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Abstract: We consider the late-time accelerated universe in the Friedmann–Robertson–Walker (FRW)
spacetime with a nonzero curvature, and investigate cosmological models when the cosmic fluid
is taken to be inhomogeneous and viscous (bulk viscous), coupled to dark matter. We consider
the influence from thermal effects caused by Hawking radiation on the formation of singularities
of various classified types, within a finite time. It is shown that under the influence of Hawking
radiation, the time of formulation of a singularity and the nature of the singularity itself can change.
It is also shown that by jointly taking into account radiation, viscosity, and space curvature, one
can obtain a singularity-free universe. The symmetry properties of this kind of theory lie in the
assumption about spatial isotropy. The spatial isotropy is also reflected in our use of a bulk instead of
a shear viscosity.

Keywords: dark universe; cosmological singularities; curved spacetime

1. Introduction

As a result of theoretical studies as well as from astronomical observations, the present
accelerated expansion of the universe is well established. In particular, the study of the
dark energy causing cosmological expansion is of fundamental interest [1–4]. This kind
of energy can be qualitatively described in terms of a cosmological model with negative
pressure, satisfying an unusual equation of state [5,6].

We will consider the universe in the dark energy epoch, because one of the properties
of the so-called phantom dark energy (characterized by the thermodynamic parameter
w in the equation of state being less than −1) is the possibility to encounter singularities
within a finite time trip. According to the Nojiri–Odintsov–Tsujikawa classification of
singularities [7,8] (see also the additional paper [9]), one can have the following types,
when defining the scale factor a(t), effective (total) energy density ρeff, and effective (total)
pressure peff in the limit t→ ts:

• Type I (Big Rip): a→ ∞, ρeff → ∞, and |peff| → ∞.
• Type II (“sudden” singularity): a→ as, ρeff → ρs, and |peff| → ∞, where as 6= 0 and ρs

is constant. This is a pressure singularity.
• Type III: a → as, ρeff → ∞, and |peff| → ∞. This type of singularity is milder than

Type I but stronger than Type II.
• Type IV: a→ as, ρeff → 0, and |peff| → 0, but higher derivatives of the Hubble function

diverge. This type also includes the case where ρeff and/or |peff| are finite for t = ts.

At the same time, it should be recognized that singularities are not the only possible
endings of the universe in the phantom phase.

Symmetry 2023, 15, 257. https://doi.org/10.3390/sym15020257 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15020257
https://doi.org/10.3390/sym15020257
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-9793-8278
https://doi.org/10.3390/sym15020257
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15020257?type=check_update&version=1


Symmetry 2023, 15, 257 2 of 8

In this paper, we investigate the behavior of the universe near the future singularity,
taking into account the joint influence of bulk viscosity and Hawking’s thermal radiation
on both, the type of singularity that is encountered and the time of its occurrence. It has
been shown earlier that the presence of a viscosity in the cosmic fluid affects the behavior
near the singularity [10,11] and thus has to be taken into account when describing the Big
Rip-type singularity [12–15] and also the singularities of types II, III, and IV [16–18].

The physical motivation of the presented article is as follows: near the singularity,
the Hubble function increases, and as a result, an increase of the temperature in the
universe occurs. A consequence of this is that a thermal radiation should appear. Thermal
radiation is due to Hawking radiation and is generated at the apparent horizon of the FRW
universe [19–22]. Hawking radiation is moreover associated with the thermodynamics
of black holes, as well as with the existence of a visible horizon of a black hole, and a
visible horizon of cosmic events in the de Sitter space. The spectrum of thermal radiation
is formed at high temperatures in the late universe immediately before the emergence of
the singularity. Corrections associated with thermal radiation and with viscosity of the
cosmic fluid near the rip allow us to predict the future state of the universe more accurately.
The influence of bulk viscosity in the cosmic fluid plays an important role in the Big Rip
(BR) singularity, or in the types II, III, and IV Rips, at some finite value of time in the
future. The study of thermal radiation on future singularities of Types I-IV [21] showed
that: for singular universes of Types I and III there occurs qualitative changes, due to
thermal effects, near the singularity. The become of Type II. For Type II and IV universes,
no qualitative changes occur. A significant change takes place if we include dark fluid bulk
viscosity, combined with radiation: then there occurs a qualitative change in the sense that
the fluid may pass into a Type III singularity. Alternatively, it may avoid the singularity
entirely [23]. In view of this, it is of physical interest to to investigate the combined effect of
radiation and bulk viscosity on the future singularity, assuming nonzero curvature. As our
universe started from Big Bang, a fundamental singularity, any study of singularities is of
crucial interest.

The aim of this work is to study the influence of thermal radiation at the time of time
immediately before the formation of the singularity, taking into account the property of the
viscosity of the cosmic fluid for a qualitative change in the singularity of the type of Big Rip
in space with nonzero curvature.

At the same time, modern measurements of the luminosity of remote objects by the
Planck satellite show that the curvature of the universe is very near zero (apparently less
than 0.03 [24]). Studies related to the distribution of galaxies in space also indicate that
the universe is practically flat. However, there are other studies [25,26] showing that there
is no absolute confidence in this conclusion; it may happen that the universe has a finite
curvature after all.

The present work examines the effects of thermal radiation, and bulk viscosity, on the
behavior of the late universe when we restrict ourselves to the Big Rip. Emphasis is laid
on a qualitative change in the singular behavior in the FRW metric when the curvature
is assumed nonzero. We thus obtain a description of a cosmological model induced by
an inhomogeneous dark fluid. We discuss how the singular behavior of the universe is
associated with thermal radiation, and with the curvature of space.

What role does the concept of symmetry play in this kind of theory? As we are
considering the late universe influenced by viscosity and Hawking radiation, there is
obviously no symmetry with respect to the early universe, and here is no symmetry like
that encountered in bouncing cosmology, for instance. However, the kind of symmetry
maintained also in the present case is that of spatial isotropy as follows from the FRW
metric. In addition, our use of bulk viscosity instead of shear viscosity is in conformity
with spatial isotropy. The latter point is actually nontrivial, as in ordinary fluid mechanics,
the shear viscosity is usually greater than the bulk viscosity.

The aim of this work is to study the influence of thermal radiation at the time im-
mediately before the formation of the singularity, taking into account the property of the
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viscosity of the cosmic fluid for a qualitative change in the singularity of the type of Big Rip
in space with nonzero curvature.

2. Effect from Thermal Radiation on the Formation of Singularities in the FRW Metric
with a Nonzero Spatial Curvature

We study the homogeneous and isotropic FRW expanding universe,

ds2 = −dt2 + a2(t)
(

dr2

1−Πr2 + r2dΩ2
)

, (1)

where dΩ2 = dθ2 + sin2 θdϕ2, t is the cosmic time, a(t) denotes the scale factor and has the
unit of length, r is the special radius coordinate, and the parameter Π is the curvature of
the three-dimensional space.

As is known, Equation (1) geometrically describes different types of the universe.
Taking for simplicity Π to be nondimensional, for Π = 0, the universe is spatially flat, for
Π = 1, it is closed, and for Π = −1, it is open. The character of the universe expansion
depends on the spatial curvature: the open universe will expand forever, the flat universe
will also expand forever, although at t→ +∞, the expanding velocity will be constant; the
closed universe will expand up to a certain instant, after which the expansion is replaced
by a compression leading finally to a collapse.

The Friedmann equation for a one-component fluid in a space with nonzero curvature
has the form

H2 =
k2

3
ρeff −

Π
a2 , (2)

where ρeff is the effective total energy density, k2 = 8πG with G the Newtonian gravitational
constant, and H(t) = ȧ(t)/a(t) the Hubble function.

We use the following equation of state (EoS) for an inhomogeneous viscous fluid [27],

p = ω(ρ, t)ρ− 3Hζ(H, t), (3)

where ζ(H, t) is the bulk viscosity, dependent on H and t. From ordinary thermodynamics,
we know that ζ(H, t) > 0.

We take the EoS parameter ω to have the form [27]

ω(ρ, t) = ω1(t)(A0ρα−1 − 1), (4)

where A0 6= 0 and α ≥ 1 is a constant. A note on dimensions: as ω and ω1 are nondimen-
sional, the dimension of A0 is complicated when α > 1. In the simplest case, α = 1, A0 is
nondimensional. Then, we put ω(ρ, t) = ω0 a constant.

Dissipative processes are described by the bulk viscosity and can be given the form [27]

ζ(H, t) = ζ1(t)(3H)n, (5)

where n is a positive integer or zero and ζ1(t) is an arbitrary function depending on time.
Note that in Equation (3), the dimension of ζ(H, t) is cm−3 in geometric units, as

it should for a viscosity coefficient. Thus, ζ1(t) in Equation (5) is for general n not a
viscosity, but a viscosity function. The most important special cases occur when n = 0 and
n = 1. When n = 0, ζ and ζ1 are equal. When n = 1, ζ(H, t) = 3Hζ1(t). Thus, if ζ1 is a
constant, the bulk viscosity becomes proportional to H. The latter special case has attracted
considerable attention, as it appears to satisfy the experimental curves for H(z) versus the
redshift z reasonably well. Moreover, as a peculiar property, it has turned out that this case
allows the universe to pass through the phantom barrier ω = −1, from the quintessence
region −1 < ω < −1/3 into the phantom region ω < −1, and thus, the Big Rip is caused
by the bulk viscosity [28].

If the fluid is nonviscous, the equation of state reduces to the usual form p = ω(ρ, t)ρ.
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We now consider various models of the viscous fluid, with reference to the background
material given in [29].

2.1. Constant Viscosity

This is the simplest case, where ω(ρ, t) = ω0, and ζ(H, t) = ζ0, a constant > 0. The
Hubble function takes the form

H(t) =
ζ0k2

1 + ω0

1
1−
√

C1 exp[ 3
2 ζ0k2t]

, (6)

where C1 is an integration constant. This cosmological model does not take into account
the interaction with dark matter.

Using Equation (6), we calculate the scale factor,

a(t) = e
∫

H(t)dt = a0

(
1− 1√

C1
exp[−3

2
ζ0k2t]

) 2
3(1+ω0)

, (7)

where a0 and C1 are constants.
The Hubble function diverges near the singularity time, t → ts = − 2

3ζ0k2 ln
√

C1,
meaning that a Big Rip singularity forms. We study how the type of singularity becomes
changed if we take into account thermal radiation and the curvature of space. The case of a
flat space, excluding thermal radiation, was considered earlier in [23].

The physical explanation of this phenomenon is the following. If the temperature in
the universe increases near the singularity, thermal radiation is generated. Therewith, the
Hubble function becomes large. From statistical physics, it is known that the energy density
of thermal radiation is proportional to the fourth power of the absolute temperature [20],

ρrad = λH4. (8)

After the thermal radiation component (8) is included, the Friedmann equation is
modified to become [20]

3
k2 H2 = ρeff + λH4. (9)

It may be observed that we do not include interacting terms between radiation and
matter in Equation (9), so that the expression may be regarded as an approximate one. A
qualitative inspection of the equation tells us that if the evolution time of the late universe
is much less than the singularity time, the first term on the right-hand side gives the major
contribution, while near the singularity time, the last term is most significant. In order to
consider the situation more quantitatively, let us solve for the quadratic Hubble function,

H2 =

3
k2 ±

√
9
k4 − 4λρeff

2λ
. (10)

We apply this result to the cosmological model (7). From this, using the Friedmann
Equation (2), we write ρeff in terms of the scale factor,

ρeff(t) =

(√
3ζ0k

1 + ω0

)2[
a(t)
a0

]−3(1+ω0)

e−3ζ0k2t
(

2(ω0 + 1)
ω0 + 5/3

− e−
3
2 ζ0k2t

)
. (11)

Since H2 is real, the radicand in (10) must be non-negative,

9
k4 − 4λρeff ≥ 0. (12)
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Now, assume C1 = 1. It then follows that

9
k2 − 4λA2e−3ζ0k2t

(
B− e−

3
2 ζ0k2t

)[ a(t)
a0

]−3|1+ω0|
≥ 0, (13)

where A =
(√

3ζ0k
1+ω0

)
, B = 2(ω0+1)

ω0+5/3 .
The inequality (13) leads to the following restriction on the scale factor,

a(t) ≤
(

2
√

λAk2

3a0

) 2
3|1+ω0 |

e
ζ0k2t
|1+ω0 |

(
B− e−

3
2 ζ0k2t

) 1
3|1+ω0 | . (14)

The case of phantom energy corresponds to ω0 < −1. The values of the scale factor
are limited by the maximum value amax,

a(t) ≤ amax = a0

(
2
√

λAk2

3

) 2
3|1+ω0 |

, (15)

which corresponds to the instant tmax given by

tmax = − 2
3ζ0k2 ln

(
1− 2

√
λAk2

3

)
. (16)

Note that the new time of formulation of a singularity coincides with that obtained for
a universe with flat metric.

We can calculate the difference between tmax and ts,

tmax − ts = −
2

3ζ0k2 ln

(
1− 2

√
λAk2

3

)
> 0, (17)

which shows that tmax is larger than ts. The time of singularity changes: it occurs later.
To determine which type of singularity occurs, we calculate the effective energy

density ρeff and the effective pressure peff when t → tmax. In this limit, ρeff → ρmax and
|peff| → |pmax|, and we get

ρeff(tmax) = 3
(

3ζ0k
1 + ω0

)2
(

3ω0 + 1
(2
√

λAk2)(ω0 + 5/3)
+ 1

)2

, (18)

|peff(tmax)| = |ω0ρmax − 3ζ0Hmax| =
3ζ2

0k2

|1 + ω0|

[
9ω0

|1 + ω0|

(
3ω0 + 1

2
√

λAk2(ω0 + 5/3)
+ 1

)
− 1 +

3
2
√

λAk2

]
. (19)

Thus, the values of the scale factor, energy density, and effective pressure are finite,
while the high derivatives of H do not diverge. The singularity encountered is accordingly
of type IV. The result can be physically explained by the influence from the viscosity of the
dark fluid. It compensates for the effects of thermal radiation and space curvature.

2.2. Viscosity Proportional to the Hubble Function

In this subsection, we assume the bulk viscosity to be proportional to the Hubble
function, ζ(H, t) = 3τH, where the constant τ is positive. (In natural units where the
fundamental length is cm, the dimension of ζ is cm−3, and since the dimension of H is
cm−1, the dimension of τ is cm−2.)

The Hubble function takes the form

H(t) =
k√
3

δ

3θ + exp[− 1
2 η̃t]

, (20)
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where δ is a positive constant, η̃ = δγ̃, γ̃ = k√
3

√
1 + r, θ = 1 + ω0 − 9τγ̃2. The constant

r is associated with the influence from dark matter, and is defined as the ratio of the
energy density of dark matter to the energy density of dark energy. In the case where
ω0 < −1 + 9τγ̃2, we have θ < 0 and the Hubble function diverges at t→ ts = − 2

η̃ ln(−3θ).
A singularity of type Big Rip is formed.

Let us now see how the type of singularity may change. First, calculate the scale factor

a(t) = a0eαt
(

e−
1
2 η̃t + 3θ

)2α/η̃
, (21)

where α = δγ

3
√

3 θ
< 0 with dimension cm−1.

The energy density expression, in terms of the scale factor, assumes the form

ρeff =

(
δγ

k

)2
eη̃t
[

a(t)
a0

] η̃
|α|
[

1 +
3(3τk2 −ω0 − 1)

3ω0 + 1
−
√

3 e−
1
2 η̃t 3θ + e−

1
2 η̃t

kδγ(3ω0 + 1)

]
. (22)

If |α| = η̃, we obtain the following restriction on the scale factor:

a(t) ≤ 3a0|3ω0 + 1|(A + B|a|)C2e−|α|t, (23)

where A = 2− 9τk2, B =
√

3
δγ , C = 3

2
√

λ γδk
.

Hence, the scale factor is restricted by the maximum value amax,

a(t) ≤ amax = 3a0|3ω0 + 1|(A + B|α|)C2. (24)

It corresponds to the instant

tmax = − 2
|α| ln

1
2

T

(
1 +

√
1− 12|θ|

T

)
, (25)

where T = C
√
|3ω0 + 1|(A + B|α|), and T < 1

1−3|θ| .
Let us find the difference between the singularity times. If we for simplicity put

T = 12|θ|, then

tmax − ts =
2
|α| ln

1
2
< 0, (26)

which shows that ts is larger than tmax. Then, in the limit t → tmax, the effective energy
density ρeff → ρmax and effective pressure |peff| → |pmax| become finite,

ρmax =
3

|3ω0 + 1|

(
δγ

k

)2(
2 +

2− 9τk2

3|θ|

)
, (27)

|pmax| = |ω0ρmax − 9θH2
max| =

(
δγ

k

)2∣∣∣ ω0

3ω0 + 1

(
2 +

2− 9τk2

3|θ|

)
− 3τk2

(3θ + T/2)2

∣∣∣. (28)

However, the higher derivatives of the Hubble function do not diverge. Thus, the
formation of a type IV singularity does never occur in this model.

3. Conclusions

As recently shown in [20], for an ideal fluid near the singularity, it is necessary to take
into account the Hawking thermal radiation, which leads to a change in this singularity
type. For singularities of type I or III with a finite time of formation, a transition to a type II
singularity occurs, so there is even a qualitative change taking place. For singularities of
type II or IV, there occurs however no qualitative change in the final state.
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Following our earlier paper [23], we took into account a bulk viscosity of the dark
fluid, and a modified equation of state in the case of thermal radiation. We showed that
there is a qualitative change in the behavior of a singular universe of type I: it may pass into
a singularity of type III, or it may avoid the singularity at all in a finite time. This absence
of a singularity was explained by the fact that the effect of thermal radiation becomes
neutralized by the viscosity in the fluid.

As a summary of the present investigation, we have analyzed thermal effects due
to the Hawking radiation on the singular behavior in the dissipative model of the dark
universe in the Friedmann–Robertson–Walker metric with a nonzero spatial curvature. We
showed that a combined theory accounting simultaneously for radiation, viscosity, and
curvature, may lead to the absence of singularities at all.

The novelty of the article is that in the space with nonzero curvature singularity, they
are not formed in contrast to the results of [23] in the flat space, where singularities of type
III are possible.

It may also be mentioned that the inclusion of thermal radiation in the theory leads to
a good agreement with astronomical observations [30].
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