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Abstract: This study begins with the construction of type-Π Smarandache ruled surfaces, whose base
curves are Smarandache curves derived by rotation-minimizing Darboux frame vectors of the curve
in E3. The direction vectors of these surfaces are unit vectors that convert Smarandache curves. The
Gaussian and mean curvatures of the generated ruled surfaces are then separately calculated, and
the surfaces are required to be minimal or developable. We report our main conclusions in terms
of the angle between normal vectors and the relationship between normal curvature and geodesic
curvature. For every surface, examples are provided, and the graphs of these surfaces are produced.
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1. Introduction

One of the branches of classical differential geometry that has been explored by a
number of researchers is the theory of ruled surfaces. A ruled surface is one that has at
least one straight line passing through each point on the surface that is also on the surface.
One way to conceptualize a ruled surface is as one that is “swept out” by a moving straight
line in space. Cones and cylinders are basic instances of ruled surfaces. Architects are
interested in more intricate ruled surfaces, particularly when it comes to free-form building
and intricate designs. In contemporary design, there are several instances of ruled surface
structures, such as saddle roofs (hyperbolic paraboloid) and cooling towers (hyperboloid).
A ruled surface is often described as a collection of a family of straight lines that are reliant
on the parameters, called the rulings, of the ruled surface. The parametric representation of
a ruled surface is Γ(s, υ) = r(s) + υX(s), where r(s) is the base curve and X(s) specifies the
rulings directions [1]. Many practical uses arise out of the study of developable surfaces.
Studies on developable surfaces are widely available. A surface that can be developed into
a plane without changing the surface metric is called a developable surface. Studies of
developable surfaces of space curves from the perspective of singularity theory have been
documented in the literature. The governed surface that results from the tangent lines of
a space curve is called the tangent developable surface. Tantent developable surfaces are
crucial to the duality theory of algebraic geometry. From differential calculus, singularity
theory is a branch of mathematics that has applications in physics, astronomy, and geometry.
Some of key investigations on the submanifold theory and singularity theory have been
presented in [2–5]. The developability and minimalist principles of surfaces are two of
its key characteristics. The investigation of ruled surfaces with various moving frames
provides one of the most fascinating features (see [6–11]).

In Euclidean and Minkowski spaces, the Smarandache curve is the curve whose
position vector is created by Frenet frame vectors on another regular curve [12–14]. Recent
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studies on Smarandache curves in Minkowski and Euclidean spaces have been conducted
by a number of researchers [15].

In this study, the requirements of type-Π Smarandache ruled surfaces are specified by
using the rotation minimizing Darboux frame in E3. Furthermore, we address the geometric
analysis of a particular kind of ruled surface, namely the type-Π Smarandache ruled
surfaces associated with the space curves as a basic example for studying the manifolds
with the largest dimensions in Euclidean 3-space. We examine the sufficient and necessary
requirements for these surfaces to be minimal and developable. We report our main
conclusions in terms of the angle between normal vectors and the relationship between
normal curvature and geodesic curvature. The organization of this work is as follows:
In Section 2, we review the concepts of ruled surfaces in Euclidean space, Smarandache
curves, Frenet frame, and Darboux frame. In Section 3, we derive some of the geometric
characteristics of the type-Π Smarandache ruled surfaces, which we define due to rotation
minimizing Darboux frame whose a director curve and base curve are Smarandache curves.
We give an example in Section 4 that emphasizes the most significant findings in this work.

2. Preliminaries

Let φ(s) = M(u(s), υ(s)) be a unit speed regular curve lying on a surface M(u, v) in
E3. Let {T, N, B} denotes the moving Frenet frame of φ, then {T, N, B} satisfying [1]:

d
ds

 T(s)
N(s)
B(s)

 =

 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0

 T(s)
N(s)
B(s)

, (1)

where ⟨T, T⟩ = ⟨N, N⟩ = ⟨B, B⟩ = 1 and ⟨T, N⟩ = ⟨T, B⟩ = ⟨N, B⟩ = 0.
For any arbitrary curve φ with τ ̸= 0 in E3, the Darboux frame of φ is given by [16]:

d
ds

 T(s)
N(s)
G(s)

 =

 0 κg(s) κn(s)
−κg(s) 0 τg(s)
−κn(s) −τg(s) 0

 T(s)
N(s)
G(s)

, (2)

where N is the surface normal and G = N× T. The geodesic curvature κg, normal curvature
κn, and geodesic torsion τg that connects the curve φ on M are given as

κg = ⟨T′, G⟩, κn = ⟨T′,N⟩, τg = ⟨G′,N⟩. (3)

The rotation minimizing Darboux frame (RMDF) {T, P1, P2} of curve φ on the surface M is
defined by [17,18]:

d
ds

 T(s)
P1(s)
P2(s)

 =

 0 ζ1(s) ζ2(s)
−ζ1(s) 0 0
−ζ2(s) 0 0

 T(s)
P1(s)
P2(s)

, (4)

where the RMDF curvatures are obtained as follows:

ζ1 = κg sin ϑ + κn cos ϑ,

ζ2 = κn sin ϑ − κg cos ϑ,
(5)

where ϑ(s) =
∫ s

0
τgds is the angle between vectors N and P1. The relation matrix between

frames may be expressed as: T(s)
P1(s)
P2(s)

 =

 1 0 0
0 sin ϑ(s) cos ϑ(s)
0 − cos ϑ(s) sin ϑ(s)

 T(s)
N(s)
G(s)

. (6)
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The surface formed by a line moving depending on the parameter of a curve is called a
ruled surface and its parametric expression is as follows:

Υ(s, υ) = φ(s) + υX(s). (7)

The normal vector field, the Gaussian and mean curvatures of Υ(s, υ) are given by

N =
Υs × Υυ

∥Υs × Υυ∥
, K =

eg − f 2

EG − F2 , H =
Eg − 2 f F + Ge

2(EG − F2)
.

We also know that

E = ⟨Υs, Υs⟩, F = ⟨Υs, Υυ⟩, G = ⟨Υυ, Υυ⟩,

and
e = ⟨Υss,N⟩, f = ⟨Υsυ,N⟩, g = ⟨Υυυ,N⟩,

where E, F, G are the first fundamental coefficients and e, f , and g are the second funda-
mental coefficients of Υ.

The Smarandache curves of the curve φ(s) is defined as follows:

TP1-Smarandache curve γ1(s) =
1√
2

(
T(s) + P1(s)

)
.

TP2-Smarandache curve γ2(s) =
1√
2

(
T(s) + P2(s)

)
.

P1P2-Smarandache curve γ3(s) =
1√
2

(
P1(s) + P2(s)

)
.

TP1P2-Smarandache curve γ4(s) =
1√
3

(
T(s) + P1(s) + P2(s)

)
.

3. Type-Π Smarandache Ruled Surfaces Due to RMDF

The curve φ(s) on the surface M caused by RMDF serves as the parametric represen-
tation of type-Π Smarandache ruled surfaces in this section. In addition, we assess the
prerequisites that make it possible for these surfaces to be minimum and developable.

3.1. Type-Π Smarandache Ruled Surfaces along γ1-Smarandache Curve

Definition 1. The type-Π Smarandache ruled surfaces due to RMDF in E3 generated by continu-
ously moving vector γ1 along γ1-Smarandache curve is defined by

Ψ(s, υ) = γ1(s) + υγ1(s). (8)

Theorem 1. The type-Π Smarandache ruled surface Ψ = Ψ(s, υ) is developable.

Proof. Consider the type-Π Smarandache ruled surface Ψ = Ψ(s, υ) given by (8), then the
velocity vectors of Ψ are given by

Ψs =
υ + 1√

2

[
− ζ1T + ζ1P1 + ζ2P2

]
,

Ψυ =
1√
2

(
T + P1

)
.

(9)

Then, the normal vector field NΨ of the surface Ψ is obtained as

NΨ =
Ψs × Ψυ

∥Ψs × Ψυ∥
=

−ζ2 T + ζ2 P1 − 2ζ1 P2
√

2
√

ζ2
1 + κ2

.
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Hence, it can be easily seen that the first fundamental coefficients of Ψ are

E =
(υ + 1)2

2

[
ζ2

1 + κ2
]
,

F = 0, G = 1.
(10)

Taking the derivative of (9) with respect to s and υ, we find

Ψss =
υ + 1√

2

[
− (ζ ′1 + κ)T + (ζ ′1 − ζ2

1)P1 + (ζ ′2 − ζ1ζ2)P2

]
,

Ψsυ =
1√
2

[
− ζ1T + ζ1P1 + ζ2P2

]
,

Ψυυ = 0.

(11)

Hence, it can be seen that the coefficients of second fundamental form of Ψ are

e =
υ + 1

2
√

ζ2
1 + κ2

[
ζ2(κ + ζ2

1) + 2(ζ ′1ζ2 − ζ1ζ ′2)
]
,

f = 0, g = 0.

(12)

As a consequence, we obtain

KΨ = 0,

HΨ =
ζ2(κ + ζ2

1) + 2(ζ ′1ζ2 − ζ1ζ ′2)

2(υ + 1)(ζ2
1 + κ2)

3
2

,
(13)

which concludes the proof.

From Theorem 1, we have the following immediate results.

Corollary 1. Let Ψ = Ψ(s, υ) be a type-Π Smarandache ruled surface. Then, the s-parameter
curves of Ψ are not geodesic but υ-parameter curves are geodesic.

Proof. Let Ψ = Ψ(s, υ) defined by (8) due to RMDF (4) in E3 be the type-Π Smarandache
ruled surface. Since

Ψss ×NΨ =
υ + 1

2
√

ζ2
1 + κ2

{[
ζ2(ζ

′
2 − ζ1ζ2)− 2ζ1(ζ

′
1 − ζ2

1)
]
T −

[
2ζ1(ζ

′
1 + ζ2) + ζ2(ζ

′
2 − ζ1ζ2)

]
P1

+
[
ζ2(ζ

′
1 − ζ2

1)− ζ2(ζ
′
1 + ζ2)

]
P2

}
̸= 0,

and Ψυυ × NΨ = 0. Then, the s-parameter curves of Ψ surface simultaneously are not
geodesic and the υ-parameter curves of Ψ simultaneously are geodesic.

Corollary 2. Let Ψ = Ψ(s, υ) be a type-Π Smarandache ruled surface. Then, the s-parameter
curves of Ψ are not asymptotic but υ-parameter curves are asymptotic.

Proof. Let Ψ = Ψ(s, υ) defined by (8) due to RMDF (4) in E3 be the type-Π Smarandache
ruled surface. Since

⟨Ψss,NΨ⟩ =
(υ + 1)

[
ζ2(2ζ ′1 − ζ2

1 + κ)− 2ζ1(ζ
′
2 − ζ1ζ2)

]
2
√

ζ2
1 + κ2

̸= 0,

and ⟨Ψυυ,NΨ⟩ = 0. Thus, the s-parameter curves of Ψ surface simultaneously are not
asymptotic but the υ-parameter curves of Ψ simultaneously are asymptotic.



Symmetry 2023, 15, 2207 5 of 19

Corollary 3. Let Ψ = Ψ(s, υ) be a type-Π Smarandache ruled surface. Then, the s and υ-parameter
curves are principal curves.

Proof. Let Ψ = Ψ(s, υ) defined by (8) due to RMDF (4) in E3 be the type-Π Smarandache
ruled surface. Since

⟨Ψs, Ψυ⟩ = ⟨Ψsυ,NΨ⟩ = 0.

Therefore, it is clear that both s and υ-parameter curves are principal curves.

Definition 2. The type-Π Smarandache ruled surfaces due to RMDF (4) in E3 generated by
continuously moving vector γ2 along γ1-Smarandache curve is defined as follows

Γ(s, υ) = γ1(s) + υγ2(s). (14)

Theorem 2. The type-Π Smarandache ruled surface Γ = Γ(s, υ) together with κg(s) ̸= κn(s) is
developable iff one of the following conditions holds

i. ϑ(s) = − tan−1
(κn

κg

)
,

ii. ϑ(s) = tan−1
(κn + κg

κn − κg

)
.

Proof. Consider the type-Π Smarandache ruled surface Γ = Γ(s, υ) given by (14), then the
velocity vectors of Γ are given by:

Γs =
1√
2

[
− (ζ1 + υζ2)T + (υ + 1)ζ1P1 + (υ + 1)ζ2P2

]
,

Γυ =
1√
2

(
T + P2

)
.

(15)

Then, the normal vector field NΓ of the surface Γ is obtained as:

NΓ =
(υ + 1)ζ1 T +

[
ζ1 + (2υ + 1)ζ2

]
P1 − (υ + 1)ζ1 P2√

2(υ + 1)2ζ2
1 +

[
ζ1 + (2υ + 1)ζ2

]2
.

Hence, it can be easily seen that the first fundamental coefficients of Γ are:

E =
1
2

[
(ζ1 + υζ2)

2 + (υ + 1)2κ2
]
,

F =
1
2
[
ζ2 − ζ1

]
, G = 1.

(16)

Taking the derivative of (15) with respect to s and υ, we find

Γss =
1√
2

{
−

[
ζ ′1 + υζ ′2 + (υ + 1)κ2]T +

[
(υ + 1)ζ ′1 − ζ1(ζ1 + υζ2)

]
P1

+
[
(υ + 1)ζ ′2 − ζ1(ζ1 + υζ2)

]
P2

}
,

Γsυ =
1√
2

[
− ζ2 T + ζ1P1 + ζ2P2

]
,

Γυυ = 0.

(17)

Thus, it can be seen that the coefficients of the second fundamental form of Γ are:
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e =
1

√
2
√

2(υ + 1)2ζ2
1 +

[
ζ1 + (2υ + 1)ζ2

]2

{[
ζ1 + (2υ + 1)ζ2

][
(υ + 1)ζ ′1 − ζ1(ζ1 + υζ2)

]
− (υ + 1)ζ1

[
ζ ′1 + (2υ + 1)ζ ′2 + ζ2(ζ1 + υζ2) + (υ + 1)κ2]},

f =
ζ1(ζ1 − ζ2)

√
2
√

2(υ + 1)2ζ2
1 +

[
ζ1 + (2υ + 1)ζ2

]2
,

g = 0.

(18)

As a result, we derive

KΓ = −
ζ2

1(ζ1 − ζ2)
2[

ζ2
1 + υ2ζ2

2 + (υ + 1)(υκ2 + 2ζ1ζ2)
][

2(υ + 1)2ζ2
1 +

[
ζ1 + (2υ + 1)ζ2

]2
] ,

HΓ =

{ [
ζ1 + (υ + 2)ζ2

][
(υ + 1)ζ ′1 − ζ1(ζ1 + ζ2)

]
− (υ + 1)ζ1

[
ζ ′1 + (υ + 2)ζ ′2

+ζ2(ζ1 + ζ2) + (υ + 1)κ2]− ζ1(ζ1 + ζ2)(υζ2 − ζ1)

}
√

2
√

2(υ + 1)2ζ2
1 +

[
ζ1 + (2υ + 1)ζ2

]2
[
ζ2

1 + υ2ζ2
2 + (υ + 1)(υκ2 + 2ζ1ζ2)

] .

(19)

Combining the above equation with (5), we conclude the proof.

As a consequence of Theorem 2, we obtain the following results:

Corollary 4. Let Γ = Γ(s, υ) be a type-Π Smarandache ruled surface. Then, the Γ has constant
Gauss curvature iff ζ1(ζ1 + ζ2) = c for some non-zero constant c.

Corollary 5. Let Γ = Γ(s, υ) be a type-Π Smarandache ruled surface. Then, the s-parameter
curves of Γ are not asymptotic but υ-parameter curves are asymptotic curves.

Remark 1. The proof of Corollary 4 and 5 is similar to the proof of Corollaries 1–3.

Definition 3. The type-Π Smarandache ruled surfaces due to RMDF (4) in E3 generated by
continuously moving vector γ3 along γ1-Smarandache curve is defined as follows

Λ(s, υ) = γ1(s) + υγ3(s). (20)

Theorem 3. The type-Π Smarandache ruled surface Λ = Λ(s, υ) defined by (20) due to RMDF
(4) in E3. If κg(s) ̸= ±κn(s), then Λ is developable iff one of the following conditions holds

i. ϑ(s) = tan−1
(κn + κg

κn − κg

)
,

ii. ϑ(s) = − tan−1
(κn − κg

κn + κg

)
.

Proof. Consider the type-Π Smarandache ruled surface Λ = Λ(s, υ) given by (20), then
Λ’s velocity vectors are given by:

Λs =
1√
2

[
−

[
(υ + 1)ζ1 + υζ2

]
T + ζ1P1 + ζ2P2

]
,

Λυ =
1√
2

(
P1 + P2

)
.

(21)
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The normal vector field of the surface Λ(s, υ) may be ascertained by taking the cross-product
of the partial derivatives of the surface given by Equation (21). Then, we have

NΛ =
(ζ1 − ζ2) T −

[
(υ + 1)ζ1 + υζ2

]
(P1 + P2)√

(ζ1 − ζ2)2 + 2
[
(υ + 1)ζ1 + υζ2

]2
.

From Equation (21), we can obtain the Λ’s quantities of first fundamental form are:

E =
1
2

[
κ2 +

[
(υ + 1)ζ1 + υζ2

]2
]
,

F =
1
2
[
ζ1 + ζ2

]
, G = 1.

(22)

Using (21)’s second derivative with regard to s and υ, we have

Λss =
1√
2

{
−

[
κ2 + υζ ′2 + (υ + 1)ζ ′1

]
T +

[
ζ ′1 − ζ1

[
(υ + 1)ζ1 + υζ2

]]
P1

+
[
ζ ′2 − ζ2

[
(υ + 1)ζ1 + υζ2

]]
P2

}
,

Λsυ =
−1√

2

[
ζ1 + ζ2

]
T,

Λυυ = 0.

(23)

Then, Λ’s quantities of second fundamental form are:

e =
−1

√
2
√
(ζ1 − ζ2)2 + 2

[
ζ1 + (υ + 1)ζ1 + υζ2

]2

{
(ζ1 − ζ2)

[
κ2 + υζ ′2 + (υ + 1)ζ ′1

]
−

[
(υ + 1)ζ1 + υζ2

][
ζ ′1 + ζ ′2 − (ζ1 + ζ2)

[
(υ + 1)ζ1 + υζ2

]]}
,

f =
ζ2

2 − ζ2
1

√
2
√
(ζ1 − ζ2)2 + 2

[
ζ1 + (υ + 1)ζ1 + υζ2

]2
,

g = 0.

(24)

As a result, given the facts above, we are able to KΛ and HΛ are given by:

KΛ =
(ζ2

1 − ζ2
2)

2[
κ2 +

[
(υ + 1)ζ1 + υζ2

]2 − 1
2
[
ζ1 + ζ1

]2
][
(ζ1 − ζ2)2 + 2

[
ζ1 + (υ + 1)ζ1 + υζ2

]2
] ,

HΛ =

{
(ζ1 − ζ2)

[
κ2 + (ζ1 + ζ2)

2 + υζ ′2 + (υ + 1)ζ ′1
]

−
[
(υ + 1)ζ1 + υζ2

][
ζ ′1 + ζ ′2 − (ζ1 + ζ2)

[
(υ + 1)ζ1 + υζ2

]] }
√

2
√
(ζ1 − ζ2)2 + 2

[
ζ1 + (υ + 1)ζ1 + υζ2

]2
[
κ2 +

[
(υ + 1)ζ1 + υζ2

]2 − 1
2
[
ζ1 + ζ1

]2
] .

(25)

So, from Equation (5) the proof is ended.

In the same way, as for the proof of Corollaries 1–3, we can prove the following results:

Corollary 6. Let Λ = Λ(s, υ) be a type-Π Smarandache ruled surface defined by (20) in E3 via to
RMDF (4). Then, the Λ has constant Gauss curvature iff ϑ = ±π

4 .

Corollary 7. Let Λ = Λ(s, υ) be a type-Π Smarandache ruled surface defined by (20) in E3 via
to RMDF (4). Then, the s-parameter curves of Λ are not asymptotic but υ-parameter curves are
asymptotic curves.
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3.2. Type-Π Smarandache Ruled Surfaces along γ2-Smarandache Curve

Definition 4. The type-Π Smarandache ruled surfaces due to RMDF (4) in E3 generated by
continuously moving vector γ1 along γ2-Smarandache curve is defined as follows

Θ(s, υ) = γ2(s) + υγ1(s). (26)

Theorem 4. The type-Π Smarandache ruled surface Θ = Θ(s, υ) defined by (26) due to RMDF
(4) in E3. If κg(s) ̸= κn(s) then Θ is developable iff one of the following conditions holds

i. ϑ(s) = − tan−1
( κg

κn

)
,

ii. ϑ(s) = tan−1
(κn + κg

κn − κg

)
.

Proof. Consider the type-Π Smarandache ruled surface Θ = Θ(s, υ) given by (26), then
Θ’s velocity vectors are given by:

Θs =
1√
2

[
− (υζ1 + ζ2)T + (υ + 1)ζ1P1 + (υ + 1)ζ2P2

]
,

Θυ =
1√
2

(
T + P1

)
.

(27)

The normal vector field of the surface Θ(s, υ) may be ascertained by taking the cross-product
of the partial derivatives of the surface given by Equation (27). Then, we have

NΘ =
−(υ + 1)ζ1T + (υ + 1)ζ2P1 − [2 + (2υ + 1)ζ1]P2√

(υ + 1)2κ2 + [2 + (2υ + 1)ζ1]2
.

From Equation (27), we can obtain the Θ’s quantities of first fundamental form are:

E =
1
2

[
(υ + 1)2κ2 + (υζ1 + ζ2)

2
]
,

F =
1
2

(
ζ1 + ζ2

)
, G = 1.

(28)

Using (27)’s second derivative with regard to s and υ, we have

Θss =
1√
2

[
−

[
ζ ′2 + υζ ′1 + (υ + 1)κ2]T +

[
(υ + 1)ζ ′1 − ζ1(υζ1 + ζ2)

]
P1

+
[
(υ + 1)ζ ′2 − ζ2(υζ1 + ζ2)

]
P2

]
,

Θsυ =
1√
2

[
− ζ1T + ζ1P1 + ζ2P2

]
,

Θυυ = 0.

(29)

Then, Θ’s quantities of second fundamental form are:

e =

{
(υ + 1)ζ2

[
ζ ′2 + (2υ + 1)ζ ′1 + (υ + 1)κ2 − ζ1(υζ1 + ζ2)

]
−
[
ζ2 + (2υ + 1)ζ1

][
(υ + 1)ζ ′2 − ζ2(υζ1 + ζ2)

] }
√

2
√

2(υ + 1)2κ2 +
[
ζ2 + (2υ + 1)ζ1

]2
,

f =
ζ2(ζ1 − ζ2)

√
2
√

2(υ + 1)2κ2 +
[
ζ2 + (2υ + 1)ζ1

]2
,

g = 0.

(30)

As a result, given the facts above, we are able to see that KΘ and HΘ are given by:
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KΘ = −
ζ2

2(ζ1 − ζ2)
2[

(υ + 1)2κ2 + (υζ1 + ζ2)2 − 1
2
(
ζ1 + ζ2

)2
][

2(υ + 1)2κ2 +
[
ζ2 + (2υ + 1)ζ1

]2
] ,

HΘ =

{
ζ2(ζ

2
2 − ζ2

1) + (υ + 1)ζ2
[
ζ ′2 + (2υ + 1)ζ ′1 + (υ + 1)κ2 − ζ1(υζ1 + ζ2)

]
−
[
ζ2 + (2υ + 1)ζ1

][
(υ + 1)ζ ′2 − ζ2(υζ1 + ζ2)

] }
2
√

2
[
(υ + 1)2κ2 + (υζ1 + ζ2)2 − 1

2
(
ζ1 + ζ2

)2
][

2(υ + 1)2κ2 +
[
ζ2 + (2υ + 1)ζ1

]2
] 3

2
.

(31)

So, from Equation (5) the proof is ended.

In the same way, as for the proof of Corollary 2, we can prove the following result:

Corollary 8. Let Θ = Θ(s, υ) be a type-Π Smarandache ruled surface defined by (26) in E3 via
to RMDF (4). Then, the s-parameter curves of Θ are not asymptotic but υ-parameter curves are
asymptotic curves.

Definition 5. The type-Π Smarandache ruled surfaces due to RMDF (4) in E3 generated by
continuously moving vector γ2 along γ2-Smarandache curve is defined as follows

Υ(s, υ) = γ2(s) + υγ2(s). (32)

Theorem 5. The type-Π Smarandache ruled surface Υ = Υ(s, υ) defined by (32) due to RMDF
(4) in E3 is developable iff one of the following conditions holds

i. ϑ(s) = − tan−1
(κn

κg

)
,

ii. ϑ(s) = tan−1
( κg

κn

)
.

Proof. Consider the type-Π Smarandache ruled surface Υ = Υ(s, υ) given by (32), then Υ’s
velocity vectors are given by:

Υs =
υ + 1√

2

[
− ζ2T + ζ1P1 + ζ2P2

]
,

Υυ =
1√
2

(
T + P2

)
.

(33)

The normal vector field of the surface Υ(s, υ) may be ascertained by taking the cross-product
of the partial derivatives of the surface given by Equation (33). Then, we have

NΥ =
ζ1 T + 2ζ2 P1 + ζ1 P2

√
2
√

2ζ2
2 + ζ2

1

.

From Equation (33), we can obtain the Υ’s quantities of first fundamental form are:

E =
1
2

[
(υ + 1)2(ζ2

1 + 2ζ2
2)
]
,

F = 0, G = 1.
(34)

Using (33)’s second derivative with regard to s and υ, we have

Υss =
(υ + 1)√

2

[
− (κ2 + ζ ′2)T + (ζ ′1 − ζ1ζ2)P1 + (ζ ′2 − κ2)P2

]
,

Υsυ =
1√
2

[
− ζ2T + ζ1P1 + ζ2P2

]
,

Υυυ = 0.

(35)
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Then, Υ’s quantities of second fundamental form are:

e =
(υ + 1)

[
ζ1ζ ′2 + 2ζ ′1ζ2 − ζ1(κ

2 + ζ ′2 + 3ζ2
2)
]

2
√

ζ2
1 + 2ζ2

2

,

f =
ζ1ζ2√

ζ2
1 + 2ζ2

2

,

g = 0.

(36)

As a result, given the facts above, we are able to find that KΥ and HΥ are given by:

KΥ = −
2ζ2

1ζ2
2

(υ + 1)2(ζ2
1 + 2ζ2

2)
,

HΥ =
2ζ ′1ζ2 + ζ1ζ ′2 − 3ζ1ζ2

2 − ζ1(κ
2 + ζ ′2)

2(υ + 1)[ζ2
1 + 2ζ2

2]
3
2

.
(37)

So, from Equation (5) the proof is ended.

In the same way, as for the proof of Corollaries 1–3, we can prove the following results:

Corollary 9. Let Υ = Υ(s, υ) be a type-Π Smarandache ruled surface defined by (32) in E3 via
to RMDF (4). Then, the Υ has constant Gauss curvature iff κn and κg satisfying the condition
2κnκg − (κ2

n + κ2
g) sin 2ϑ = c for some non-zero constant c.

Corollary 10. Let Υ = Υ(s, υ) be a type-Π Smarandache ruled surface defined by (32) in E3 via
to RMDF (4). Then, the s-parameter curves of Υ are not asymptotic but υ-parameter curves are
asymptotic curves.

Corollary 11. Let Υ = Υ(s, υ) be a type-Π Smarandache ruled surface defined by (32) in E3 via
to RMDF (4). Then, the s-parameter curves of Υ are principal curves but υ-parameter curves are
not principal curves.

Definition 6. The type-Π Smarandache ruled surfaces due to RMDF (4) in E3 generated by
continuously moving vector γ3 along γ2-Smarandache curve is defined as follows

Ω(s, υ) = γ2(s) + υγ3(s). (38)

Theorem 6. The type-Π Smarandache ruled surface Ω = Ω(s, υ) defined by (38) due to RMDF
(4) in E3. If κg(s) ̸= ±κn(s), then Ω is developable iff one of the following conditions holds

i. ϑ(s) = tan−1
(κn + κg

κn − κg

)
,

ii. ϑ(s) = − tan−1
(κn − κg

κn + κg

)
.

Proof. Consider the type-Π Smarandache ruled surface Ω = Ω(s, υ) given by (38), then
Ω’s velocity vectors are given by:

Ωs =
1√
2

[
−

[
υζ1 + (υ + 1)ζ2

]
T + ζ1P1 + ζ2P2

]
,

Ωυ =
1√
2

(
P1 + P2

)
.

(39)
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The normal vector field of the surface Ω(s, υ) may be ascertained by taking the cross-
product of the partial derivatives of the surface given by Equation (39). Then, we have

NΩ =
(ζ1 − ζ2)T +

[
υζ1 + (υ + 1)ζ2

]
(P1 + P2)√

(ζ1 − ζ2)2 +
[
υζ1 + (υ + 1)ζ2

]2
.

From Equation (39), we can obtain the Ω’s quantities of first fundamental form are:

E =
1
2

[
κ2 +

[
υζ1 + (υ + 1)ζ2

]2
]
,

F =
1
2
[
ζ1 + ζ2

]
, G = 1.

(40)

Using (39)’s second derivative with regard to s and υ, we have

Ωss =
1√
2

{
−

[
κ2 + υζ ′1 + (υ + 1)ζ ′2

]
T +

[
ζ ′1 − ζ1

[
υζ1 + (υ + 1)ζ2

]]
P1

+
[
ζ ′2 − ζ2

[
υζ1 + (υ + 1)ζ2

]]
P2

}
,

Ωsυ =
−(ζ1 + ζ2)T√

2
,

Ωυυ = 0.

(41)

Then, Ω’s quantities of second fundamental form are:

e =

{
(ζ2 − ζ1)

[
κ2 + υζ ′1 + (υ + 1)ζ ′2

]
+

[
υζ1 + (υ + 1)ζ2

][
ζ ′1 + ζ ′2 − (ζ1 + ζ2)

[
υζ1 + (υ + 1)ζ2

]] }
√

2
√
(ζ1 − ζ2)2 + 2

[
υζ1 + (υ + 1)ζ2

]2
,

f =
ζ2

2 − ζ2
1

√
2
√
(ζ1 − ζ2)2 + 2

[
υζ1 + (υ + 1)ζ2

]2
,

g = 0.

(42)

As a result, given the facts above, we are able to KΩ and HΩ are given by:

KΩ =
−2(ζ2

1 − ζ2
2)

2[[
υζ1 + (υ + 1)ζ2

]2 − κ2 − 2ζ1ζ2

][
(ζ1 − ζ2)2 + 2

[
υζ1 + (υ + 1)ζ2

]2
] ,

HΩ =

4

{
(ζ1 + ζ2)(ζ

2
1 − ζ2

2) + (ζ2 − ζ1)
[
κ2 + υζ ′1 + (υ + 1)ζ ′2

]
+
[
υζ1(υ + 1)ζ2

][
ζ ′1 + ζ ′2 − (ζ1 + ζ2)

[
υζ1 + (υ + 1)ζ2

]] }
√

2
[[

υζ1 + (υ + 1)ζ2
]2 − κ2 − 2ζ1ζ2

][
(ζ1 − ζ2)2 + 2

[
υζ1 + (υ + 1)ζ2

]2
] 3

2
.

(43)

So, from Equation (5) the proof is ended.

In the same way, as for the proof of Corollary 2, we can prove the following result:

Corollary 12. Let Ω = Ω(s, υ) be a type-Π Smarandache ruled surface defined by (38) in E3 via
to RMDF (4). Then, the s-parameter curves of Ω are not asymptotic but υ-parameter curves are
asymptotic curves.
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3.3. Type-Π Smarandache Ruled Surfaces along γ3-Smarandache Curve

Definition 7. The type-Π Smarandache ruled surfaces due to RMDF (4) in E3 generated by
continuously moving vector γ1 along γ3-Smarandache curve is defined as follows

Ξ(s, υ) = γ3(s) + υγ1(s). (44)

Theorem 7. The type-Π Smarandache ruled surface Ξ = Ξ(s, υ) defined by (44) due to RMDF (4)
in E3 is developable iff one of the following conditions holds

i. ϑ(s) = tan−1
( κg

κn

)
,

ii. ϑ(s) = tan−1
(κg + (υ + 1)κn

κn − (υ + 1)κg

)
.

Proof. Consider the type-Π Smarandache ruled surface Ξ = Ξ(s, υ) given by (44), then Ξ’s
velocity vectors are given by:

Ξs =
1√
2

[
−

[
(υ + 1)ζ1 + ζ2

]
T + υζ1P1 + υζ2P2

]
,

Ξυ =
1√
2

(
T + P1

)
.

(45)

The normal vector field of the surface Ξ(s, υ) may be ascertained by taking the cross-product
of the partial derivatives of the surface given by Equation (45). Then, we have

NΞ =
υζ2(T + P1) +

[
ζ2 + (2υ + 1)ζ1

]
P2√

υ2κ2 +
[
ζ2 + (2υ + 1)ζ1

]2
.

From Equation (45), we can obtain the Ξ’s quantities of first fundamental form are:

E =
1
2

[
υ2κ2 +

[
ζ2 + (υ + 1)ζ1

]2
]
,

F =
−1
2

(
ζ1 + ζ2

)
, G = 1.

(46)

Using (45)’s second derivative with regard to s and υ, we have

Ξss =
1√
2

[
−

[
υκ2 + ζ ′2 + (υ + 1)ζ ′1

]
T +

[
υζ ′1 − ζ1

[
ζ2 + (2υ + 1)ζ1

]]
P1

+
[
υζ ′2 − ζ2

[
ζ2 + (2υ + 1)ζ1

]]
P2

]
,

Ξsυ =
1√
2

[
− ζ1T + ζ1P1 + ζ2P2

]
,

Ξυυ = 0.

(47)

Then, Ξ’s quantities of second fundamental form are:

e =

{
υζ2

[
υκ2 + ζ ′2 + (2υ + 1)ζ ′1 − ζ1

[
ζ2 + (2υ + 1)ζ1

]]
+
[
ζ2 + (2υ + 1)ζ1

][
υζ ′2 − ζ2

[
ζ2 + (2υ + 1)ζ1

]] }
√

2
√

υ2κ2 +
[
ζ2 + (υ + 1)ζ1

]2
,

f =
−ζ2

[
ζ2 + (υ + 1)ζ1

]
√

2
√

υ2κ2 +
[
ζ2 + (υ + 1)ζ1

]2
,

g = 0.

(48)
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As a result, given the facts above, we are able to find that KΞ and HΞ are given by:

KΞ = −
−ζ2

2
[
ζ2 + (υ + 1)ζ1

]2[
υ2κ2 +

[
ζ2 + (υ + 1)ζ1

]2 − 1
2
(
ζ1 + ζ2

)2
][

υ2κ2 +
[
ζ2 + (υ + 1)ζ1

]2
] ,

HΞ =

{
ζ2(ζ1 + ζ2)

[
ζ2 + (υ + 1)ζ1

]
+ υζ2

[
υκ2 + ζ ′2 + (2υ + 1)ζ ′1

−ζ1
[
ζ2 + (2υ + 1)ζ1

]]
+

[
ζ2 + (2υ + 1)ζ1

][
υζ ′2 − ζ2

[
ζ2 + (2υ + 1)ζ1

]] }
2
√

2
[
υ2κ2 +

[
ζ2 + (υ + 1)ζ1

]2 − 1
2
(
ζ1 + ζ2

)2
][

υ2κ2 +
[
ζ2 + (υ + 1)ζ1

]2
] 3

2
.

(49)

So, from Equation (5) the proof is ended.

In the same way, as for the proof of Corollary 2, we can prove the following result:

Corollary 13. Let Ξ = Ξ(s, υ) be a type-Π Smarandache ruled surface defined by (44) in E3 via
to RMDF (4). Then, the s-parameter curves of Ξ are not asymptotic but υ-parameter curves are
asymptotic curves.

Definition 8. The type-Π Smarandache ruled surfaces due to RMDF (4) in E3 generated by
continuously moving vector γ2 along γ3-Smarandache curve is defined as follows:

Σ(s, υ) = γ3(s) + υγ2(s). (50)

Theorem 8. The type-Π Smarandache ruled surface Σ = Σ(s, υ) defined by (50) due to RMDF
(4) in E3 is developable iff one of the following conditions holds

i. ϑ(s) = − tan−1
(κn

κg

)
,

ii.
ζ1

ζ2
=

υ − 1
2υ + 1

.

Proof. Consider the type-Π Smarandache ruled surface Σ = Σ(s, υ) given by (50), then Σ’s
velocity vectors are given by:

Σs =
1√
2

[
−

[
ζ1 + (υ + 1)ζ2

]
T + υζ1P1 + υζ2P2

]
,

Συ =
1√
2

(
T + P2

)
.

(51)

The normal vector field of the surface Σ(s, υ) may be ascertained by taking the cross-product
of the partial derivatives of the surface given by Equation (51). Then, we have

NΣ =
υζ1(T + P2) +

[
ζ1 + (2υ + 1)ζ2

]
P1√

2υ2ζ2
1 +

[
ζ1 + (2υ + 1)ζ2

]2
.

From Equation (51), we can obtain the Σ’s quantities of first fundamental form are:

E =
1
2

[
υ2κ2 +

[
ζ1 + (υ + 1)ζ2

]2
]
,

F = −1
2

(
ζ1 − ζ2

)
, G = 1.

(52)
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Using (51)’s second derivative with regard to s and υ, we have

Σss =
1√
2

[
−

[
υκ2 + ζ ′1 + (υ + 1)ζ ′2

]
T +

[
υζ ′1 − ζ1

[
ζ1 + (2υ + 1)ζ2

]]
P1

+
[
υζ ′2 − ζ2

[
ζ1 + (υ + 1)ζ2

]]
P2

]
,

Σsυ =
1√
2

[
− (ζ1 + ζ2)T + ζ1P1 + ζ2P2

]
,

Συυ = 0.

(53)

Then, Σ’s quantities of second fundamental form are:

e =

{
υζ1

[
υ(ζ2

2 − κ2)− (υ + 1)(ζ2
2 − ζ ′2)− ζ ′1 − ζ1ζ2

]
+
[
ζ1 + (2υ + 1)ζ2

][
υζ ′1 − ζ1

[
ζ1 + (2υ + 1)ζ2

]] }
√

2
√

2υ2ζ2
1 +

[
ζ1 + (2υ + 1)ζ2

]2
,

f =
ζ1
[
(1 − υ)ζ1 + (2υ + 1)ζ2

]
√

2
√

2υ2ζ2
1 +

[
ζ1 + (2υ + 1)ζ2

]2
,

g = 0.

(54)

As a result, given the facts above, we are able to find that KΣ and HΣ are given by:

KΣ = −
ζ2

1
[
(1 − υ)ζ1 + (2υ + 1)ζ2

]2[
υ2κ2 +

[
ζ1 + (υ + 1)ζ2

]2 − 1
2
(
ζ1 − ζ2

)2
][

2υ2ζ2
1 +

[
ζ1 + (2υ + 1)ζ2

]2
] ,

HΣ =

{
ζ1(ζ1 − ζ2)

[
(υ − 1)ζ1 + (2υ + 1)ζ2

]
υζ1

[
υ(ζ2

2 − κ2)− (υ + 1)(ζ2
2 − ζ ′2)

−ζ ′1 − ζ1ζ2
]
+

[
ζ1 + (2υ + 1)ζ2

][
υζ ′1 − ζ1

[
ζ1 + (2υ + 1)ζ2

]] }
√

2
[
υ2κ2 +

[
ζ1 + (υ + 1)ζ2

]2 − 1
2
(
ζ1 − ζ2

)2
][

2υ2ζ2
1 +

[
ζ1 + (2υ + 1)ζ2

]2
] 3

2
.

(55)

So, from Equation (5) the proof is ended.

In the same way, as for the proof of Corollary 2, we can prove the following result:

Corollary 14. Let Σ = Σ(s, υ) be a type-Π Smarandache ruled surface defined by (50) in E3 via
to RMDF (4). Then, the s-parameter curves of Σ are not asymptotic but υ-parameter curves are
asymptotic curves.

Definition 9. The type-Π Smarandache ruled surfaces due to RMDF (4) in E3 generated by
continuously moving vector γ3 along γ3-Smarandache curve is defined as follows

∆(s, υ) = γ3(s) + υγ3(s). (56)

Theorem 9. The type-Π Smarandache ruled surface ∆ = ∆(s, υ) defined by (56) due to RMDF
(4) in E3 is developable.

Proof. Consider the type-Π Smarandache ruled surface ∆ = ∆(s, υ) given by (56), then ∆’s
velocity vectors are given by:

∆s = − (υ + 1)√
2

[
ζ1 + ζ2

]
T,

∆υ =
1√
2

(
P1 + P2

)
.

(57)
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The normal vector field of the surface ∆(s, υ) may be ascertained by taking the cross-product
of the partial derivatives of the surface given by Equation (57). Then, we have

N∆ =
P1 − P2√

2
.

From Equation (57), we can obtain the ∆’s quantities of first fundamental form are:

E =
1
2
(
υ + 1

)(
ζ1 + ζ2

)2,

F = 0, G = 1.
(58)

Using (57)’s second derivative with regard to s and υ, we have

∆ss = − (υ + 1)√
2

{(
ζ ′1 + ζ ′2

)
T + ζ1

(
ζ1 + ζ2

)
P1 + ζ2

(
ζ1 + ζ2

)
P2

}
,

∆sυ =
−(ζ1 + ζ2)T√

2
,

∆υυ = 0.

(59)

Then, ∆’s quantities of second fundamental form are:

e =
(υ + 1)κ2

2
,

f = 0, g = 0.
(60)

As a result, given the facts above, we are able to find that K∆ and H∆ are given by:

K∆ = 0,

H∆ =
1
2

( κ

ζ1 + ζ2

)2
.

(61)

Then, the proof is ended.

In the same way, as for the proof of Corollaries 1–3, we can prove the following results:

Corollary 15. Let Σ = Σ(s, υ) be a type-Π Smarandache ruled surface defined by (56) in E3 via
to RMDF (4). Then, the Σ minimal surface iff κ = 0.

Corollary 16. Let ∆ = ∆(s, υ) be a type-Π Smarandache ruled surface defined by (56) in E3 via
to RMDF (4). Then, the s-parameter curves of ∆ are not geodesic curves but υ-parameter curves are
geodesic curves.

Corollary 17. Let Σ = Σ(s, υ) be a type-Π Smarandache ruled surface defined by (56) in E3 via
to RMDF (4). Then, the s-parameter curves of Σ are not asymptotic but υ-parameter curves are
asymptotic curves.

Corollary 18. Let Σ = Σ(s, υ) be a type-Π Smarandache ruled surface defined by (56) in E3 via
to RMDF (4). Then, the s and υ-parameter curves of Σ are principal curves.

4. Example

Let consider a surface M = M(s, υ) parameterized by

M(s, υ) =

(
cos

(
s√
2

)
+
√

2 sin υ, sin
(

s√
2

)
+
√

2 cos υ,
s√
2

)
.
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The s-parameter curve φ(s) =
(

cos
(

s√
2

)
, sin

(
s√
2

)
,

s√
2

)
lying on M = M(s, υ) (see

Figure 1). Then, the Darboux frame of φ(s) on M are given, respectively, by

T(s) =
1√
2

(
− sin

(
s√
2

)
, cos

(
s√
2

)
, 1
)

,

N(s) = 1√
2

(
− cos

(
s√
2

)
+

1√
2

sin
(

s√
2

)
,− sin

(
s√
2

)
− 1√

2
cos

(
s√
2

)
,

1√
2

)
,

G(s) =
1√
2

(
cos

(
s√
2

)
+

1√
2

sin
(

s√
2

)
, sin

(
s√
2

)
− 1√

2
cos

(
s√
2

)
,

1√
2

)
,

κn = κg =
1√
2

, τg =
1
2

.

Figure 1. The curve φ(s) on M(s, υ).

Then, ϑ(s) = −
∫ 2

0

1
2

ds = − s
2

. So, we have

P1 =

{
1√
2

[
cos

(
s√
2
− s

2

)
+ sin

(
s√
2
− s

2

)]
,
[
cos

( s
2

)
− sin

( s
2

)]
sin

(
s√
2

)
− 1√

2

[
cos

( s
2

)
+ sin

( s
2

)]
cos

(
s√
2

)
,

1√
2

[
cos

( s
2

)
+ sin

( s
2

)]}
,

P2 =

{
1√
2

[
cos

(
s√
2
− s

2

)
− sin

(
s√
2
− s

2

)]
,
[
cos

( s
2

)
+ sin

( s
2

)]
sin

(
s√
2

)
− 1√

2

[
cos

( s
2

)
− sin

( s
2

)]
cos

(
s√
2

)
,− 1√

2

[
cos

( s
2

)
− sin

( s
2

)]}
.

Given the parametric equations below and these vectors and definitions, the graphs of
type-Π Smarandache ruled surface are shown in Figures 2, 3, and 4, respectively.

Ψ(s, υ) =
υ + 1

2

{
cos

(
s√
2
− s

2

)
+ sin

(
s√
2
− s

2

)
− sin

(
s√
2

)
, cos

(
s√
2

)
+
√

2
[
cos

( s
2

)
− sin

( s
2

)]
sin

(
s√
2

)
, 1 + cos

( s
2

)
+ sin

( s
2

)}
.
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Γ(s, υ) =

{
(υ + 1)

2
cos

(
s√
2
− s

2

)
+

(υ − 1)
2

sin
(

s√
2
− s

2

)
− (υ + 1)

2
sin

(
s√
2

)
,
(υ + 1)

2
cos

(
s√
2

)
+

(υ + 1)√
2

[
cos

( s
2

)
− sin

( s
2

)]
sin

(
s√
2

)
− (υ + 1)√

2

[
cos

( s
2

)
+ sin

( s
2

)]
cos

(
s√
2

)
,

υ + 1
2

[
1 + sin

( s
2

)]
− (υ − 1)

2
cos

( s
2

)}
.

Λ(s, υ) =

{
(υ + 1)

2
cos

(
s√
2
− s

2

)
+

1
2

sin
(

s√
2
− s

2

)
− 1

2
sin

( s
2

)
,
[
cos

( s
2

)
+ sin

( s
2

)]
×

[
υ√
2

sin
(

s√
2

)
− (υ + 1)

2
cos

(
s√
2

)]
+

[
cos

( s
2

)
− sin

( s
2

)][ (υ + 1)√
2

sin
(

s√
2

)
− υ

2
cos

(
s√
2

)]
,

1
2

[
1 + cos

( s
2

)]
+

(2υ + 1)
2

sin
( s

2

)}
.

Θ(s, υ) =

{
(υ + 1)

2
cos

(
s√
2
− s

2

)
− (υ − 1)√

2
sin

(
s√
2
− s

2

)
− (υ + 1)

2
sin

( s
2

)
,
(υ + 1)

2
cos

( s
2

)
+

[
cos

( s
2

)
− sin

( s
2

)][ υ√
2

sin
(

s√
2

)
− 1

2
cos

(
s√
2

)]
+

[
cos

( s
2

)
+ sin

( s
2

)][ 1√
2

sin
(

s√
2

)
− υ

2
cos

(
s√
2

)]
,
(υ + 1)

2
sin

( s
2

)
+

(υ − 1)
2

cos
( s

2

)}
.

Υ(s, υ) =
(υ + 1)

2

{
cos

(
s√
2
− s

2

)
− sin

(
s√
2
− s

2

)
− sin

( s
2

)
, cos

(
s√
2

)
+
√

2
[

cos
( s

2

)
+ sin

( s
2

)]
sin

(
s√
2

)
−

[
cos

( s
2

)
− sin

( s
2

)]
cos

(
s√
2

)
, 1 − cos

( s
2

)
− sin

( s
2

)}
.

Ω(s, υ) =

{
(2υ + 1)

2
cos

(
s√
2
− s

2

)
+

1
2

sin
(

s√
2
− s

2

)
− 1

2
sin

( s
2

)
,

1
2

cos
( s

2

)
+

[
cos

( s
2

)
+ sin

( s
2

)][ (υ + 1)√
2

sin
(

s√
2

)
− υ

2
cos

(
s√
2

)]
+

[
cos

( s
2

)
− sin

( s
2

)][ υ√
2

sin
(

s√
2

)
− (υ + 1)

2
cos

(
s√
2

)]
,
(2υ + 1)

2
sin

( s
2

)
+

1
2

[
1 + cos

( s
2

)]}
.

Ξ(s, υ) =

{
(2υ + 1)

2
cos

(
s√
2
− s

2

)
+

υ

2
sin

(
s√
2
− s

2

)
− υ

2
sin

( s
2

)
,

υ

2
cos

( s
2

)
+

[
cos

( s
2

)
+ sin

( s
2

)][ 1√
2

sin
(

s√
2

)
− (υ + 1)

2
cos

(
s√
2

)]
+

[
cos

( s
2

)
− sin

( s
2

)][ (υ + 1)√
2

sin
(

s√
2

)
− 1

2
cos

(
s√
2

)]
,
(υ + 2)

2
sin

( s
2

)
+

υ

2

[
1 + cos

( s
2

)]}
.
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Σ(s, υ) =

{
(υ + 2)

2
cos

(
s√
2
− s

2

)
− υ

2
sin

(
s√
2
− s

2

)
− υ

2
sin

( s
2

)
,

υ

2
cos

( s
2

)
+

[
cos

( s
2

)
+ sin

( s
2

)][ (υ + 1)√
2

sin
(

s√
2

)
− 1

2
cos

(
s√
2

)]
+

[
cos

( s
2

)
− sin

( s
2

)][ 1√
2

sin
(

s√
2

)
− (υ + 1)

2
cos

(
s√
2

)]
,
(υ + 2)

2
sin

( s
2

)
+

υ

2

[
1 − cos

( s
2

)]}
.

∆(s, υ) =(υ + 1)
{

cos
(

s√
2
− s

2

)
,
√

2 sin
(

s√
2

)
cos

( s
2

)
+ cos

(
s√
2

)
cos

( s
2

)
, sin

( s
2

)}
.

Figure 2. The type-Π Smarandache ruled surfaces Ψ, Γ, and Λ along γ1.

Figure 3. The type-Π Smarandache ruled surfaces Θ, Υ, and Ω along γ2.

Figure 4. The type-Π Smarandache ruled surfaces Ξ, Σ, and ∆ along γ3.

5. Conclusions

This study focused on the construction of type-Π Smarandache ruled surfaces, with
their base curves being Smarandache curves derived from rotation minimizing Darboux
frame vectors of the curve in E3. The direction vectors of these surfaces were unit vectors
that transformed the Smarandache curves. The Gaussian and mean curvatures of the man-
ufactured ruled surfaces were calculated separately with the requirement of being either
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minimum or developable. Graphs of these surfaces were generated, along with an example
provided for each surface. Through this research, we have successfully examined and
presented the characteristics and properties of these type-Π Smarandache ruled surfaces,
contributing to the understanding and exploration of this specific class of surfaces. Further
investigations and applications of these surfaces in relevant fields are encouraged.
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