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Abstract: We study the generalized χ and η cross-helicities for non-ideal non-barotropic magnetohy-
drodynamics (MHD). χ and η, the additional label translation symmetry group, are used to generalize
cross-helicity in ideal flows. Both new helicities are additional topological invariants of ideal MHD.
To study there behavior in non-ideal MHD, we calculate the time derivative of both helicities using
non-ideal MHD equations in which viscosity, finite resistivity, and heat conduction are taken into
account. Physical variables are divided into ideal and non-ideal quantities separately during the
mathematical analysis for simplification. The analytical results indicate that χ and η cross-helicities
are not strict constants of motion in non-ideal MHD and show a rate of dissipation that is comparable
to the dissipation of other topological constants of motion.

Keywords: MHD; topological constants of motion; non-ideal flows

1. Introduction

Topological constants of motion are useful for different physical structures, and there
are such constants in MHD. Most importantly, magnetic helicity [1–3] and cross-helicity
have long been studied in relation to the controlled nuclear fusion problem and astro-
physical scenarios. In the absence of dissipation, cross-helicity is conserved. Previous
works [4–6] have concentrated on the deep relations between topological invariants and
continuous symmetries of ideal MHD. MHD connects electromagnetism with fluid dy-
namics of very conductive flows to elucidate the dynamics of conducting fluids such as
plasmas. Considering the fact that ideal MHD does not precisely describe real plasmas was
the paramount motivation for the present work. Major natural processes are missing in the
ideal depiction, which include heating due to finite electrical resistivity, conduction of heat,
and heating due to friction and viscosity. Viscous processes are significant on the dissipa-
tion scale for plasma turbulence in solar wind and in other turbulent plasmas. Magnetic
diffusivity (due to finite electrical conductivity) is responsible, among other things, for the
magnetic reconnection phenomena. Thermal conductivity is also a significant process that
one needs to understand in real plasmas. It affects the perturbations of physical variables
causing them to spread through the fluid. These significant attributes of all three non-ideal
processes are the stimulus for this current analysis.

Cross-helicity is defined as [7–9]:

HC =
∫

B⃗ · v⃗ d3x, (1)

in which the volume integral is calculated over the entire flow regime. Here, HC is constant
in time for barotropic or incompressible MHD (but it is not conserved for non-barotropic
MHD) and can be given a topological meaning in terms of the knots between magnetic
and flow field lines. This correlation is of great importance in the case of Alfvén waves.
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However, it has a relation with magnetosonic waves in the compressible case [10]. A
generalization for non-barotropic MHD of this quantity was given by [11,12]. This is
analogous to the generalization of barotropic fluid dynamics topological invariants such as
helicity to non-barotropic flows as suggested by [13]. Generalized cross-helicity, which is
invariant in non-barotropic MHD, was studied by [14] in multi-symplectic MHD. Potential
vorticity conservation for non-barotropic MHD was suggested by the same authors [15].

More recently non-barotropic cross-helicity was further generalized using additional
label translation continuous symmetry sub-groups (χ and η translations) [16], which
resulted in additional topological invariants: the χ and η cross-helicities. The quantities
χ and η are also denoted ‘Euler potentials’, ‘Clebsch variables’, and ‘flux representation
functions’ [17].

The notion of metage as a label for fluid elements specifying there whereabouts along a
vortex line in ideal fluids was introduced by Lynden-Bell and Katz [18]. A translation sym-
metry sub-group of this label was found to be connected to the conservation of Moffat’s [19]
helicity by Yahalom [6] using a Lagrangian variational principle and the theorem of Noether.
The metage notion was generalized by Yahalom and Lynden-Bell [4] for barotropic MHD,
but not for labeling flow elements along vortex lines but rather as a label for fluid elements
along magnetic field lines, which are co-moving with the flow in the case of ideal MHD
(vortex lines are not co-moving in MHD). Yahalom and Lynden-Bell [4] demonstrated that
the translation symmetry of magnetic metage is connected to Woltjer’s [7,8] conservation
of cross-helicity for barotropic MHD. Later the concept of metage was generalized to non-
barotropic MHD in which magnetic field lines lie on entropy surfaces [20]. This was further
generalized by removing the entropy condition on magnetic field lines [21]. In those early
papers, the metage translation symmetry group was used to obtain a Noether current for
the generalized non-barotropic cross-helicity using a Lagrangian action.

Cross-helicities are expected to play a significant role in MHD related to global
magnetic-field generation, turbulence suppression, etc. It provides a linkage measure of
the vortex tubes of the velocity field with the flux tubes of the magnetic field. Cross-helicity
plays a major role with respect to the operation of turbulent dynamo [22]. Cross-helicity
density conservation for barotropic MHD turbulence theory is significant [23–25]. Plasma
velocity and magnetic field empirical data, which were recorded in the Voyager 2 mission,
is important for the study of solar wind turbulence in low velocity solar wind [26] and can
be used to characterize its cross-helicity. Verma [27] studied MHD turbulence in detail. He
has closely examined the Alfvénic MHD turbulence of zero and non-zero helicities. Energy
fluxes of MHD turbulence measure transfers of energy between velocity and magnetic
fields [28,29].

Magnetic helicity is also one of the important topological invariants in fluid dynamics.
Faraco and Lindberg [30] demonstrated the conservation of magnetic helicity in turbulent
flows. However, flux tubes diffuse through one another on resistive time durations; thus,
eventually, magnetic helicity dissipates [31]. Candelaresi and Del Sordo [32] studied the
role of magnetic helicity in plasmas stabilization by performing a series of experiments
and numerical simulations. Further, magnetic helicity’s significant role in determining the
structures, dynamics, and heating of the solar corona was studied by Knizhnik et al. [33].

The χ and η cross-helicities derive their name from the label translation symmetry
sub-group to which their associated Noether currents are connected. In addition, they
are expected to be as important as their predecessors: the magnetic and generalized
cross-helicities, for the stability and dynamics of MHD [16]. Thus, it is of paramount
importance to study the effects of non-ideal processes on their development, which is
the major innovation of this paper. Here, we would like to mention a recent work in
which we studied non-ideal processes and their effect on the conservation of magnetic and
generalized cross-helicities [34], although, of course, there is no overlap with the current
work as χ and η cross-helicities are completely different quantities.
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There are three sections in the current paper. Section 2 describes the basic quantities
and equations in non-ideal MHD. The calculations for the time derivative of χ helicity are
outlined in Section 3, and Section 4 deals with the mathematics of η helicity.

2. Standard Formulation of Non-Ideal Non-Barotropic MHD

The standard set of equations solved for non-ideal non-barotropic MHD is given below
(here, we use the EMU system of units):

∂v⃗n

∂ t
= −(v⃗n · ∇⃗)v⃗n −

∇⃗pn

ρn
+

J⃗n × B⃗n

ρn
− ∇⃗ϕ +

1
ρn

∂σ′
ik

∂xk
, (2)

∂ρn

∂t
+ ∇⃗ · (ρnv⃗n) = 0, (3)

∇⃗ · B⃗n = 0, (4)

∂B⃗n

∂t
= ∇⃗ × (⃗vn × B⃗n) +

ηv

4π
∇2B⃗n, (5)

ρnTn
dsn

dt
= σ′

ik
∂vni
∂xk

+ ηv J2
n + ∇⃗ · (k∇⃗Tn), (6)

where ∂
∂t is the partial temporal derivative; ∇⃗ takes its standard meaning in vector calculus;

we use the sub-script n to describe non-ideal processes. Thus, v⃗ is the ideal velocity and
v⃗n is the velocity for a non-ideal fluid, etc.; ρn is the density and pn is the pressure, which,
through the equation of state, depends on the density and entropy sn (the non-barotropic
case); Tn is the temperature and ϕ is a potential.The stress tensor is defined as:

σ′
ik = µv(

∂vni
∂xk

+
∂vnk
∂xi

− 2
3

δik
∂vnl
∂xl

), (7)

where µv is a coefficient of kinematic viscosity (not to be confused with the metage µ defined
in [16]). Notice that we take the coefficient of second viscosity (or volume viscosity) to be
zero for the sake of simplicity. The entropy Equation (6) depends on the heat conduction
coefficient k. According to classical kinetic theory, viscosity arises from collisions between
particles. The justification for those equations and the conditions under which they apply
can be found in standard books on MHD (see, for example, [9,35–37]).

The current density J⃗n and the magnetic field b⃗n of MHD are related by Ampere’s law:

∇⃗ × B⃗n = 4π J⃗n, (8)

where the displacement current is neglected. Equation (5) depends on the non-ideal
magnetic diffusivity ηv (not to be confused with the label η introduced in [16]). In the
limit of ideal flows, all the non-ideal coefficients µv, ηv, k tend to zero and the ideal MHD
equations are recovered. Moreover, we prime the difference between ideal and non-ideal
quantities, for example, v⃗′ = v⃗n − v⃗. It is clear that in the ideal limit, all primed quantities
tend to zero, for example, lim(µv ,ηv ,k)→0 v⃗′ = 0.

3. Direct Derivation of the Constancy of Non-Barotropic χ Cross-Helicity

We introduce the abstract ‘magnetic fields’ as follows [16]:

B⃗χ = ∇⃗µ × ∇⃗η, (9)

Non-barotropic χ cross-helicity is given by:

HCNBχ =
∫

v⃗nt · B⃗χd3x, (10)
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where the topological non-ideal velocity field is defined as v⃗nt = v⃗n − σn∇⃗sn [16], and σn is
an auxiliary variable, which depends on the Lagrangian time integral of the temperature, i.e.,

dσn

dt
= Tn. (11)

Please refer to [20] for a detailed justification for the relation of non-barotropic cross-helicity.
Taking the temporal derivative of the non-barotropic χ cross-helicity:

dHCNBχ

dt
=

∫
d3x (⃗vnt ·

∂B⃗χ

∂t
+ B⃗χ · ∂v⃗nt

∂t
), (12)

Now, after identifying the value of the first term of RHS, we take the time derivative of
Equation (9):

∂B⃗χ

∂t
= ∇⃗(

∂µ

∂t
)× ∇⃗η + ∇⃗µ × ∇⃗(

∂η

∂t
), (13)

Notice that both the labels are co-moving and conserved under an ideal material deriva-
tive [16]; thus,

∂µ

∂t
+ (⃗v · ∇⃗)µ = 0. (14)

Similarly,
∂η

∂t
+ (⃗v · ∇⃗)η = 0. (15)

Therefore,
∂B⃗χ

∂t
= ∇⃗[(−v⃗ · ∇⃗µ)]× ∇⃗η + ∇⃗µ × ∇⃗[(−v⃗ · ∇⃗η)], (16)

Using the vector identity:

∇⃗ × (ψ⃗a) = ∇⃗ψ × a⃗ + ψ∇⃗ × a⃗, (17)

Equation (16) takes the form:

∂B⃗χ

∂t
= [∇⃗ × {∇⃗µ(⃗v · ∇⃗η)− ∇⃗η(⃗v · ∇⃗µ)}], (18)

Now, with the help of the identity:

A⃗ × (B⃗ × C⃗) = B⃗(A⃗ · C⃗)− C⃗(A⃗ · B⃗), (19)

we obtain:
∂B⃗χ

∂t
= [∇⃗ × {v⃗ × (∇⃗µ × ∇⃗η)}]. (20)

Substituting B⃗χ defined in Equation (9), we obtain:

∂B⃗χ

∂t
= ∇⃗ × (⃗v × B⃗χ). (21)

Next, we add v⃗nt to both sides:

v⃗nt ·
∂B⃗χ

∂t
= v⃗nt · ∇⃗ × (⃗v × B⃗χ), (22)

and using a well-known vector identity, we obtain:

v⃗nt ·
∂B⃗χ

∂t
= ∇⃗ · {(⃗v × B⃗χ)× v⃗nt}+ (⃗v × B⃗χ) · ω⃗nt, (23)
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where we define the topological vorticity of the non-ideal flow field as:

ω⃗nt ≡ ∇⃗ × v⃗nt. (24)

Next, we calculate the second term on the RHS of Equation (12):

∂tv⃗nt · B⃗χ = B⃗χ · ∂t(v⃗n − σn∇⃗sn) = B⃗χ · (∂tv⃗n − ∂tσn∇⃗sn − σn∇⃗∂tsn). (25)

Now, we simplify the right hand side of Equation (25) in three steps. The first term is
calculated with the help of Equation (2):

∂v⃗n

∂ t
= (v⃗n × ω⃗n) +

J⃗n × B⃗n

ρn
− ∇⃗(

v2
n

2
)− ∇⃗wn + Tn∇⃗sn − ∇⃗ϕ +

1
ρn

∂σ′
ik

∂xk
, (26)

in which the non-ideal vorticity is:

ω⃗n ≡ ∇⃗ × v⃗n, (27)

and we use the thermo-dynamical identity:

dwn = dεn + d(
pn

ρn
) = Tndsn +

1
ρn

dpn ⇒ ∇⃗wn = Tn∇⃗sn +
1
ρn

∇⃗pn. (28)

Thus,

B⃗χ · ∂v⃗n

∂ t
= B⃗χ ·

[
(v⃗n × ω⃗n)− ∇⃗(

v2
n

2
+ wn) + Tn∇⃗sn − ∇⃗ϕ

]
+

Bχi

ρn

∂σ′
ik

∂xk
+ B⃗χ · J⃗n × B⃗n

ρn
. (29)

In the second term, we use Equation (11) to obtain:

−∂σn

∂t
∇⃗sn = (v⃗n · ∇⃗σn − Tn)∇⃗sn. (30)

In the third term, we use the equation for the rate of change of entropy in non-ideal MHD,
also known as the heat equation (Equation (6)):

−σn∇⃗
∂sn

∂t
= σn∇⃗[v⃗n · ∇⃗sn −

1
ρnTn

σ′
ik

∂vni
∂xk

− ηv

ρnTn
J2
n −

1
ρnTn

∇⃗ · (k∇⃗Tn)]. (31)

Combining Equations (29)–(31), we obtain:

B⃗χ · ∂v⃗nt
∂ t = B⃗χ · [(v⃗n × ω⃗nt) + ∇⃗{σn(v⃗n · ∇⃗sn)− v2

n
2 − wn − ϕ}

− σn∇⃗{ 1
ρnTn

σ′
ik

∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]

+
Bχi
ρn

∂σ′
ik

∂xk
+ B⃗χ · J⃗n×B⃗n

ρn
,

(32)

in which the current density is given by

J⃗n =
∇⃗ × B⃗n

4π
⇒ ∇⃗ · J⃗n = 0. (33)

Now,

B⃗χ · J⃗n × B⃗n

ρn
=

1
ρn

J⃗n · B⃗n × B⃗χ, (34)
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B⃗n × B⃗χ = B⃗n × (∇⃗µ × ∇⃗η) = ∇⃗µ(B⃗n · ∇⃗η)− ∇⃗η(B⃗n · ∇⃗µ), (35)

B⃗n × B⃗χ = ∇⃗µ(B⃗ · ∇⃗η) + ∇⃗µ(B⃗′ · ∇⃗η)− ∇⃗η(B⃗ · ∇⃗µ)− ∇⃗η(B⃗′ · ∇⃗µ), (36)

however, using Equations (15) and (17) of [16]: B⃗ · ∇⃗η = 0 and B⃗ · ∇⃗µ = ρ. And thus:

B⃗n × B⃗χ = ∇⃗µ(B⃗′ · ∇⃗η)− ∇⃗η(B⃗′ · ∇⃗µ)− ρ∇⃗η, (37)

Therefore,
B⃗n × B⃗χ = B⃗′ × (∇⃗µ × ∇⃗η)− ρ∇⃗η = B⃗′ × B⃗χ − ρ∇⃗η, (38)

It thus follows that:

B⃗χ · J⃗n × B⃗n

ρn
= − ρ

ρn
( J⃗n · ∇⃗η) +

J⃗n · (B⃗′ × B⃗χ)

ρn
= − ρ

ρn
∇⃗ · ( J⃗nη) +

J⃗n · (B⃗′ × B⃗χ)

ρn
. (39)

Now, Equation (32) can be written as:

B⃗χ · ∂v⃗nt
∂ t = B⃗χ ·

[
(v⃗n × ω⃗nt) + ∇⃗{σn(v⃗n · ∇⃗sn)− v2

n
2 − wn − ϕ}

− σn∇⃗{ 1
ρnTn

σ′
ik

∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}
]
+

Bχi
ρn

∂σ′
ik

∂xk

− ρ
ρn
∇⃗ · ( J⃗nη) +

J⃗n ·(B⃗′×B⃗χ)
ρn

.

(40)

Combining Equations (23) and (40) and taking into account that:

B⃗χ · (⃗vn × ω⃗t) = −(⃗vn × B⃗χ) · ω⃗t, (41)

We obtain:

v⃗nt · ∂B⃗χ

∂t + B⃗χ · ∂v⃗nt
∂t =

∇⃗ · {(⃗v × B⃗χ)× v⃗nt}+ B⃗χ · ∇⃗{σn (⃗vn · ∇⃗sn)− v2
n

2 − wn − ϕ}

+
Bχi
ρn

∂σ′
ik

∂xk
− B⃗χ · [σn∇⃗{ 1

ρnTn
σ′

ik
∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]

− ρ
ρn
∇⃗ · (⃗Jnη) +

J⃗n ·(B⃗′×B⃗χ)
ρn

+ ω⃗nt · (B⃗χ × v⃗′).

(42)

Now, substituting Equation (42) into Equation (12), we obtain:

dHCNBχ

dt =
∫
∇⃗ · {(⃗v × B⃗χ)× v⃗nt}+ B⃗χ · ∇⃗{σn (⃗vn · ∇⃗sn)− v2

n
2 − wn − ϕ}d3x

+
∫
[

Bχi
ρn

∂σ′
ik

∂xk
− B⃗χ · [σn∇⃗{ 1

ρnTn
σ′

ik
∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]]d3x

−
∫
[ ρ

ρn
∇⃗ · (⃗Jnη)− J⃗n ·(B⃗′×B⃗χ)

ρn
− ω⃗nt · (B⃗χ × v⃗′)]d3x.

(43)

Using Gauss’s divergence theorem, we can write part of this integral as a surface integral:

dHCNBχ

dt =
∮
[(⃗v × B⃗χ)× v⃗nt + B⃗χ{σn (⃗vn · ∇⃗sn)− v2

n
2 − wn − ϕ} − J⃗nη] · dS⃗

+
∫
[

Bχi
ρn

∂σ′
ik

∂xk
− B⃗χ · [σn∇⃗{ 1

ρnTn
σ′

ik
∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]]d3x

+
∫
[ ρ′

ρn
∇⃗ · (⃗Jnη) +

J⃗n ·(B⃗′×B⃗χ)
ρn

+ ω⃗nt · (B⃗χ × v⃗′)]d3x.

(44)

Here, the surface integral encapsulates the volume for which the χ non-barotropic cross-helicity
is calculated and a cut in the case that η is multiple-valued. If the surface integral vanishes:
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dHCNBχ

dt =
∫
[

Bχi
ρn

∂σ′
ik

∂xk
− B⃗χ · [σn∇⃗{ 1

ρnTn
σ′

ik
∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]]d3x

+
∫
[ ρ′

ρn
∇⃗ · (⃗Jnη) +

J⃗n ·(B⃗′×B⃗χ)
ρn

+ ω⃗nt · (B⃗χ × v⃗′)]d3x.
(45)

If viscosity and heat conduction are less important, we can write a reduced expression:

dHCNBχ

dt = −
∫

σn B⃗χ · ∇⃗[ ηv J2
n

ρnTn
]d3x

+
∫
[ ρ′

ρn
∇⃗ · (⃗Jnη) +

J⃗n ·(B⃗′×B⃗χ)
ρn

+ ω⃗nt · (B⃗χ × v⃗′)]d3x.
(46)

To conclude, we notice that is not possible to partition the time derivative of the non-
barotropic χ cross-helicity in accordance with the different non-ideal processes: viscosity,
finite conductivity, and heat conductivity. Each of these processes may contribute to the
primed quantities directly or indirectly. In the limit that all non-ideal coefficients tend to
zero, it is easy to see that the non-barotropic χ cross-helicity is indeed conserved:

dHCNBχ

dt
= 0. (47)

This is as expected for an ideal flow.

4. Direct Derivation of the Constancy of Non-Barotropic η Cross-Helicity

We introduce the abstract ‘magnetic field’ as follows [16]:

B⃗η = ∇⃗χ × ∇⃗µ. (48)

Non-barotropic η cross-helicity is given by:

HCNBη =
∫

v⃗nt · B⃗ηd3x. (49)

Taking the temporal derivative of the non-barotropic η cross-helicity

dHCNBη

dt
=

∫
d3x (⃗vnt ·

∂B⃗η

∂t
+ B⃗η ·

∂v⃗nt

∂t
), (50)

∂B⃗η

∂t
= ∇⃗(

∂χ

∂t
)× ∇⃗µ + ∇⃗χ × ∇⃗(

∂µ

∂t
). (51)

Again, both the labels are co-moving and conserved under an ideal material derivative [16]:

∂µ

∂t
+ (⃗v · ∇⃗)µ = 0,

∂χ

∂t
+ (⃗v · ∇⃗)χ = 0. (52)

Therefore,
∂B⃗η

∂t
= ∇⃗[(−v⃗ · ∇⃗χ)]× ∇⃗µ + ∇⃗χ × ∇⃗[(−v⃗ · ∇⃗µ)]. (53)

Using the vector identity:
∇⃗ × (ψ∇⃗µ) = ∇⃗ψ × ∇⃗µ, (54)

Equation (53) takes the form.

∂B⃗η

∂t
= ∇⃗ × {∇⃗χ(⃗v · ∇⃗µ)− ∇⃗µ(⃗v · ∇⃗χ)}. (55)
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Now, with the help of the identity:

A⃗ × (B⃗ × C⃗) = B⃗(A⃗ · C⃗)− C⃗(A⃗ · B⃗), (56)

we obtain:
∂B⃗η

∂t
= ∇⃗ × {v⃗ × (∇⃗χ × ∇⃗µ)} = ∇⃗ × (⃗v × B⃗η). (57)

Thus,

v⃗nt ·
∂B⃗η

∂t
= v⃗nt · [∇⃗ × (⃗v × B⃗η)] = ∇⃗ · {(⃗v × B⃗η)× v⃗nt}+ (⃗v × B⃗η) · ω⃗nt. (58)

Next, we calculate the second term:

∂tv⃗nt · B⃗η = B⃗η · ∂t(v⃗n − σn∇⃗sn) = B⃗η · (∂tv⃗n − ∂tσn∇⃗sn − σn∇⃗∂tsn). (59)

Now, we simplify the right hand side of Equation (59) in three steps. The first term is
calculated with the help of momentum Equation (26) for the non-ideal case. We multiply
both sides of Equation (26) by B⃗η

B⃗η ·
∂v⃗n

∂ t
= B⃗η ·

[
(v⃗n × ω⃗n) +

J⃗n × B⃗n

ρn
− ∇⃗(

v2
n

2
)− ∇⃗wn + Tn∇⃗sn − ∇⃗ϕ +

1
ρn

∂σ′
ik

∂xk

]
, (60)

In addition, arranging the terms on the right hand side of the equation, we thus obtain:

B⃗η ·
∂v⃗n

∂ t
= B⃗η ·

[
(v⃗n × ω⃗n)− ∇⃗(

v2
n

2
+ wn) + Tn∇⃗sn − ∇⃗ϕ

]
+

Bηi

ρn

∂σ′
ik

∂xk
+ B⃗η ·

J⃗n × B⃗n

ρn
. (61)

For the second and third terms, we use Equations (30) and (31) to obtain:

B⃗η · ∂v⃗nt
∂ t = B⃗η · [(v⃗n × ω⃗nt) + ∇⃗{σn(v⃗n · ∇⃗sn)− v2

n
2 − wn − ϕ}

− σn∇⃗{ 1
ρnTn

σ′
ik

∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]

+
Bηi
ρn

∂σ′
ik

∂xk
+ B⃗η · J⃗n×B⃗n

ρn
.

(62)

Now,

B⃗η ·
J⃗n × B⃗n

ρn
=

1
ρn

J⃗n · B⃗n × B⃗η . (63)

And we have:

B⃗n × B⃗η = B⃗n × (∇⃗χ × ∇⃗µ) = ∇⃗χ(B⃗n · ∇⃗µ)− ∇⃗µ(B⃗n · ∇⃗χ)

= ∇⃗χ(B⃗ · ∇⃗µ) + ∇⃗χ(B⃗′ · ∇⃗µ)− ∇⃗µ(B⃗ · ∇⃗χ)− ∇⃗µ(B⃗′ · ∇⃗χ),
(64)

However, using Equations (15) and (17) of [16], which dictate:

B⃗ · ∇⃗χ = 0, B⃗ · ∇⃗µ = ρ, (65)

it follows that:

B⃗n × B⃗η = ∇⃗χ(B⃗′ · ∇⃗µ)− ∇⃗µ(B⃗′ · ∇⃗χ) + ρ∇⃗χ = B⃗′ × (∇⃗χ × ∇⃗µ) + ρ∇⃗χ

= B⃗′ × B⃗η + ρ∇⃗χ.
(66)
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Inserting Equations (66) into (63) leads to the following identity:

B⃗η ·
J⃗n × B⃗n

ρn
=

ρ

ρn
( J⃗n · ∇⃗χ) +

J⃗n · (B⃗′ × B⃗η)

ρn
=

ρ

ρn
∇⃗ · ( J⃗nχ) +

J⃗n · (B⃗′ × B⃗η)

ρn
. (67)

Therefore, Equation (62) becomes:

B⃗η · ∂v⃗nt
∂ t = B⃗η · [(v⃗n × ω⃗nt) + ∇⃗{σn(v⃗n · ∇⃗sn)− v2

n
2 − wn − ϕ}

− σn∇⃗{ 1
ρnTn

σ′
ik

∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]

+
Bηi
ρn

∂σ′
ik

∂xk
+ ρ

ρn
∇⃗ · ( J⃗nχ) +

J⃗n ·(B⃗′×B⃗η)
ρn

.

(68)

Combining Equations (58) and (68), we obtain:

v⃗nt ·
∂B⃗η

∂t + B⃗η · ∂v⃗nt
∂t = ∇⃗ · {(⃗v × B⃗η)× v⃗nt}

+ B⃗η · ∇⃗{σn (⃗vn · ∇⃗sn)− v2
n

2 − wn − ϕ}

+
Bηi
ρn

∂σ′
ik

∂xk
− B⃗η · [σn∇⃗{ 1

ρnTn
σ′

ik
∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]

+ ρ
ρn
∇⃗ · (⃗Jnχ) +

J⃗n ·(B⃗′×B⃗η)
ρn

+ ω⃗nt · (B⃗η × v⃗′).

(69)

Now, substituting Equation (69) into Equation (50), we obtain:

dHCNBη

dt

=
∫
∇⃗ · {(⃗v × B⃗η)× v⃗nt}+ B⃗η · ∇⃗{σn (⃗vn · ∇⃗sn)− v2

n
2 − wn − ϕ}d3x

+
∫
[

Bηi
ρn

∂σ′
ik

∂xk
− B⃗η · [σn∇⃗{ 1

ρnTn
σ′

ik
∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]]d3x

+
∫
[ ρ

ρn
∇⃗ · (⃗Jnχ) +

J⃗n ·(B⃗′×B⃗η)
ρn

+ ω⃗nt · (B⃗η × v⃗′)]d3x.

(70)

Using Gauss’ divergence theorem, we obtain:

dHCNBη

dt

=
∮
[(⃗v × B⃗η)× v⃗nt + B⃗η{σn (⃗vn · ∇⃗sn)− v2

n
2 − wn − ϕ}+ J⃗nχ] · dS⃗

+
∫
[

Bηi
ρn

∂σ′
ik

∂xk
− B⃗η · [σn∇⃗{ 1

ρnTn
σ′

ik
∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]]d3x

+
∫
[− ρ′

ρn
∇⃗ · (⃗Jnχ) +

J⃗n ·(B⃗′×B⃗η)
ρn

+ ω⃗nt · (B⃗η × v⃗′)]d3x.

(71)

Here, the surface integral encapsulates the volume for which the χ non-barotropic cross-helicity
is calculated (χ is usually single-valued so no cut is required). If the surface integral vanishes:

dHCNBη

dt

=
∫
[

Bηi
ρn

∂σ′
ik

∂xk
− B⃗η · [σn∇⃗{ 1

ρnTn
σ′

ik
∂vni
∂xk

+ ηv
ρnTn

J2
n +

1
ρnTn

∇⃗ · (k∇⃗Tn)}]]d3x

+
∫
[− ρ′

ρn
∇⃗ · (⃗Jnχ) +

J⃗n ·(B⃗′×B⃗η)
ρn

+ ω⃗nt · (B⃗η × v⃗′)]d3x.

(72)

To conclude, we notice that is not possible to partition the time derivative of the non-
barotropic η cross-helicity in accordance with the different non-ideal processes: viscosity,
finite conductivity, and heat conductivity. Each of these processes may contribute to the
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primed quantities directly or indirectly. In the limit that all non-ideal coefficients tend to
zero, it is easy to see that the non-barotropic η cross-helicity is indeed conserved:

dHCNBη

dt
= 0. (73)

This is as expected for an ideal flow.

5. Conclusions

In this paper, we study the constancy of two new topological invariants: the general-
ized χ and η cross-helicities, when fluid flow is non-ideal, but the non-ideal processes are
less significant. We show that the helicities are not conserved and their time derivatives de-
pend on dissipative processes present in the system. Non-zero cross-helicity has important
consequences for transport and [38] exhibits a close relation with momentum transfer and
cross-helicity. Ref. [39] discussed its significance in MHD turbulence using high-resolution
direct numerical simulations. Cross-helicity resembles the correlation between velocity
and magnetic field fluctuation and measures the importance of Alfvén waves in global
fluctuation. In addition, [40] predicted the generation of turbulence in interstellar media
caused by non-linear interactions among shear Alfvén waves. Many studies have shown
that cross-helicity is correlated to turbulence self-production.

Cascade processes in MHD turbulence were studied by [41] in detail and it was
concluded that “cross helicity blocks the spectral energy transfer in MHD turbulence
and results in energy accumulation in the system. This accumulation proceeds until the
vortex intensification compensates the decreasing efficiency of nonlinear interactions”.
Ref. [42] studied the relation between the magnitude of cross-helicity and the rate of decay
of isotropic MHD turbulence and showed that an initial non-zero cross-helicity causes
imbalanced MHD turbulence.

The coupled action of helical particle flow (the kinetic α effect) and differential rotation
is a significant dynamo cause in solar and galactic magnetic fields [43]. The dynamics
of magnetic helicity on the small scale is important for non-linear dynamo saturation in
which turbulent magnetic helicity fluxes cause a lack of catastrophic quenching due to the α
effect. Convective zones in galactic discs, the Sun, and stars that resemble the Sun generate
turbulent magnetic helicity fluxes. Using the mean-field method and the τ approximation,
Kleeorin and Rogachevskii [43] derived turbulent magnetic helicity fluxes with the help
of the Coulomb gauge for the case of density-stratified turbulence. Turbulent magnetic
helicity fluxes are composed non-gradient and gradient parts. Non-gradient magnetic
helicity flux is proportional to a non-linear effective velocity (which is null if no density
stratification exists) multiplied by small-scale magnetic helicity. Gradient contributions
depict turbulent magnetic diffusion of the small-scale magnetic helicity. In addition, the
turbulent magnetic helicity fluxes contain source terms proportional to the kinetic α effect
or its gradients, and also contributions caused by the large-scale shear (solar differential
rotation). Kleeorin and Rogachevskii [43] demonstrated that the turbulent magnetic helicity
fluxes due to the kinetic α effect and its radial derivative in combination with the non-linear
magnetic diffusion of the small-scale magnetic helicity are dominant in the solar convective
zone. It is, thus, plausible that the χ and η cross-helicities may also play an important role
in regions where convection is more important than non-ideal processes, such as friction,
magnetic diffusion, and heat conduction.

The technological (fusion) and astrophysical importance of cross-helicity suggest that
the newly discovered χ and η cross-helicities may also play a pivotal rule. The reason for
this is two-fold. First, as we have shown above, all processes that change the quantities are
slow dissipative processes; thus, any fast processes conserve the χ and η cross-helicities.
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Second, given that those quantities are approximately constant, they serve as lower bounds
to other quantities such as “energy”:

∣∣HCNBχ

∣∣ = ∣∣∣∣∫ B⃗χ · v⃗td3x
∣∣∣∣ ≤ 1

2

∫ (
B⃗χ

2
+ v⃗t

2
)

d3x, (74)

∣∣HCNBχ

∣∣ = ∣∣∣∣∫ B⃗χ · v⃗td3x
∣∣∣∣ ≤ √∫

v⃗t
2d3x

√∫
B⃗χ

2
d3x, (75)

∣∣HCNBη

∣∣ = ∣∣∣∣∫ B⃗η · v⃗td3x
∣∣∣∣ ≤ 1

2

∫ (
B⃗η

2
+ v⃗t

2
)

d3x, (76)

∣∣HCNBη

∣∣ = ∣∣∣∣∫ B⃗η · v⃗td3x
∣∣∣∣ ≤ √∫

v⃗t
2d3x

√∫
B⃗η

2
d3x, (77)

and, thus, may prevent at least part of the fastest and most dangerous instabilities, which
may provide some hope that controlled fusion is indeed feasible.

Another important application is that of testing numerical schemes. The inequalities
may be used to check the appropriateness of relevant algorithms by checking that the
numerical evolution of a specific numerical scheme indeed satisfies the above inequality.
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