us to nullify the total derivatives in the QCD action, in particular
the CP odd term, which can be presented as the total derivative. Hence, it solves the
strong CP problem. Thus, we suppose that perturbation theory calibrates the complete
nonperturbative functional integral.

Maybe it is worthwhile also to mention that our solution does not violate any sym-
metries of Quantum Chromodynamics. We would like to underline once more that our
solution to the strong CP problem obeys the principle of renormalizability of the Quantum
Field Theory and does not involve new exotic particles like axions.
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