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Abstract: Assessment specialists (experts) are sometimes expected to provide two types of infor-
mation: knowledge of rating domains and the performance of rating objects (called confidence
levels). Unfortunately, the results of previous information aggregation studies cannot be properly
used to combine the two categories of data covered above. Additionally, a significant range of
symmetric/asymmetric events and structures are frequently included in the implementation process
or practical use of fuzzy systems. The primary goal of the current study was to use cubic Fermatean
fuzzy set features to address such situations. To deal with the ambiguous information of the aggre-
gated arguments, we defined information aggregation operators with confidence degrees. Two of the
aggregation operators we initially proposed were the confidence cubic Fermatean fuzzy weighted
averaging (CCFFWA) operator and the confidence cubic Fermatean fuzzy weighted geometric (CCF-
FWG) operator. They were used as a framework to create an MCDM process, which was supported
by an example to show how effective and applicable it is. The comparison of computed results was
carried out with the help of existing approaches.

Keywords: cubic Fermatean fuzzy sets; MCDM; confidence levels; aggregation operators

1. Introduction

Researchers working in the general area of fuzzy decision-making have drawn inspira-
tion from the Bellman–Zadeh conception of a symmetrical decision model in an uncertain
environment, with complete symmetry between constraints and decision variables. A sig-
nificant range of symmetric/asymmetric events and structures is frequently included in the
implementation process or practical use of fuzzy systems. Multi-criteria decision-making
(MCDM) is one of the fast-developing active research problems for obtaining conclusive
results in a reasonable time. However, due to different restrictions, it is not always possible
to express the requirements precisely, hence the corresponding solutions are not always op-
timal. The intuitionistic fuzzy set (IFS) [1] theory is one of the most effective and promising
strategies scholars usually apply to manage the ambiguity and imprecision of information.
In this context, different scholars focus more on IFSs for integrating the different alternatives
using various aggregation algorithms. The performances of the criteria for alternatives are
aggregated throughout the data synthesis process using weighted and ordered weighted
aggregation operators (AOs) [2,3]. In an IFS environment, Xu and Yager [4] presented
a geometric aggregation operator (GAO) while Xu [5] proposed a weighted averaging
aggregation operator (AAO). Wang and Liu [6] proposed Einstein aggregation operators
by using Einstein norm operations in the IFS context. Lai et al. [7] presented a matching
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algorithm based on similarity measures and adaptive weights. Ye [8] proposed an accuracy
function (ac) for interval-valued IFS to compare them to interval-valued intuitionistic fuzzy
numbers. Garg [9] presented a series of communicating AOs for IFSs. Garg [10,11] intro-
duced interacting geometric operators employing Einstein t-norm and Einstein t-conorm
operations to aggregate intuitionistic fuzzy data. Xu et al. [12] introduced the intuitionistic
fuzzy Einstein–Choquet integral-based operators for decision-making (DM) problems. Ac-
cording to the results of the research mentioned above, they are legitimate as long as the
sum of the membership grades does not exceed one. However, in real life, it is not always
possible to communicate one’s preferences within this restriction. For instance, if someone
were to review an option according to their preferences, they would give it a satisfaction
rating of 0.7 and an unsatisfaction rating of 0.6. As a result, the review would be unable
to meet the IFS condition, as 0.7 + 0.6 > 1. Because the effectiveness cannot be tested
under these circumstances, the IFS theory has some limits and disadvantages. To address
these issues, Yager [13,14] introduced Pythagorean fuzzy sets (PFSs) as an extension of
the IFS theory. PFSs relax the limitations of IFS. Furthermore, it has been demonstrated
that all intuitionistic fuzzy values are part of Pythagorean fuzzy values, which specifies
that PFSs have superior ability to manage ambiguous issues (See Figure 1). Following
his pioneering work, scholars are continually attempting to improve PFSs. According to
Yager and Abbasov [15], Pythagorean fuzzy grades are subclasses of complex numbers.
Moreover, Zhang and Xu [16] provided a method for determining the optimal alternative
based on an ideal solution in a Pythagorean fuzzy environment. Yager [14] presented a
series of aggregation operators in a PFS environment. Peng and Yang [17] defined some
basic operational laws and their related properties for Pythagorean fuzzy numbers. Garg
presented correlation and correlation coefficients for PFSs. Geo and Deng [18] proposed a
Pythagorean fuzzy generation technique based on probability negativity to handle MCDM
problems. Zhang [19] presented the notions of interval-valued PFSs (IVPFSs) by extending
PFSs. Some important properties of IVPFSs were presented by Peng and Yang [20]. To relax
the limitations of PFSs, Senapati and Yager [21] proposed Fermatean fuzzy sets (FFSs) and
some operational laws of FFSs. Senapati and Yager [22] proposed weighted averaging and
weighted geometric aggregation operators under an FFS environment. Rani and Mishra
proposed interval-valued FFSs.
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According to the available research, fuzzy sets, IFS, PFS, and their corresponding
implementations are the main topics of all current research. Later on, Jun et al. proposed
cubic sets (CSs) by integrating fuzzy sets and interval-valued fuzzy sets. Kaur and Garg [23]
presented cubic IFSs and a series of AOs based on t-norm operations. Khan et al. [24,25]
suggested CS operations and their characteristics. Abbas et al. [26] proposed cubic PFSs
(CPFSs) by combining PFSs and IVPFSs for solving MCDM problems. The flaws and
ambiguities of CPFSs were investigated by Amin et al. [27]. Rahim et al. [28] proposed
Bonferroni mean aggregation operators under a CPFS environment. Rong and Mishra [29]
proposed cubic FFSs and their application in MCDM problems.

Despite the popularity of the aforementioned work, the level of confidence in the
criteria was not assessed in any of the studies described above. To put it another way,
every researcher has approached the studies with the premise that decision-makers are
unquestionably competent in the subjects being investigated. However, these types of
prerequisites are only partially accomplished in real-world situations. To compensate for
this limitation, decision-makers may examine the alternatives in terms of cubic Fermatean
fuzzy numbers (CFFNs) and their associated confidence levels based on their familiarity
with the evaluation. As a result, during the evaluation of the alternative in terms of
CFFNs, the present study proposes the concept of confidence levels in the optimization
processes. First, some basic operations such as P-union (rep. P-intersection), R-union (rep.
R-intersection) and so on are defined. Based on these investigations a series of weighted
and geometric operators and are proposed in this paper. Additionally, a method to address
MCDM issues is suggested. The following is a summary of the study’s primary goals:

(1) Define some basic operations of CFFSs and their properties.
(2) Based on these operational laws, propose a series of aggregation operators with

confidence levels in a CFFS environment.
(3) Develop a new approach to solve MCDM problems under CFFSs.
(4) Provide an example to evaluate the accuracy and reliability of the proposed approach.
(5) Compare the results of the proposed framework with some existing approaches.

2. Preliminaries

In this section, we briefly present some concepts of PFS, IVPFS, and others to under-
stand the paper.

2.1. PFSs, IVPFSs, and CPFSs

Definition 1 Ref. [13]. Let F be a non-empty finite set. A PFS over element t ∈ F is defined as

A = {〈t, ϕA(t), ψA(t)〉|t ∈ F}, (1)

where ϕA(t) ∈ [0, 1] and ψA(t) ∈ [0, 1] are the membership and non-membership function of an
element t ∈ F such that (ϕA(t))

2 + (ψA(t))
2 ≤ 1.

For convenience, Zhang and Xu [16] called 〈ϕA(t), ψA(t)〉 a PFN denoted by 〈ϕA, ψA〉.
The score function of A can be calculated as sc(A) = ϕ2

A − ψ2
A.

Definition 2 Ref. [19]. For a non-empty set F, an IVPFS over an element t ∈ F is defined
as follows:

B =
{
〈t, ϕ̃B(t), ψ̃B(t)〉|t ∈ F

}
, (2)

where ϕ̃B(t) and ψ̃B(t) are interval-valued fuzzy numbers representing the interval membership
and non-membership grades of set B, respectively. Let ϕ̃B(t) =

[
ϕ̃L

B(t), ϕ̃U
B (t)

]
and ψ̃B(t) =[

ψ̃L
B(t), ψ̃U

B (t)
]

then IVPFS can be written as B =
{
〈t,
[
ϕ̃L

B(t), ϕ̃U
B (t)

]
,
[
ψ̃L

B(t), ψ̃U
B (t)

]
〉|t ∈ F

}
.
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For convenience, we denote these pairs as 〈
[
ϕ̃L

B, ϕ̃U
B
]
,
[
ψ̃L

B, ψ̃U
B
]
〉 and call this an interval-

valued PFN (IVPFN). We also set, 0 ≤ ϕ̃L
B, ϕ̃U

B , ψ̃L
B, ψ̃U

B ≤ 1 such that
(

ϕ̃U
B
)2

+
(
ψ̃U

B
)2 ≤ 1.

The score function of B can be calculated as sc(B) = 1
2

((
ϕ̃L

B
)2

+
(

ϕ̃U
B
)2 −

(
ψ̃L

B
)2 −

(
ϕ̃U

B
)2
)

.

Definition 3 Refs. [26,27]. Let F be a non-empty finite set. A CPFS over an element t ∈ F is
defined as

C =
{
〈t, B̃C(t),AC(t)〉|t ∈ F

}
, (3)

where B̃C(t) =
([

ϕ̃L
B̃c
(t), ϕ̃U

B̃c
(t)
]
,
[
ψ̃L
B̃c
(t), ψ̃U

B̃c
(t)
])

represents an IVPFS while

AC(t) =
(

ϕB̃C
(t), ψB̃C

(t)
)

represents a PFS. We also set, 0 ≤ ϕ̃L
B̃c
(t), ϕ̃U

B̃c
(t), ψ̃L

B̃c
(t),

ψ̃U
B̃c
(t) ≤ 1 such that

(
ϕ̃U
B̃c
(t)
)2

+
(

ψ̃U
B̃c
(t)
)2
≤ 1.

For convenience, we denote the pairs as 〈
[

ϕ̃L
B̃c

, ϕ̃U
B̃c

]
,
[
ψ̃L
B̃c

, ψ̃U
B̃c

]
, ϕB̃C

, ψB̃C
〉 and call this

a CPFN.

Definition 4 Ref. [28]. Let C1 =
(
〈
[

ϕL
C1

, ϕU
C1

]
,
[
ψL

C1
, ψU

C1

]
〉, 〈ϕC1 , ψC1〉

)
be a CPFN, then the

score function is defined under R-order as

sc(C1) =

(
ϕL

C1

)2
+
(

ϕL
C1

)2
−
(

ψL
C1

)2
−
(

ψL
C1

)2

2
+
(
ψC1

)2 −
(

ϕC1

)2, (4)

and for P-order as

sc(C1) =

(
ϕL

C1

)2
+
(

ϕL
C1

)2
−
(

ψL
C1

)2
−
(

ψL
C1

)2

2
+
(

ϕC1

)2 −
(
ψC1

)2, (5)

where −2 ≤ sc(β1) ≤ 2.

Definition 5 Ref. [28]. Let C1 =
(
〈
[

ϕL
C1

, ϕU
C1

]
,
[
ψL

C1
, ψU

C1

]
〉, 〈ϕC1 , ψC1〉

)
be a CPFN, then the

accuracy function is defined as

ac(C1) =

(
ϕL

C1

)2
+
(

ϕL
C1

)2
+
(

ψL
C1

)2
+
(

ψL
C1

)2

2
+
(

ϕC1

)2
+
(
ψC1

)2, (6)

where 0 ≤ ac(C1) ≤ 2.

Definition 6 Ref. [28]. Let C1 =
(
〈
[

ϕL
C1

, ϕU
C1

]
,
[
ψL

C1
, ψU

C1

]
〉, 〈ϕC1 , ψC1〉

)
and

C2 =
(
〈
[

ϕL
C2

, ϕU
C2

]
,
[
ψL

C2
, ψU

C2

]
〉, 〈ϕC2 , ψC2〉

)
be two CPFSs in F. Then:

• (Equality): C1 = C2, if and only if
[

ϕL
C1

, ϕU
C1

]
=
[

ϕL
C2

, ϕU
C2

]
, ψL

C1
, ψU

C1
= ψL

C2
, ψU

C2
,

ϕC1 = ϕC2 and ψC1 = ψC2 ;

• (P-order): C1 ⊆P C2 if
[

ϕL
C1

, ϕU
C1

]
⊆
[

ϕL
C2

, ϕU
C2

]
,
[
ψL

C1
, ψU

C1

]
⊇
[
ψL

C2
, ψU

C2

]
, ϕC1 ≤ ϕC2

and ψC1 ≥ ψC2 ;

• (R-order): C1 ⊆R C2 if
[

ϕL
C1

, ϕU
C1

]
⊆
[

ϕL
C2

, ϕU
C2

]
,
[
ψL

C1
, ψU

C1

]
⊇
[
ψL

C2
, ψU

C2

]
, ϕC1 ≥ ϕC2

and ψC1 ≤ ψC2 .

Definition 7 Ref. [27]. For the CPFNs Ci =
(
〈
[

ϕL
Ci

, ϕU
Ci

]
,
[
ψL

Ci
, ψU

Ci

]
〉, 〈ϕCi , ψCi 〉

)
(1, 2, 3, 4)

we have:

(a) If C1 ⊆P C2 and C2 ⊆P C3 then C1 ⊆P C3;



Symmetry 2023, 15, 260 5 of 26

(b) If C1 ⊆P C2 then Cc
2 ⊆P Cc

1:
(c) If C1 ⊆P C2 and C1 ⊆P C3 then C1 ⊆P C2 ∩ C3;
(d) If C1 ⊆P C2 and C3 ⊆P C4 then C1 ∪ C3 ⊆P C2 ∪ C4 and C1 ∩ C3 ⊆P C2 ∩ C4;
(e) If C1 ⊆P C2 and C3 ⊆P C2 then C1 ∪ C3 ⊆P C2;
(f) If C1 ⊆R C2 and C2 ⊆R C3 then C1 ⊆R C3;
(g) If C1 ⊆R C2 then Cc

2 ⊆R Cc
1;

(h) If C1 ⊆R C2 and C1 ⊆R C3 then C1 ⊆R C ∩ C3;
(i) If C1 ⊆R C2 and C3 ⊆R C4 then C1 ∪ C3 ⊆R C2 ∪ C4 and C1 ∩ C3 ⊆R C2 ∩ C4;
(j) If C1 ⊆R C2 and C3 ⊆R C2 then C1 ∪ C3 ⊆R C2.

2.2. FFSs, IVFFSs, and CFFSs

Definition 8 Ref. [21]. Let F be a non-empty set and t ∈ F. The FFS over element t is defined as

F = {〈t, ϕF (t), ψF (t)〉|t ∈ F}, (7)

where ϕF (t) ∈ [0, 1] and ψF (t) ∈ [0, 1] are the membership and non-membership function of an
element t ∈ F such that (ϕF (t))

3 + (ψF (t))
3 ∈ 1.

For convenience, Senapati and Yager [21] called 〈ϕF (t), ψF (t)〉 an FFN denoted by
〈ϕF , ψF 〉. The score function of A can be calculated as sc(A) = ϕ3

F − ψ3
F .

Definition 9 Ref. [30]. For a non-empty set F, an interval-valued FFS (IVFFS) over an element
t ∈ F is defined as follows:

G =
{
〈t, ϕ̃G(t), ψ̃G(t)〉|t ∈ F

}
, (8)

where ϕ̃G(t) and ψ̃G(t) are interval-valued fuzzy numbers representing the interval mem-
bership and non-membership grades of the set G repectively. Let ϕ̃G(t) =

[
ϕ̃L
G(t), ϕ̃U

G (t)
]

and ψ̃G(t) =
[
ψ̃L
G(t), ψ̃U

G (t)
]

then IVPFS can be written as

G =
{
〈t,
[

ϕ̃L
G(t), ϕ̃U

G (t)
]
,
[
ψ̃L
G(t), ψ̃U

G (t)
]
〉|t ∈ F

}
.

For convenience, we denote these pairs as 〈
[

ϕ̃L
G , ϕ̃U

G

]
,
[
ψ̃L
G , ψ̃U

G

]
〉 and call this an

interval-valued FFN (IVFFN). We also set, 0 ≤ ϕ̃L
G , ϕ̃U

G , ψ̃L
G , ψ̃U

G ≤ 1 such that(
ϕ̃U
G

)3
+
(

ψ̃U
G

)3
≤ 1. The score function of G can be calculated as

sc(B) = 1
2

((
ϕ̃L

B
)3

+
(

ϕ̃U
B
)3 −

(
ψ̃L

B
)3 −

(
ϕ̃U

B
)3
)

.

Definition 10 Ref. [29]. Let F be a non-empty finite set. A CPFS L over an element t ∈ F is
defined as

L = {〈t,GL(t),FL(t)〉|t ∈ F}, (9)

where GL(t) =
([

ϕ̃L
L(t), ϕ̃U

L (t)
]
,
[
ψ̃L
L(t), ψ̃U

L (t)
])

represents an IVFFS while
FL(t) = (ϕL(t), ψL(t)) represents PFS. We also set, 0 ≤ ϕ̃L

L(t), ϕ̃U
L (t), ψ̃L

L(t), ψ̃U
L (t) ≤ 1

such that
(

ϕ̃U
L (t)

)2
+
(
ψ̃U
L (t)

)2 ≤ 1.

For convenience, we denote the pairs as 〈
[
ϕ̃L
L, ϕ̃U

L
]
,
[
ψ̃L
L, ψ̃U

L
]
, ϕL, ψL〉 and call this a CPFN.

3. New Operational Laws and Aggregation Operators under CFFSs with
Confidence Levels

In this section, the existing operations defined by Rong et al. [29] are modified. Fur-
thermore, the order relations such as P-order and R-order of CFFNs are presented. Finally,
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based on these modified operations some series aggregation operators with confidence
levels are proposed.

3.1. Modified Operations of CFFSs

Definition 11. For a family of CFFS {Li, i ∈ ∆}, it follows that

(a) (P-union):
⋃P

i∈∆ Li =

〈
maxi∈∆

(
ϕL
Li

)
,

maxi∈∆

(
ϕU
Li

) ,

[
mini∈∆

(
ψL

i
)
,

mini∈∆

(
ψU
Li

)]〉,
〈maxi∈∆µLi , mini∈∆νLi 〉

;

(b) (P-intersection):
⋂R

i∈∆ Li =

〈
mini∈∆

(
ϕL
Li

)
,

mini∈∆

(
ϕU
Li

) ,

maxi∈∆

(
ψL
Li

)
,

maxi∈∆

(
ψU
Li

) 〉,
〈mini∈∆µLi , maxi∈∆νLi 〉

;

(c) (R-union):
⋃R

i∈∆ Li =

〈
maxi∈∆

(
ϕL
Li

)
,

maxi∈∆

(
ϕU
Li

) ,

mini∈∆

(
ψL
Li

)
,

mini∈∆

(
ψU
Li

)〉,
〈mini∈∆µLi , maxi∈∆νLi 〉

;

(d) (R-intersection):
⋃P

i∈∆ Li =

〈
maxLi∈∆

(
ϕL
Li

)
,

maxi∈∆

(
ϕU
Li

) ,

mini∈∆

(
ψL
Li

)
,

mini∈∆

(
ψU
Li

) 〉,
〈mini∈∆ ϕLi , maxi∈∆ψLi 〉

.

Definition 12. Let L1 =
(
〈
[

ϕL
L1

, ϕU
L1

]
,
[
ψL
L1

, ψU
L1

]
〉, 〈ϕL1 , ψL1〉

)
and

L2 =
(
〈
[

ϕL
L2

, ϕU
L2

]
,
[
ψL
L2

, ψU
L2

]
〉, 〈ϕL2 , ψL2〉

)
be two CFFSs in F. Then

(a) (Equality): L1 = L2, if and only if
[

ϕL
L1

, ϕU
L1

]
=
[
ϕL

2 , ϕU
2
]
,
[
ψL
L1

, ψU
L1

]
=
[
ψL
L2

, ψU
L2

]
,

ϕL1 = ϕL2 and ψL1 = ψL2 :

(b) (P-order): L1 ⊆P L2 if
[

ϕL
L1

, ϕU
L1

]
⊆

[
ϕL
L2

, ϕU
L2

]
,
[
ψL
L1

, ψU
L1

]
⊇

[
ψL
L2

, ψU
L2

]
,

ϕL1 ≤ ϕL2 and ψL1 ≥ ψL2 ;

(c) (R-order): L1 ⊆R L2 if
[

ϕL
L1

, ϕU
L1

]
⊆
[

ϕL
L2

, ϕU
L2

]
,
[
ψL
L1

, ψU
L1

]
⊇
[
ψL
L2

, ψU
L2

]
,

ϕL1 ≥ ϕL2 and ψL1 ≤ ψL2 .

Definition 13. Let L1 =
(
〈
[

ϕL
L1

, ϕU
L1

]
,
[
ψL
L1

, ψU
L1

]
〉, 〈ϕL1 , ψL1〉

)
be a CFFN, then the score

function is defined under R-order as

sc(L1) =

(
ϕL
L1

)3
+
(

ϕU
L1

)3
−
(

ψL
L1

)3
−
(

ψU
L1

)3

2
+
(

ψ3
L1
− ϕ3

L1

)
, (10)

and for P-order as

sc(L1) =

(
ϕL
L1

)3
+
(

ϕU
L1

)3
−
(

ψL
L1

)3
−
(

ψU
L1

)3

2
+
(

ϕ3
L1
− ψ3

L1

)
, (11)

where −2 ≤ sc(L1) ≤ 2.

Definition 14. Let L1 =
(
〈
[

ϕL
L1

, ϕU
L1

]
,
[
ψL
L1

, ψU
L1

]
〉, 〈ϕL1 , ψL1〉

)
be a CFFN, then the accu-

racy function is defined under R-order as

ac(L1) =

(
ϕL
L1

)3
+
(

ϕU
L1

)3
+
(

ψL
L1

)3
+
(

ψU
L1

)3

2
+
(

ϕ3
L1

+ ψ3
L1

)
, (12)
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where 0 ≤ ac(L1) ≤ 2.

Theorem 1. For the CPFNsLi =
(
〈
[

ϕL
Li

, ϕU
Li

]
,
[
ψL
Li

, ψU
Li

]
〉, 〈ϕLi , ψLi〉

)
(1, 2, 3, 4) we have:

(a) If L1 ⊆P L2 and L2 ⊆P L3 then L1 ⊆P L3;
(b) If L1 ⊆P L2 then Lc

2 ⊆P Lc
1;

(c) If L1 ⊆P L2 and L1 ⊆P L3 then L1 ⊆P L2 ∩ L3;
(d) If L1 ⊆P L2 and L3 ⊆P L4 then L1 ∪ L3 ⊆P L2 ∪ L4 and L1 ∩ L3 ⊆P L2 ∩ L4;
(e) If L1 ⊆P L2 and L3 ⊆P L2 then L1 ∪ L3 ⊆P L2;
(f) If L1 ⊆R L2 and L2 ⊆R L3 then L1 ⊆R L3;
(g) If L1 ⊆R L2 then Lc

2 ⊆R Lc
1;

(h) If L1 ⊆R L2 and L1 ⊆R L3 then L1 ⊆R L2 ∩ L3;
(i) If L1 ⊆R L2 and L3 ⊆R L4 then L1 ∪ L3 ⊆R L2 ∪ L4 and L1 ∩ L3 ⊆R L2 ∩ L4;
(j) If L1 ⊆R L2 and L3 ⊆R L2 then L1 ∪ L3 ⊆R L2.

Proof. (a) Since L1 =
(
〈
[

ϕL
L1

, ϕU
L1

]
,
[
ψL
L1

, ψU
L1

]
〉, 〈ϕL1 , ψL1〉

)
, L2 =(

〈
[

ϕL
L2

, ϕU
L2

]
,
[
ψL
L2

, ψU
L2

]
〉, 〈ϕL2 , ψL2〉

)
, and L3 =

(
〈
[

ϕL
L3

, ϕU
L3

]
,
[
ψL
L3

, ψU
L3

]
〉, 〈ϕL3 , ψL3〉

)
be CPFNs. Using Definition 12, if L1 ⊆P L2 then

[
ϕL
L1

, ϕU
L1

]
⊆
[

ϕL
L2

, ϕU
L2

]
,
[
ψL
L1

, ψU
L1

]
⊇[

ψL
L2

, ψU
L2

]
, ϕL1 ≤ ϕL2 , and ψL1 ≥ ψL2 . Similarly, if L2 ⊆P L3, then

[
ϕL
L2

, ϕU
L2

]
⊆
[

ϕL
L3

, ϕU
L3

]
,[

ψL
L2

, ψU
L2

]
⊇

[
ψL
L3

, ψU
L3

]
, ϕL2 ≤ ϕL3 , and ψL2 ≥ ψL3 which implies that[

ϕL
L1

, ϕU
L1

]
⊆

[
ϕL
L2

, ϕU
L2

]
⊆

[
ϕL
L3

, ϕU
L3

]
;
[
ψL
L1

, ψU
L1

]
⊇

[
ψL
L2

, ψU
L2

]
⊇

[
ψL
L3

, ψU
L3

]
;

ϕL1 ≤ ϕL2 ≤ ϕL3 ; and ψL1 ≥ ψL2 ≥ ψL3 and hence
[

ϕL
L1

, ϕU
L1

]
⊆

[
ϕL
L3

, ϕU
L3

]
;[

ψL
L1

, ψU
L1

]
⊇
[
ψL
L3

, ψU
L3

]
; ϕL1 ≤ ϕL3 ; and ψL1 ≥ ψL3 . Therefore, if L1 ⊆P L2 and L2 ⊆P L3,

then L1 ⊆P L3. Similarly, for the others. �

Definition 15. Let L =
(
〈
[
ϕL
L, ϕU

L
]
,
[
ψL
L, ψU

L
]
〉, 〈ϕL, ψL〉

)
and

Li =
(
〈
[

ϕL
Li

, ϕU
Li

]
,
[
ψL
Li

, ψU
Li

]
〉, 〈ϕLi , ψLi 〉

)
(i = 1, 2) be the collections of CFFNs, and ζ � 0

be a real number then

(a) L1 ⊕L2 =


〈


3

√
1−∏2

i=1

(
1−

(
ϕL
Li

)3
)

,

3

√
1−∏2

i=1

(
1−

(
ϕU
Li

)3
)
,
[
∏2

i=1 ψL
Li

, ∏2
i ψU
Li

]
〉 ,

〈∏2
i=1 ϕLi ,

3

√
1−∏2

i=1

(
1−

(
ψLi

)3
)
〉


;

(b) L1 ⊗L2 =


〈
[
∏2

i=1 ϕL
Li

, ∏2
i ϕU
Li

]
,


3

√
1−∏2

i=1

(
1−

(
ψL
Li

)3
)

,

3

√
1−∏2

i=1

(
1−

(
ψU
Li

)3
)
〉,

〈 3

√
1−∏2

i=1

(
1−

(
ϕLi

)3
)

, ∏2
i=1 ψLi〉


;

(c) ζL =


〈


3

√
1−

(
1−

(
ϕL
L
)3
)ζ

,

3

√
1−

(
1−

(
ϕU
L
)3
)ζ

,
[(

ψL
L
)ζ ,

(
ψU
L
)ζ
]
〉,

〈ϕζ
L, 3
√

1−
(
1− ψ3

L
)ζ〉

;
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(d) Lζ =


〈
[(

ϕL
L
)ζ ,

(
ϕU
L
)ζ
]
,


3

√
1−

(
1−

(
ψL
L
)3
)ζ

,

3

√
1−

(
1−

(
ψU
L
)3
)ζ

〉,
〈 3
√

1−
(
1− ϕ3

L
)ζ , ϕ

ζ
L〉

.

Theorem 2. For two CFFNs L1 =
(
〈
[

ϕL
L1

, ϕU
L1

]
,
[
ψL
L1

, ψU
L1

]
〉, 〈ϕL1 , ψL1〉

)
and

L2 =
(
〈
[

ϕL
L2

, ϕU
L2

]
,
[
ψL
L2

, ψU
L2

]
〉, 〈ϕL2 , ψL2〉

)
, provided ζ � 0 is a real number, then L1⊕L2,

L1 ⊗L2, Lζ , and ζL1 are also CFFNs.

Proof. Since L1 =
(
〈
[
ϕL
L1

, ϕU
L1

]
,
[
ψL
L1

,ψU
L1

]
〉, 〈ϕL1, ψL1〉

)
and

L2 =
(
〈
[
ϕL
L2

, ϕU
L2

]
,
[
ψL
L2

,ψU
L2

]
〉, 〈ϕL2, ψL2〉

)
are two CFFNs such that

0 ≤ ϕL
L1

, ϕU
L1

,ψL
L1

,ψU
Li

, ϕL
L2

, ϕU
L2

, ψL
L2

,ψU
L2
≤ 1 and

(
ϕU
L1

)3
+
(

ψU
L1

)3
≤ 1 this implies that

0≤
(

1−
(

ϕL
L1

)3
)(

1−
(

ϕL
L1

)3
)
≤ 1 and hence 0≤ 3

√(
ϕL
L1

)3
+
(

ϕL
L2

)3
−
(

ϕL
L1

)3(
ϕL
Li

)3
≤ 1.

Similarly, we can prove that 0 ≤ 3

√(
ϕL
L2

)3
+
(

ϕL
L2

)3
−
(

ϕL
L2

)3(
ϕL
L2

)3
≤ 1, 0 ≤ ψL

L1
ψL
L2
≤ 1

and 0≤ ψU
L1

ψU
L2
≤ 1. We also set, 0≤ ϕL1, ψL2, ϕL1,ψL2 ≤ 1 and ϕ3

L1
+ψ3
L1
≤ 1, ϕ3

L2
+ψ3
L2
≤ 1,

which implies that ϕL1 ϕL2 ≤ 1 and 3
√

ϕ3
L1

+ ϕ3
L2
− ϕ3

L1
µ3
L2
≤ 1.

Finally, we have

3

√(
ϕU
L1

)3
+
(

ϕU
L2

)3
−
(

ϕU
L1

)3(
ϕU
L2

)3
+
(

ϕU
L1

)3(
ϕU
L2

)3

= 3

√
1−

(
1−

(
ϕU
L1

)3
)(

1−
(

ϕU
L2

)3
)
+
(

ϕU
L1

)3(
ϕU
L2

)3

≤ 3

√
1−

(
ϕU
L1

)3(
ϕU
L2

)3
+
(

ϕU
L1

)3(
ϕU
L2

)3

≤ 1,

and
3

√
ϕL1 ϕL2 + ψ3

L1
+ ψ3

L2
−
(

ψU
L1

)3(
ψU
L1

)3

= 3

√
ϕL1 ϕL2 + 1−

(
1−

(
ϕU
L1

)3
)(

1−
(

ϕU
L2

)3
)

≤ 3
√

ϕL1 ϕL2 + 1− ϕL1 ϕL2

≤ 1.

Therefore, L1 ⊕L2 is a CFFN. Furthermore, for any positive real number ψ and CFFN

β =
(
〈
[
ϕL
L, ϕU

L
]
,
[
ψL
L, ψU

L
]
〉, 〈ϕL, ψL〉

)
, we have 0 ≤ ϕζ ≤ 1, 0 ≤ 3

√
1−

(
1− (ϕL)

3
)ζ
≤ 1,

0 ≤
(
ψL
L
)ζ(

ψU
L
)ζ ≤ 1 and 0 ≤ 3

√
1−

(
1−

(
ϕL
L
)3
)ζ(

1−
(

ϕU
L
)3
)ζ
≤ 1. Hence ζL is also a

CFFN. Similarly, we can prove that L1 ⊗L2 and Lζ are also CFFNs. �

3.2. Cubic Fermatean AOs with Confidence Levels

In the available studies, all scholars have approached the studies by taking the postu-
lation that decision-makers are confident in using the estimated objects. However, these
kinds of prerequisites are only partially met in real-world situations. To address this prob-
lem, in this section we propose a set of averaging and geometric operators with different
confidence levels in a cubic Fermatean fuzzy environment. Those are named confidence
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cubic Fermatean fuzzy weighted averaging (CCFFWA) operator and confidence cubic
Fermatean fuzzy weighted geometric (CCFFWG) operator.

3.2.1. Weighted Averaging Operators

Definition 16. A CCFFWA operator is a mapping CCFFWA : Γp → Γ defined as

CCFFWA
(
L1, L2, . . . ,Lp

)
= σ1(ξ1L1)⊕ σ2(ξ2L2)⊕ . . .⊕ σp

(
ξpLp

)
(13)

where Γ is the collection of CPFNs with confidence level
Li =

(
〈
[

ϕL
Li

, ϕU
Li

]
,
[
ψL
Li

, ψU
Li

]
〉, 〈ϕLi , ψLi 〉, σi

)
for i = 1, 2, . . . , p; ξ =

(
ξ1, ξ2, . . . , ξp

)T

is the weight vector of ξi such that ξi > 0 and ∑n
i=1 ξi = 1; and σi are the confidence levels of the

CFFNs Li.

Theorem 3. For the group of CCFFNs L1, L2, . . . ,Ln, the value obtained via CCFFWA is a CFFN,
which can be calculated as

CCFFWA
(
L1, L2, . . . ,Lp

)
=


〈


3

√
1−∏

p
i=1

(
1−

(
ϕL
Li

)3
)ξiσi

,

3

√
1−∏

p
i=1

(
1−

(
ϕU
Li

)3
)ξiσi

,

∏
p
i=1

(
ψL
Li

)ξiσi
,

∏
p
i=1

(
ψU
Li

)ξiσi

〉,
〈∏p

i=1

(
ϕLi

)ξiσi , 3

√
1−∏

p
i=1

(
1−

(
ψLi

)3
)ξiσi 〉


. (14)

Proof. We apply induction principle on L1, L2, . . . ,LP
Step 1 For p = 2, using Definition 15, we get

CCFFWA(L1,L2) = σ1ξ1L1 ⊕ σ2ξ2L2

=


〈


3

√
1−

(
1−

(
ϕL
L1

)3
)σ1ξ1

(
1−

(
ϕL
L2

)3
)σ2ξ2

,

3

√
1−

(
1−

(
ϕU
L1

)3
)σ1ξ1

(
1−

(
ϕL
L2

)3
)σ2ξ2

,


(

ψL
L1

)σ1ξ1
(

ψL
L2

)σ2ξ2
,(

ψU
L1

)σ1ξ1
(

ψU
L2

)σ2ξ2

〉,

〈
(

ϕL1

)σ1ξ1
(

ϕL2

)σ2ξ2 , 3

√
1−

(
1− ψ3

L1

)σ1ξ1
(

1− ψ3
L1

)σ1ξ1〉



=


〈


3

√
1−∏2

i=1

(
1−

(
ϕL
Li

)3
)ξiσi

,

3

√
1−∏2

i=1

(
1−

(
ϕU
Li

)3
)ξiσi

,

∏2
i=1

(
ψL
Li

)ξiσi
,

∏2
i=1

(
ψU
Li

)ξiσi

〉,
〈∏2

i=1
(

ϕLi

)ξiσi , 3

√
1−∏2

i=1

(
1−

(
ψLi

)3
)ξiσi 〉


.

Hence, it holds for P = 2.
Step 2 Assume Equation (14) holds for p = κ, then

CCFFWA(L1, L2, . . . ,Lk) =


〈


3

√
1−∏k

i=1

(
1−

(
ϕL
Li

)3
)ξiσi

,

3

√
1−∏k

i=1

(
1−

(
ϕU
Li

)3
)ξiσi

,

∏k
i=1

(
ψL
Li

)ξiσi
,

∏k
i=1

(
ψU
Li

)ξiσi

〉,
〈∏k

i=1
(

ϕLi

)ξiσi , 3

√
1−∏k

i=1

(
1−

(
ψLi

)3
)ξiσi 〉


. (15)
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Step 3 For p = κ + 1, we have

CCFFWA(L1, L2, . . . ,Lκ ,Lκ+1) = L1 ⊕L2 ⊕ . . . .⊕Lκ ⊕Lκ+1

=


〈


3

√
1−∏κ

i=1

(
1−

(
ϕL
Li

)3
)ξiσi

,

3

√
1−∏κ

i=1

(
1−

(
ϕU
Li

)3
)ξiσi

,

∏κ
i=1

(
ψL
Li

)ξiσi
,

∏κ
i=1

(
ψU
Li

)ξiσi

〉,
〈∏κ

i=1
(

ϕLi

)ξiσi , 3

√
1−∏κ

i=1

(
1−

(
ψLi

)3
)ξiσi 〉



⊕


〈


3

√
1−

(
1−

(
ϕL
Lκ+1

)3
)σκ+1ξκ+1

,

3

√
1−

(
1−

(
ϕU
Lκ+1

)3
)σκ+1ξκ+1

,


(

ψL
Lκ+1

)σκ+1ξκ+1
,(

ψU
Lκ+1

)σκ+1ξκ+1

〉,
〈
(

ϕLκ+1

)σκ+1ξκ+1 , 3

√
1−

(
1−

(
ψLκ+1

)3
)σκ+1ξκ+1〉



=


〈


3

√
1−

κ+1
∏
i=1

(
1−

(
ϕ3
Li

)3
)ξiσi

,

3

√
1−

κ+1
∏
i=1

(
1−

(
ϕU
Li

)3
)ξiσi

,


κ+1
∏
i=1

(
ψU
Li

)ξiσi
,

κ+1
∏
i=1

(
ψU
Li

)ξiσi

〉,
〈

κ+1
∏
i=1

(
ϕLi

)ξiσi , 3

√
1−

κ+1
∏
i=1

(
1−

(
ψLi

)3
)ξiσi 〉


.

As a result, the result is valid for p = κ + 1, and hence

CCFFWA
(
L1, L2, . . . ,Lp

)
=


〈


3

√
1−∏

p
i=1

(
1−

(
ϕL
Li

)3
)ξiσi

,

3

√
1−∏

p
i=1

(
1−

(
ϕU
Li

)3
)ξiσi

,

∏
p
i=1

(
ψL
Li

)ξiσi
,

∏
p
i=1

(
ψU
Li

)ξiσi

〉,
〈∏p

i=1

(
ϕLi

)ξiσi , 3

√
1−∏

p
i=1

(
1−

(
ψLi

)3
)ξiσi 〉


.

The proof is completed. �

Example 1. Let L1 = (〈[0.4, 0.6], [0.3.0.7], (0.3, 0.5)〉; 0.8),
L2 = (〈[0.5, 0.6], [0.4.0.5], (0.2, 0.4)〉; 0.7), and L3 = (〈[0.2, 0.3], [0.4.0.5], (0.7, 0.2)〉; 0.6) be
three CFFNs with confidence levels and ξ = (0.25, 0.35, 0.4) be their corresponding weight
vector then

3

√√√√1−
3

∏
i=1

(
1−

(
ϕL
Li

)3
)ξiσi

=

(
1−

((
1− (0.4)3)(0.25)(0.8) ×

(
1− (0.5)3)(0.35)(0.7)

×
(
1− (0.2)3)(0.4)(0.6)

)) 1
3

= 0.3602;

3

√√√√1−
3

∏
i=1

(
1−

(
ϕU
Li

)3
)ξiσi

=

(
1−

((
1− (0.6)3)(0.25)(0.8) ×

(
1− (0.6)3)(0.35)(0.7)

×
(
1− (0.3)3)(0.4)(0.6)

)) 1
3

= 0.477;

3

∏
i=1

(
ψL
Li

)ξiσi
= (0.3)(0.25)(0.8) × (0.4)(0.35)(0.7) × (0.4)(0.4)(0.6) = 0.5040;

3

∏
i=1

(
ψL
Li

)ξiσi
= (0.7)(0.25)(0.8) × (0.5)(0.35)(0.7) × (0.6)(0.4)(0.6) = 0.6653;
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p

∏
i=1

(
ϕLi

)ξiσi = (0.3)(0.25)(0.8) × (0.2)(0.35)(0.7) × (0.7)(0.4)(0.6) = 0.4864;

3

√√√√1−
p

∏
i=1

(
1−

(
ψLi

)3
)ξiσi

=

(
1−

((
1− (0.5)3)(0.25)(0.8) ×

(
1− (0.4)3)(0.35)(0.7)

×
(
1− (0.2)3)(0.4)(0.6)

))1/3

= 0.3526.

Thus, using Equation (14) we get

CCFFWA(L1, L2,L3) =


〈


3

√
1−∏3

i=1

(
1−

(
ϕL
Li

)3
)ξiσi

,

3

√
1−∏3

i=1

(
1−

(
ϕU
Li

)3
)ξiσi

,

 ∏3
i=1

(
ψL
Li

)ξiσi
,

∏3
i=1

(
ψU
Li

)ξiσi

〉,
〈∏3

i=1
(

ϕLi

)ξiσi , 3

√
1−∏3

i=1

(
1−

(
ψLi

)3
)ξiσi 〉


=

(
〈[0.3602, 0.4770], [0.5040.0.6653]〉,

〈0.4864, 0.3526〉

)
.

According to Theorem 3, the CCFFWA operator fulfils the certain properties listed below.

Property 1. For Li = L i = 1, 2, . . . , p, where L =
(
〈
[
ϕL
L, ϕu

L
]
,
[
ψL
L, ψU

L
]
〉, 〈ϕL, ψL〉

)
, it

follows that CCFFWA(L1, L2, . . . ,Ln) = L. This property is called idempotency.

Proof. As ξi � 0, ∑n
I=1 ξi = 1 and ξi = ξ for all i, then

CCFFWA(L, L, . . . ,L) =


〈


3

√
1−∏

p
i=1

(
1−

(
ϕL
L
)3
)ξiσi

,

3

√
1−∏

p
i=1

(
1−

(
ϕU
L
)3
)ξiσi

,

[
∏

p
i=1

(
ψL
L
)ξiσi ,

∏
p
i=1

(
ψU
L
)ξiσi

]
〉,

〈∏p
i=1(ϕL)

ξiσi , 3

√
1−∏

p
i=1

(
1− (ψL)

3
)ξiσi 〉


=

 〈
[

1−
(

1−
(

ϕL
L
)3
)ξiσi

, 1−
(

1−
(

ϕU
L
)3
)ξiσi

]
,
[(

ψL
L
)ξiσi ,

(
ψU
L
)ξiσi

]
〉,

〈(ϕL)
ξiσi , 1−

(
1− (ψL)

3
)ξiσi 〉


=
(
〈
[
ϕL
L, ϕu

L
]
,
[
ψL
L, ψU

L
]
〉, 〈ϕL, ψL〉

)
= L.

�

Property 2. Let Li =
(
〈
[

ϕL
Li

, ϕU
Li

]
,
[
ψL
Li

, ψU
Li

]
〉, 〈ϕLi , ψLi 〉

)
and

L̃i =
(
〈
[

ϕ̃L
Li

, ϕ̃U
Li

]
,
[
ψ̃L
Li

, ψ̃U
Li

]
〉, 〈ϕ̃Li , ψ̃Li 〉

)
be CCFFNs where (i = 1, 2, . . . , p), such that

Li ≤ L̃i, then

CPFWA(L1, L2, . . . ,Ln) ≤ CCFFWA
(
L̃1, L̃2, . . . , L̃p

)
. (16)

This property is called monotonicity.
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Proof. First let us express the term of CCFFN as follows:

3

√
1−∏

p
i=1

(
1−

(
ϕL
Li

)3
)ξiσi

= α, 3

√
1−∏

p
i=1

(
1−

(
ϕU
Li

)3
)ξiσi

= β,

∏
p
i=1

(
ψL
Li

)ξiσi
= γ, ∏

p
i=1

(
ψU
Li

)ξiσi
= δ,

∏
p
i=1

(
ϕLi

)ξiσi = ε, 3

√
1−∏

p
i=1

(
1−

(
ψLi

)3
)ξiσi

= ζ,

3

√
1−∏

p
i=1

(
1−

(
ϕ̃L
Li

)3
)ξiσi

= α̃, 3

√
1−∏

p
i=1

(
1−

(
ϕ̃U
Li

)3
)ξiσi

= β̃,

∏
p
i=1

(
ψ̃L
Li

)ξiσi
= γ̃, ∏

p
i=1

(
ψ̃L
Li

)ξiσi
= δ̃,

∏
p
i=1

(
ϕ̃Li

)ξiσi = ε̃ and 3

√
1−∏

p
i=1

(
1−

(
ψ̃Li

)3
)ξiσi

= ζ̃.

Also, Li ≤ L̃i for all i, then we have ϕL
Li
≤ ϕ̃L

Li
, ϕU
Li
≤ ϕ̃U

Li
, ψL
Li
≥ ψ̃L

Li
, ψU
Li
≥ ψ̃U

Li
;

ϕLi ≥ ϕ̃Li and ψLi ≤ ψ̃Li , then we have α ≤ α̃, β ≤ β̃, γ ≥ γ̃, δ ≥ δ̃, ε ≥ ε̃, and ζ ≤ ζ̃.
Therefore, using the score function defined in Definition 10 and 11, we have

sc
(
CCFFWA

(
L1, L2, . . . ,Lp

))
= α3+β3−γ3−δ3

2 +
(
ζ3 − ε3)

≤ α̃3+β̃3−γ̃3−δ̃3

2 +
(

ζ̃3 − ε̃3
)
= sc

(
CCFFWA

(
L̃1, L̃2, . . . , L̃p

))
.

Thus, CCFFWA
(
L1, L2, . . . ,Lp

)
≤ CCFFWA

(
L̃1, L̃2, . . . , L̃p

)
. �

Property 3. For any group of CCFFNs Li (i = 1, 2, . . . , p). If

L− =

〈
mini

(
ϕL
Li

)
,

mini

(
ϕU
Li

) ,

maxi

(
ψL
Li

)
,

maxi

(
ψU
Li

) 〉, 〈maxi
(

ϕLi

)
,

mini
(
ψLi

)〉
and

L+ =

〈
maxi

(
ϕL
Li

)
,

maxi

(
ϕU
Li

),

mini

(
ψL
Li

)
,

mini

(
ψU
Li

) 〉, 〈mini
(

ϕLi

)
,

maxi
(
ψLi

) 〉


then L− ≤ CCFFWA(L1, L2, . . . ,Ln) ≤ L+. This property is called Boundedness.

Proof. As mini

(
ϕL
Li

)
≤ ϕL

Li
≤ maxi

(
ϕL
Li

)
, mini

(
ϕU
Li

)
≤ ϕU

Li
≤ maxi

(
ϕU
Li

)
,

mini

(
ψL
Li

)
≤ ψL

Li
≤ maxi

(
ψL
Li

)
, mini

(
ψU
Li

)
≤ ψU

Li
≤ maxi

(
ψU
Li

)
,

mini
(

ϕLi

)
≤ ϕLi ≤ maxi

(
ϕLi

)
, and mini

(
ψLi

)
≤ ψLi ≤ maxi

(
ψLi

)
it follows that

3

√
1−∏n

i=1

(
1−mini

(
ϕL
Li

)3
)ξiσi

≤ 3

√
1−∏n

i=1

(
1−

(
ϕL
Li

)3
)ξiσi

≤ 3

√
1−∏n

i=1

(
1−maxi

(
ϕL
Li

)3
)ξiσi

;

3

√
1−∏n

i=1

(
1−mini

(
ϕU
Li

)3
)ξiσi

≤ 3

√
1−∏n

i=1

(
1−

(
ϕU
Li

)3
)ξiσi

≤ 3

√
1−∏n

i=1

(
1−maxi

(
ϕU
Li

)3
)ξiσi

;

∏n
i=1 maxi

(
ψL
Li

)ξiσi ≤ ∏n
i=1

(
ψL
Li

)ξiσi ≤ ∏n
i=1 mini

(
ψL
Li

)ξiσi
;

∏n
i=1 maxi

(
ψU
Li

)ξiσi ≤ ∏n
i=1

(
ψU
Li

)ξiσi ≤ ∏n
i=1 mini

(
ψU
Li

)ξiσi
;

∏n
i=1 maxi

(
ϕLi

)ξiσi ≤ ∏n
i=1
(

ϕLi

)ξiσi ≤ ∏n
i=1 mini

(
ϕLi

)ξiσi ;
3

√
1−∏n

i=1

(
1−mini

(
ψLi

)3
)ξiσi ≤ 3

√
1−∏n

i=1

(
1−

(
ψLi

)3
)ξiσi ≤ 3

√
1−∏n

i=1

(
1−maxi

(
ψLi

)3
)ξiσi



Symmetry 2023, 15, 260 13 of 26

which implies that

mini

(
ϕL
Li

)3
≤ 3

√
1−∏n

i=1

(
1−

(
ϕL
Li

)3
)ξiσi

≤ maxi

(
ϕL
Li

)3
;

mini

(
ϕU
Li

)3
≤ 3

√
1−∏n

i=1

(
1−

(
ϕU
Li

)3
)ξiσi

≤ maxi

(
ϕU
Li

)3
;

maxi

(
ψL
Li

)
≤ ∏n

i=1

(
ψL
Li

)ξiσi ≤ mini

(
ψL
Li

)
;

maxi

(
ψU
Li

)
≤ ∏n

i=1

(
ψU
Li

)ξiσi ≤ mini

(
ψU
Li

)
;

maxi
(

ϕLi

)
≤ ∏n

i=1
(

ϕLi

)ξiσi ≤ mini
(

ϕLi

)
;

mini
(
ψLi

)3 ≤ 3

√
1−∏n

i=1

(
1−

(
ψLi

)3
)ξiσi ≤ maxi

(
ψLi

)3.

Thus, L− ≤ CCFFWA(L1, L2, . . . ,Ln) ≤ L+. �

Property 4. For the CCFFNs L1, L2, . . . , Lp and L̃ =
(
〈
[

ϕ̃L
L̃, ϕ̃U

L̃

]
,
[
ψ̃L
L̃, ψ̃U

L̃

]
〉, 〈ϕ̃L̃, ψ̃L̃〉

)
,

we have

CCFFWA
(
L1L̃ ⊕ L2L̃ ⊕ . . .⊕LpL̃

)
= CCFFWA

(
L1,L2, . . . ,Lp

)
⊕ L̃.

Proof. Straightforward. �

Property. 5. For a positive real number ζ, we have

CCFFWA
(
ζL1, ζ L2, . . . , ζLp

)
= ζCCFFWA

(
L1, L2, . . . ,Lp

)
.

Proof. Straightforward. �

3.2.2. Ordered weighted Averaging Operator

Definition. 17. A CCFFOWA is a mapping defined as CCFFOWA : Γn → Γ on a collection of
CPFNs Li, (i = 1, 2, . . . p) as follows

CCFFOWA
(
L1, L2, . . . , Lp

)
= ξ1σ1Lδ(1) ⊕ ξ2σ2βδ(2) ⊕ . . .⊕ ξpσpLσ(p) (17)

where δ is a permutation of (1, 2, . . . , n), such that Lδ(i−1) ≥ Li for i = 1, 2, . . . , p and
ξ = (ξ1, ξ2 . . . , ξn)

T is its weight vector, such that ξ � 0 and ∑
p
i=1 ξi = 1 with confidence

levels 0 ≤ σi ≤ 1. Furthermore, the ith largest CFFN among L′is is Lδ(i).

Theorem. 4. The value obtained by using the CCFFOWA operator for CFFNs Li (i = 1, 2, . . . , p)
is again a CFFN and given by

CCFFWA(L1, L2, . . . ,Ln) =


〈


3

√
1−∏

p
i=1

(
1−

(
ϕL
Lδ(i)

)3
)ξiσi

,

3

√
1−∏

p
i=1

(
1−

(
ϕU
Lδ(i)

)3
)ξiσi

,

∏
p
i=1

(
ψL
Lδ(i)

)ξiσi
,

∏
p
i=1

(
ψU
Lδ(i)

)ξiσi

〉,

〈∏p
i=1

(
ϕLδ(i)

)ξiσi
, 3

√
1−∏

p
i=1

(
1−

(
ψLδ(i)

)3
)ξiσi

〉


. (18)

Proof. Similar proof as Theorem 3. �
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Example 2. Let L1 = (〈[0.3, 0.4], [0.2.0.3], (0.2, 0.6)〉; 0.5), L2 =
(〈[0.4, 0.5], [0.3.0.4], (0.6, 0.2)〉; 0.4), and L3 = (〈[0.6, 0.7], [0.5.0.6], (0.4, 0.3)〉; 0.7) be three
CFFNs with confidence levels, and ξ = (0.5, 0.3, 0.2) be their corresponding weight vector. By
using Equations (10) and (11) to calculate the score values of each CFFN it follows that

sc(L1) =
(0.3)3+(0.4)3−(0.2)3−(0.3)3

2 +
(
(0.6)3 − (0.2)3) = 0.2360;

sc(L2) =
(0.4)3+(0.5)3−(0.3)3−(0.4)3

2 +
(
(0.2)3 − (0.6)3) = −0.1590;

sc(L3) =
(0.6)3+(0.7)3−(0.5)3−(0.6)3

2 +
(
(0.3)3 − (0.4)3) = 0.0720.

The order of these CFFNs with respect to score values is L1 � L3 � L2.
Arrange these CFFNs with respect to score values, i.e.,

L1 = (〈[0.3, 0.4], [0.2.0.3], (0.2, 0.6)〉; 0.5),L3 = (〈[0.6, 0.7], [0.5.0.6], (0.4, 0.3)〉; 0.7);

and
L2 = (〈[0.4, 0.5], [0.3.0.4], (0.6, 0.2)〉; 0.4).

Therefore, Lδ(1) = L1, Lδ(2) = L3, and Lδ(3) = L2.
Now, we have

3

√
1−∏3

i=1

(
1−

(
ϕL
Lδ(i)

)3
)ξiσi

=

(
1−

((
1− (0.3)3)(0.5)(0.5) ×

(
1− (0.6)3)(0.3)(0.7)

×
(
1− (0.4)3)(0.2)(0.4)

))1/3

= 0.3942;

3

√
1−∏3

i=1

(
1−

(
ϕU
Lδ(i)

)3
)ξiσi

=

(
1−

((
1− (0.4)3)(0.5)(0.5) ×

(
1− (0.7)3)(0.3)(0.7)

×
(
1− (0.5)3)(0.2)(0.4)

))1/3

= 0.4777;

∏3
i=1

(
ψL
Lδ(i)

)ξiσi
= (0.2)(0.5)(0.5) × (0.5)(0.3)(0.7) × (0.3)(0.2)(0.4) = 0.5251;

∏3
i=1

(
ψL
Lδ(i)

)ξiσi
= (0.3)(0.5)(0.5) × (0.6)(0.3)(0.7) × (0.4)(0.2)(0.4) = 0.6178;

∏
p
i=1

(
ϕLδ(i)

)ξiσi
= (0.2)(0.5)(0.5) × (0.4)(0.3)(0.7) × (0.6)(0.2)(0.4) = 0.5296;

3

√
1−∏

p
i=1

(
1−

(
ψLδ(i)

)3
)ξiσi

=

(
1−

((
1− (0.6)3)(0.5)(0.5) ×

(
1− (0.3)3)(0.3)(0.7)

×
(
1− (0.2)3)(0.2)(0.4)

))1/3

= 0.4021.

Hence,

CCFFOWA(L1, L2,L3) =

(
〈[0.3942, 0.4777], [0.5251.0.6178]〉,

〈0.5296, 0.4021〉

)
.

3.2.3. Geometric Operator

Definition 18. A CCFFWG operator is a mapping CCFFWG : Γn → Γ defined as

CCFFWG
(
L1, L2, . . . ,Lp

)
= w1L1 ⊗w2L2 ⊗ . . .⊗wpLp (19)

where Ω is the collection of CPFNs Li(i = 1, 2, . . . , p), and ξ =
(
ξ1, ξ2, . . . , ξp

)T is the weight
vector of Li such that ξi � 0 and ∑n

i=1 ξi = 1. We also set, σp be the confidence levels of CFFN Lp.

Theorem 5. For L1, L2, . . . ,Ln, the value obtained by CCFFWG is a CFFN, which is determined by
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CCFFWG(L1, L2, . . . ,Ln) =


〈

∏
p
i=1

(
ϕL
Li

)ξiσi
,

∏
p
i=1

(
ϕU
Li

)ξiσi

,


3

√
1−∏

p
i=1

(
1−

(
ψL
Li

)3
)ξiσi

,

3

√
1−∏

p
i=1

(
1−

(
ψU
Li

)3
)ξiσi

〉,
〈 3

√
1−∏

p
i=1

(
1−

(
ϕLi

)3
)ξiσi

, ∏
p
i=1

(
ψLi

)ξiσi 〉


. (20)

Proof. Similar to Theorem 3, therefore omitted here. �

Example 3. Let L1 = (〈[0.4, 0.6], [0.3.0.7], (0.3, 0.5)〉; 0.8), L2
= (〈[0.5, 0.6], [0.4.0.5], (0.2, 0.4)〉; 0.7), and L3 = (〈[0.2, 0.3], [0.4.0.5], (0.7, 0.2〉); 0.6) be three
CFFNs with confidence levels and ξ = (0.25, 0.35, 0.4) be their corresponding weight vector then

∏3
i=1

(
ϕL
Li

)ξiσi
= (0.4)(0.25)(0.8) × (0.5)(0.35)(0.7) × (0.2)(0.4)(0.6) = 0.4774;

∏3
i=1

(
ϕL
Li

)ξiσi
= (0.6)(0.25)(0.8) × (0.6)(0.35)(0.7) × (0.3)(0.4)(0.6) = 0.5967;

3

√
1−∏3

i=1

(
1−

(
ψL
Li

)3
)ξiσi

=

(
1−

((
1− (0.3)3)(0.25)(0.8) ×

(
1− (0.4)3)(0.35)(0.7)

×
(
1− (0.4)3)(0.4)(0.6)

)) 1
3

= 0.3328;

3

√
1−∏3

i=1

(
1−

(
ψU
Li

)3
)ξiσi

=

(
1−

((
1− (0.7)3)(0.25)(0.8) ×

(
1− (0.5)3)(0.35)(0.7)

×
(
1− (0.5)3)(0.4)(0.6)

)) 1
3

= 0.5171;

3

√
1−∏

p
i=1

(
1−

(
ϕLi

)3
)ξiσi

=

(
1−

((
1− (0.3)3)(0.25)(0.8) ×

(
1− (0.2)3)(0.35)(0.7)

×
(
1− (0.7)3)(0.4)(0.6)

)) 1
3

= 0.4682 :

∏
p
i=1

(
ψLi

)ξiσi = (0.5)(0.25)(0.8) × (0.4)(0.35)(0.7) × (0.2)(0.4)(0.6) = 0.4727.

Hence, we have

CCFFWG(L1, L2,L3) =

(
〈[0.4774, 0.5967], [0.3328, 0.5171]〉,

〈0.4682, 0.4727〉

)
.

3.2.4. Ordered Weighted Geometric Operator

Definition 19. A CPFOWG is a mapping CPFOWG : Γn → Γ defined over a collection of
CCFFNs Li with confidence levels σi (i = 1, 2, . . . p) as follows

CCFFOWG
(
L1, L2, . . . , Lp

)
= σIξ1Lσ(1) ⊗ σ2ξ2Lσ(2) ⊗ . . .⊗ σpξpLδ(p) (21)

where δ is a permutation of (1, 2, . . . , p), such that Lδ(i−1) ≥ Li for i = 1, 2, . . . , n and

ξ =
(
ξ1, ξ2 . . . , ξp

)T is its weight vector, such that ξ � 0 and ∑n
i=1 ξi = 1. Moreover, the

ith largest CFFN among Lis is Lδ(i).

Theorem 6. The value obtained by using the CPFOWG operator for CFFNs Li (i = 1, 2, . . . , p) is
again a CFFN and given by
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CCFFWG(L1, L2, . . . ,Ln) =


〈

∏
p
i=1

(
ϕL
Lδ(i)

)ξiσi
,

∏
p
i=1

(
ϕU
Lδ(i)

)ξiσi

,


3

√
1−∏

p
i=1

(
1−

(
ϕL
Lδ(i)

)3
)ξiσi

,

3

√
1−∏

p
i=1

(
1−

(
ϕU
Lδ(i)

)3
)ξiσi

〉,

〈 3

√
1−∏

p
i=1

(
1−

(
ϕLδ(i)

)3
)ξiσi

, ∏
p
i=1

(
ψLδ(i)

)ξiσi 〉


. (22)

Theorem 7. Let Li(i = 1, 2, . . . , p), and ξ =
(
ξ1, ξ2, . . . , ξp

)T be the weight vector of Li such
that ξi � 0 and ∑

p
i=1 ξi = 1, then we have

1. CCFFWA
(
Lc

1, Lc
2, . . . ,Lc

p

)
=
(
CPFWG

(
L1, L2, . . . ,Lp

))c;

2. CCFFWG
(
Lc

1, Lc
2, . . . ,Lc

p

)
=
(
CPFWA

(
L1, L2, . . . ,Lp

))c.

Proof. Since Li =
(
〈
[
ϕL
Li

, ϕU
Li

]
,
[
ψL
Li

,ψU
Li

]
〉, 〈ϕLi , ψLi

〉
)

and

Lc
i =

(
〈
[
ψL
Li

,ψU
Li

]
,
[
ϕL
Li

, ϕU
Li

]
〉, 〈ψLi

, ϕLi〉
)

, then using Equation (17), we have

CCFFWA
(
Lc

1, Lc
2, . . . ,Lc

p

)
=


〈

 ∏n
i=1

(
ψL
Li

)ξiσi
,

∏n
i=1

(
ψL
Li

)ξiσi

,


3

√
1−∏n

i=1

(
1−

(
ϕL
Li

)2
)ξiσi

,

3

√
1−∏n

i=1

(
1−

(
ϕL
Li

)2
)ξiσi

〉,
〈 3

√
1−∏n

i=1

(
1−

(
ψLi

)2
)ξiσi

, ∏n
i=1
(

ϕLi

)ξiσi 〉


=
(
CCFFWG

(
L1, L2, . . . ,Lp

))c.

Similarly, we can prove that CCFFWG
(
Lc

1, Lc
2, . . . ,Lc

p

)
=
(
CCPFWA

(
L1, L2, . . . ,Lp

))c.
�

Theorem 8. Let Li(i = 1, 2, . . . , p), and ξ =
(
ξ1, ξ2, . . . , ξp

)T be the weight vector of Li such
that ξi � 0 and ∑

p
i=1 ξi = 1, then we have

CCFFWG
(
L1, L2, . . . ,Lp

)
≤ CCFFWA

(
L1, L2, . . . ,Lp

)
(23)

Proof. Easy to prove. �

Definition. 20. For the CFFNs Li (i = 1, 2, . . . , p) the operator CCFFHA : Γn → Γ is given as

CCFFHA
(
L1, L2, . . . ,Lp

)
= σ1ξ1

.
Lσ(1) ⊕ σ2ξ2

.
Lσ(2) ⊕ . . .⊕ σpξp

.
Lσ(p) (24)

where, ξ =
(
ξ1, ξ2, . . . , ξp

)T be the weight vector, such that ξi � 0 and ∑n
i=1 ξi = 1 and

.
Li
′s( .

Li = nζiLi

)
is

.
Lσ(i), where n is the number of CPFNs and η =

(
η1, η2, . . . , ηp

)T is the vector

corresponding to Li with ζi � 0 and ∑
p
i=1 ζi = 1.

Theorem. 9. The value obtained using the CCFFHA operator for the CFFNs Li (i = 1, 2, . . . , p)
is again a CFFN and given by
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CCFFHA(L1, L2, . . . ,Ln) =


〈


3

√
1−∏

p
i=1

(
1−

( .
ϕ

L
Lδ(i)

)2
)ξiσi

,

3

√
1−∏

p
i=1

(
1−

( .
µ

U
Lδ(i)

)2
)ξiσi

,

∏n
i=1

(
.
ψ

L
Lδ(i)

)ξiσi

,

∏n
i=1

(
.
ψ

U
Lδ(i)

)ξiσi

〉

〈∏p
i=1

( .
ϕLδ(i)

)ξiσi
, 3

√
1−∏n

i=1

(
1−

( .
ψLδ(i)

)2
)ξiσi

〉


. (25)

Proof. Easy to prove. �

Example 4. Consider three CPFNs βi (i = 1, 2, 3), such that
L1 = (〈[0.30, 0.50], [0.60, 0.70]〉, 〈0.50, 0.40〉, 0.3), L2 =
(〈[0.60, 0.70], [0.40, 0.50]〉, 〈0.50, 0.60〉, 0.4), and L3 =

(〈[0.70, 0.80], [0.20, 0.40]〉, 〈0.50, 0.40〉, 0.5). Additionally, if η = (0.25, 0.35, 0.40)T is the

weight vector of Li then
.
Li = 3ηiLi =

(
〈
[ .

ϕ
L
Lδ(i)

,
.
ϕ

U
Lδ(i)

]
,
[

.
ψ

L
Lδ(i)

,
.
ψ

U
Lδ(i)

]
〉, 〈 .

ϕLδ(i)
,

.
ψLδ(i)

〉
)

(i = 1, 2, 3) is computed for each CFFN as

.
L1 =

〈
 3

√
1−

(
1− (0.30)3

)3×0.25
,

3
√

1− (1− (0.50)3)
3×0.25

,
[
(0.60)3×0.25,
(0.70)3×0.25

]
〉, 〈

(0.50)3×0.25,
3
√

1− (1− (0.40)3)
3×0.25〉


=

(
〈
[

0.2729,
0.4568

]
,
[

0.6817,
0.7653

]
〉, 〈0.5946,

0.3644
〉
)

;

.
L2 =

〈
 3

√
1−

(
1− (0.60)3

)3×0.35
,

3
√

1− (1− (0.70)3)
3×0.35

,
[
(0.40)3×0.35,
(0.50)3×0.35

]
〉, 〈

(0.50)3×0.35,
3
√

1− (1− (0.60)3)
3×0.35〉


=

(
〈
[

0.6087,
0.7092

]
,
[

0.3821,
0.4830

]
〉, 〈0.4830,

0.6087
〉
)

;

.
L3 =

〈
 3

√
1−

(
1− (0.70)3

)3×0.4
,

3
√

1− (1− (0.80)3)
3×0.4

,
[
(0.20)3×0.4,
(0.40)3×0.4

]
〉, 〈

(0.50)3×0.4,
3
√

1− (1− (0.40)3)
3×0.4〉


=

(
〈
[

0.7343,
0.8326

]
,
[

0.1450,
0.3330

]
〉, 〈0.4353,

0.4241
〉
)

.

The score values of these numbers are calculated as

sc
( .
L1

)
= (0.2729)3+(0.4568)3−(0.6817)3−(0.7653)3

2 −
(
(0.5946)3 − (0.3644)3) = −0.4865;

sc
( .
L2

)
= (0.6087)3+(0.7092)3−(0.3821)3−(0.4830)3

2 −
(
(0.4830)3 − (0.6087)3) = 0.0948;

sc
( .
L3

)
= (0.7343)3+(0.8326)3−(0.1450)3−(0.3330)3

2 −
(
(0.4353)3 − (0.4241)3) = 0.3841.

Thus, sc
( .
L3

)
< sc

( .
L2

)
< sc

( .
L1

)
, which gives

.
βσ(1) =

(
〈
[

0.7343,
0.8326

]
,
[

0.1450,
0.3330

]
〉, 〈0.4353,

0.4241
〉
)

,

.
βσ(2) =

(
〈
[

0.6087,
0.7092

]
,
[

0.3821,
0.4830

]
〉, 〈0.4830,

0.6087
〉
)

,

and
.
βδ(3) =

(
〈
[

0.2729,
0.4568

]
,
[

0.6817,
0.7653

]
〉, 〈0.5946,

0.3644
〉
)

Let ξ = (0.35, 0.4, 0.25) be the position vector, then by using Equation (25), we have
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3

√
1−∏

p
i=1

(
1−

( .
ϕ

L
Lδ(i)

)3
)ξiσi

= 3

√√√√1−
((

1− (0.7343)3)0.35×0.5 ×
(
1− (0.6087)3)0.4×0.4

×
(
1− (0.2729)3)0.25×0.3

)
= 0.4966;

3

√
1−∏n

i=1

(
1−

( .
ϕ

U
σ(i)

)3
)ξiσi

= 3

√√√√1−
((

1− (0.8326)3)0.35×0.5 ×
(
1− (0.7092)3)0.4×0.4

×
(
1− (0.4568)3)0.25×0.3

)
= 0.5891;

∏
p
i=1

(
.
ψ

L
Lδ(i)

)ξiσi

=(0.1450)0.35×0.5(0.3821)0.4×0.4(0.6817)0.25×0.3 = 0.5942;

∏
p
i=1

(
.
ψ

U
Lδ(i)

)ξiσi

=(0.3330)0.35×0.5(0.4830)0.4×0.4(0.7653)0.25×0.3 = 0.7197;

∏
p
i=1

( .
ψLδ(i)

)ξiσi
= (0.4353)0.35×0.5(0.4830)0.4×0.4(0.5946)0.25×0.3 = 0.7401;

3

√
1−∏

p
i=1

(
1−

( .
ψLδ(i)

)3
)ξiσi

= 3

√√√√1−
((

1− (0.4241)3)0.35×0.5 ×
(
1− (0.6087)3)0.4×0.4

×
(
1− (0.3644)3)0.25×0.3

)
= 0.3844.

Therefore,

CCFFHA(L1,L2,L3) =

(
〈
[

0.4966,
0.5891

]
,
[

0.5942,
0.7197

]
〉, 〈0.7401,

0.3844
〉
)

.

4. Decision-Making Approach under Cubic Fermatean Fuzzy Sets with
Confidence Levels

This section presents an MCDM approach to deal with MCDM problems by using
the proposed aggregation operators under a cubic Fermatean fuzzy environment. The
MCDM problem is presented for evaluation with a cubic Fermatean fuzzy environment
with the following presumptions and abbreviations. Let X =

{
X1, X2, . . . , Xp

}
be the

set of m different alternatives which have to be analyzed under the set of q different
criteria C =

{
C1, C2, . . . , Cq

}
. Suppose that all these possibilities are examined by experts,

which provide their choices for each Xi (i = 1, 2, . . . , p), under a cubic Fermatean fuzzy
environment, and that these values can be considered as CFFNs D =

[
dij
]

p×q where

dij =
(
〈
[

ϕL
Lij

, ϕU
Lij

]
,
[
ψL
Lij

, ψU
Lij

]
〉, 〈ϕLij , ψLij〉

)
characterizes the importance values of

alternative Xi given by the decision-maker such that 0 ≤ ϕL
Lij

, ϕU
Lij

, ψL
Lij

, ψU
Lij

, ϕLij , ψLij ≤ 1,[
ϕL
Lij

, ϕU
Lij

]
,
[
ψL
Lij

, ψU
Lij

]
⊆ [0, 1], which satisfy the conditions that

(
ϕU

ij

)3
+
(

ψU
ij

)3
≤ 1

and
(

ϕLij

)3
+
(

ψLij

)3
≤ 1. Let ξ =

(
ξ1, ξ2, . . . , ξp

)
be the weight vector of the criteria such

that ξi � 0 and ∑
p
i=1 ξi = 1. Additionally, let σi be the confidence levels of the CFFNs Li

such that 0 ≤ σi ≤ 1. In order to identify the optimal alternative(s), the presented approach
is divided into the following steps.

Step 1. Arrange the confidence and capability for each alternative Xi in the form
of dij =

(
〈
[

ϕL
Lij

, ϕU
Lij

]
,
[
ψL
Lij

, ψU
Lij

]
〉, 〈ϕLij , ψLij〉

)
. These rating values are expressed as a

decision matrix D as:

D =

X1
X2
...
Xp


d11 d12 . . . d1p
d21

...

d22
...

. . .
. . .

d2p
...

dq1 dq2 . . . dpq

. (26)

Step 2. Convert the cost-type criteria into benefit-type criteria by using the normaliza-
tion formula as given below:
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Table 1. Assessment values of alternatives in terms of CFFNs with confidence levels. 
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𝑿𝟐 ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.45,0.65) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.25,0.45ቃ , ቂ0.15,0.25ቃ ,(0.45,0.55) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.55,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.45) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.55,0.75ቃ , ቂ0.15,0.20ቃ ,(0.35,0.55) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 
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Lij
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]
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[
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Lij

, ψU
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]
〉, 〈ϕLij , ψLij〉

)
; if the benefit− type conditions are met([
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Lij

, ψU
Lij

]
,
[

ϕL
Lij

, ϕU
Lij

]
, 〈νLij , µij〉

)
; if the cost− type conditions are met

(27)

Step 3. Calculate the aggregated value
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(28)

(b) using a CCFFOWA operator
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Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

δ(i1),
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(c) using a CCFFHA operator
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which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

δ(i1),
.
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Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

δ(i2), . . . ,
.

Symmetry 2023, 15, x FOR PEER REVIEW 21 of 26 
 

 

Table 1. Assessment values of alternatives in terms of CFFNs with confidence levels. 

Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.55,0.65ቃ , ቂ0.15,0.25ቃ ,(0.45,0.25) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.40) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.45,0.65) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.25,0.45ቃ , ቂ0.15,0.25ቃ ,(0.45,0.55) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.55,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.45) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.55,0.75ቃ , ቂ0.15,0.20ቃ ,(0.35,0.55) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
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(30)

(d) using a CCFFWG operator
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(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
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i =
(
〈
[

ϕL
Li

, ϕU
Li

]
,
[
ψL
Li

, ψU
Li

]
〉, ϕLi , ψLi

)
= CCFFWG

(

Symmetry 2023, 15, x FOR PEER REVIEW 21 of 26 
 

 

Table 1. Assessment values of alternatives in terms of CFFNs with confidence levels. 

Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.55,0.65ቃ , ቂ0.15,0.25ቃ ,(0.45,0.25) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.40) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.45,0.65) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.25,0.45ቃ , ቂ0.15,0.25ቃ ,(0.45,0.55) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.55,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.45) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.55,0.75ቃ , ቂ0.15,0.20ቃ ,(0.35,0.55) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

i1,
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Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 
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(e) using a CCFFOWG operator
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𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 
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Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 
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Step 4. Compute the collected score values of each alternative as follows:

sc(

Symmetry 2023, 15, x FOR PEER REVIEW 21 of 26 
 

 

Table 1. Assessment values of alternatives in terms of CFFNs with confidence levels. 

Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.55,0.65ቃ , ቂ0.15,0.25ቃ ,(0.45,0.25) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.40) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.45,0.65) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.25,0.45ቃ , ቂ0.15,0.25ቃ ,(0.45,0.55) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.55,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.45) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.55,0.75ቃ , ቂ0.15,0.20ቃ ,(0.35,0.55) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

i) =

(
ϕL
Lij

)3
+
(

ϕU
Lij

)3
−
(

ψL
Lij

)3
−
(

ψU
Lij

)3

2
+
(

ψ3
Lij
− ϕ3

Lij

)
. (33)

If sc
(

Symmetry 2023, 15, x FOR PEER REVIEW 21 of 26 
 

 

Table 1. Assessment values of alternatives in terms of CFFNs with confidence levels. 

Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.55,0.65ቃ , ቂ0.15,0.25ቃ ,(0.45,0.25) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.40) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.45,0.65) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.25,0.45ቃ , ቂ0.15,0.25ቃ ,(0.45,0.55) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.55,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.45) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.55,0.75ቃ , ቂ0.15,0.20ቃ ,(0.35,0.55) 〉 ; 0.7൱ 
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Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 
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𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

i1
)
= sc

(
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i2
)

for any two indices i1 and i2, then compute accuracy values as

ac(
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i) =

(
ϕL
Lij

)3
+
(

ϕU
Lij

)3
+
(

ψL
Lij

)3
+
(

ψU
Lij

)3

2
+
(

ϕ3
Lij

+ ψ3
Lij

)
. (34)

Step 5. By rating all of the alternatives in order of importance of the score values
choose the best alternative.

4.1. Case Study

Inventory management is a major subject these days. From an industrial standpoint,
a corporation cannot achieve targeted levels of manufacturing unless its inventory is
adequately maintained. Therefore, appropriate inventory management is the first stage of
the ladder of suitable levels of production. Any scarcity of raw materials in stock might
cause a disruption of the entire manufacturing process, which would result in a significant
loss for the industry. Suppose a food corporation wishes to monitor different inventory
products. The corporation primarily manufactures four different types of food: drinks (X1),
palm oil (X2), pickles (X3), and sweets (X4). Three factors namely cost price (C1), storage
facilities (C2), and staleness level (C3) must be taken into consideration while deciding
whether to reorder ingredients for making these food products such that ξ = (0.25, 0.35, 0.4)
is the weight vector of these factors. The presented alternatives are examined under these
three factors and their values are scored in terms of CFFNs. In each CFFN, the interval-
valued FFNs (IVFFNs) indicate the current stock level in the inventory, and the FFNs
represent the estimate of agreement and disagreement towards the present stock level for a
coming week. Since the corporation does not sacrifice product quality, reducing staleness
levels is given top attention. The main objective is then to determine the food products
for which the ingredient stock must be reordered frequently. The following steps of the
proposed approach were carried out for it.

Step 1. As described in Table 1, the desired data for each alternative is presented in
CFFNs, and the collection evaluation is provided in a decision matrix.
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Table 1. Assessment values of alternatives in terms of CFFNs with confidence levels.

Alternatives C1 C2 C3

X1

〈
[

0.55,
0.65

]
,
[

0.15,
0.25

]
,

(0.45, 0.25)
〉; 0.4

 〈
[

0.25,
0.35

]
,
[

0.45,
0.55

]
,

(0.35, 0.25)
〉; 0.6

 〈
[

0.45,
0.65

]
,
[

0.25,
0.35

]
,

(0.25, 0.40)
〉; 0.5


X2

〈
[

0.25,
0.35

]
,
[

0.45,
0.55

]
,

(0.45, 0.65)
〉; 0.5

 〈
[

0.20,
0.30

]
,
[

0.35,
0.40

]
,

(0.25, 0.35)
〉; 0.4

 〈
[

0.25,
0.45

]
,
[

0.15,
0.25

]
,

(0.45, 0.55)
〉; 0.6


X3

〈
[

0.55,
0.65

]
,
[

0.25,
0.35

]
,

(0.25, 0.45)
〉; 0.3

 〈
[

0.45,
0.65

]
,
[

0.30,
0.40

]
,

(0.35, 0.45)
〉; 0.3

 〈
[

0.55,
0.75

]
,
[

0.15,
0.20

]
,

(0.35, 0.55)
〉; 0.7


X4

〈
[

0.35,
0.55

]
,
[

0.15,
0.35

]
,

(0.15, 0.35)
〉; 0.5

 〈
[

0.45,
0.60

]
,
[

0.20,
0.25

]
,

(0.35, 0.45)
〉; 0.7

 〈
[

0.45,
0.55

]
,
[

0.25,
0.35

]
,

(0.50, 0.40)
〉; 0.8



Step 2. Using Equation (26), it is possible to derive a normalized decision matrix
which is summarized in Table 2.

Table 2. Normalized decision matrix.

Alternatives C1 C2 C3

X1

〈
[

0.15,
0.25

]
,
[

0.55,
0.65

]
,

(0.25, 0.45)
〉; 0.4

 〈
[

0.25,
0.35

]
,
[

0.45,
0.55

]
,

(0.35, 0.25)
〉; 0.6

 〈
[

0.25,
0.35

]
,
[

0.45,
0.65

]
,

(0.40, 0.25)
〉; 0.5


X2

〈
[

0.45,
0.55

]
,
[

0.25,
0.35

]
,

(0.65, 0.45)
〉; 0.5

 〈
[

0.20,
0.30

]
,
[

0.35,
0.40

]
,

(0.25, 0.35)
〉; 0.4

 〈
[

0.15,
0.25

]
,
[

0.25,
0.45

]
,

(0.55, 0.45)
〉; 0.6


X3

〈
[

0.25,
0.35

]
,
[

0.55,
0.65

]
,

(0.45, 0.25)
〉; 0.3

 〈
[

0.45,
0.65

]
,
[

0.30,
0.40

]
,

(0.35, 0.45)
〉; 0.3

 〈
[

0.15,
0.20

]
,
[

0.55,
0.75

]
,

(0.55, 0.35)
〉; 0.7


X4

〈
[

0.15,
0.35

]
,
[

0.35,
0.55

]
,

(0.35, 0.15)
〉; 0.5

 〈
[

0.45,
0.60

]
,
[

0.20,
0.25

]
,

(0.35, 0.45)
〉; 0.7

 〈
[

0.25,
0.35

]
,
[

0.45
, 0.55

]
,

(0.40, 0.50)
〉; 0.8



Step 3. Aggregate the values of Table 2 with the proposed operators:

(a) Using Equation (28) we get
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𝑿𝟑 ൭〈ቂ0.55,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.45) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.55,0.75ቃ , ቂ0.15,0.20ቃ ,(0.35,0.55) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

1 = (〈[0.1892, 0.2685], [0.6790, 0.7751]〉, (0.5814, 0.2514));
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𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

2 = (〈[0.2398, 0.3104], [0.5205, 0.6369]〉, (0.6761, 0.3425));
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4 = (〈[0.3053, 0.4237], [0.4579, 0.5457]〉, (0.5058, 0.4008)).

(b) Using Equation (29) we get
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Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 
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𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

1 = (〈[0.1757, 0.2536], [0.6941, 0.7895]〉, (0.5603, 0.2904));
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𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 
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2 = (〈[0.2773, 0.3507], [0.5100, 0.6239]〉, (0.7056, 0.3493));
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(b) Using Equation (29) we get 
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3 = (〈[0.2855, 0.4200], [0.5999, 0.6988]〉, (0.6441, 0.4218));
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(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

4 = (〈[0.2766, 0.3923], [0.5368, 0.6297]〉, (0.5933, 0.3195)).

(c) Using Equation (30) we get
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Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

1 = (〈[0.4724, 0.5803], [0.4016, 0.5234]〉, (0.2971, 0.5310));
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𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

2 = (〈[0.4612, 0.5723], [0.2154, 0.3146]〉, (0.4333, 0.6352));
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𝑿𝟑 ൭〈ቂ0.55,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.45) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.55,0.75ቃ , ቂ0.15,0.20ቃ ,(0.35,0.55) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

3 = (〈[0.4321, 0.5276], [0.2311, 0.3214]〉, (0.4523, 0.5876));
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𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

4 = (〈[0.5889, 0.6794], [0.4023, 0.3367]〉, (0.4429, 0.6054)).
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(d) Using Equation (31) we get
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𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

1 = (〈[0.4686, 0.5661], [0.3820, 0.5012]〉, (0.2873, 0.5230));
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𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

2 = (〈[0.4582, 0.5621], [0.2277, 0.3331]〉, (0.4352, 0.6450));
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𝑿𝟑 ൭〈ቂ0.55,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.45) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.55,0.75ቃ , ቂ0.15,0.20ቃ ,(0.35,0.55) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

3 = (〈[0.4872, 0.5629], [0.2746, 0.3829]〉, (0.3932, 0.7646));
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𝑿𝟑 ൭〈ቂ0.55,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.45) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.55,0.75ቃ , ቂ0.15,0.20ቃ ,(0.35,0.55) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.35,0.55ቃ , ቂ0.15,0.35ቃ ,(0.15,0.35) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.50,0.40) 〉 ; 0.8൱ 

Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

4 = (〈[0.4163, 0.5530], [0.3341, 0.4333]〉, (0.3323, 0.5197)).

(e) Using Equation (32) we get
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Alternatives 𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.55,0.65ቃ , ቂ0.15,0.25ቃ ,(0.45,0.25) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.25,0.35ቃ ,(0.25,0.40) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.45,0.65) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.25,0.45ቃ , ቂ0.15,0.25ቃ ,(0.45,0.55) 〉 ; 0.6൱ 
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Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

1 = (〈[0.3390, 0.4463], [0.4369, 0.5695]〉, (0.3109, 0.4437));
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Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

2 = (〈[0.3665, 0.4768], [0.2426, 0.3644]〉, (0.5061, 0.5586));
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Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

3 = (〈[0.3768, 0.4715], [0.3237, 0.4366]〉, (0.4268, 0.6303));
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Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

4 = (〈[0.4092, 0.5759], [0.2921, 0.4118]〉, (0.3191, 0.4462)).

Step 4. Compute the score values by using Equation (33); the results are listed in
Table 3.

Table 3. Score values and ranking order of alternatives with different operators.

Operators sc(
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Step 2. Using Equation (26), it is possible to derive a normalized decision matrix 
which is summarized in Table 2. 

Table 2. Normalized decision matrix. 

Alternatives  𝑪𝟏 𝑪𝟐 𝑪𝟑 𝑿𝟏 ൭〈ቂ0.15,0.25ቃ , ቂ0.55,0.65ቃ ,(0.25,0.45) 〉 ; 0.4൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.55ቃ ,(0.35,0.25) 〉 ; 0.6൱ ൭〈ቂ0.25,0.35ቃ , ቂ0.45,0.65ቃ ,(0.40,0.25) 〉 ; 0.5൱ 

𝑿𝟐 ൭〈ቂ0.45,0.55ቃ , ቂ0.25,0.35ቃ ,(0.65,0.45) 〉 ; 0.5൱ ൭〈ቂ0.20,0.30ቃ , ቂ0.35,0.40ቃ ,(0.25,0.35) 〉 ; 0.4൱ ൭〈ቂ0.15,0.25ቃ , ቂ0.25,0.45ቃ ,(0.55,0.45) 〉 ; 0.6൱ 

𝑿𝟑 ൭〈ቂ0.25,0.35ቃ , ቂ0.55,0.65ቃ ,(0.45,0.25) 〉 ; 0.3൱ ൭〈ቂ0.45,0.65ቃ , ቂ0.30,0.40ቃ ,(0.35,0.45) 〉 ; 0.3൱ ൭〈ቂ0.15,0.20ቃ , ቂ0.55,0.75ቃ ,(0.55,0.35) 〉 ; 0.7൱ 

𝑿𝟒 ൭〈ቂ0.15,0.35ቃ , ቂ0.35,0.55ቃ ,(0.35,0.15) 〉 ; 0.5൱ ൭〈ቂ0.45,0.60ቃ , ቂ0.20,0.25ቃ ,(0.35,0.45) 〉 ; 0.7൱ ൭〈ቂ0.25,0.35ቃ , ൤ 0.45, 0.55൨ ,(0.40,0.50) 〉 ; 0.8൱ 

Step 3. Aggregate the values of Table 2 with the proposed operators: 

(a) Using Equation (28) we get  

𝓇      ଵ = ൫〈[0.1892,0.2685], [0.6790,0.7751]〉, (0.5814,0.2514)൯; 
𝓇ଶ = ൫〈[0.2398,0.3104], [0.5205,0.6369]〉, (0.6761,0.3425)൯; 
𝓇ଷ = ൫〈[0.2295,0.3376], [0.5715,0.7032]〉, (0.7135,0.5335)൯; 
𝓇ସ = ൫〈[0.3053,0.4237], [0.4579,0.5457]〉, (0.5058,0.4008)൯. 

 

(b) Using Equation (29) we get 

𝓇ଵ = ൫〈[0.1757,0.2536], [0.6941,0.7895]〉, (0.5603,0.2904)൯; 
𝓇ଶ = ൫〈[0.2773,0.3507], [0.5100,0.6239]〉, (0.7056,0.3493)൯; 
𝓇ଷ = ൫〈[0.2855,0.4200], [0.5999,0.6988]〉, (0.6441,0.4218)൯; 

1) sc(
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4) Ranking

CCFFWA −0.5569 −0.4467 −0.4533 −0.1420 X4 � X2 � X3 � X1
CCFFOWA −0.5538 −0.4202 −0.4221 −0.3376 X4 � X2 � X3 � X1
CCFFHA 0.1698 0.1971 0.2014 0.3423 X4 � X2 � X3 � X1
CCFFWG 0.1650 0.2948 0.1707 0.4732 X4 � X2 � X3 � X1

CCFFOWG −0.0128 0.1932 0.0922 0.2387 X4 � X2 � X3 � X1

Step 5. Rankings of all the alternatives based on the score values and ordering are
listed in the last column of Table 3. From this analysis, it is seen that X4 is the best one
among the others.

4.2. Validity Tests

To illustrate the feasibility of the proposed strategy in a multitude of environments,
we used testing procedures defined by Wang and Trianaphyllou [31] as follows:

Test 1. If we replace the rating values of the non-optimal alternatives with those of a
worse alternative, the best alternative should remain stable as long as the relative weighted
criteria remain fixed.

Test 2. The procedure should be transitive.
Test 3. When a specific problem is separated into smaller ones while the same decision-

making approach is used, the aggregated ranking of the alternatives should be equivalent
to the original ranking.

Validity test using criterion 1
The ranking order of alternatives obtained by the proposed approach is

X4 � X2 � X3 � X1. To test the corresponding nature of the proposed approach
by test criterion 1, the non-optimal alternative X1 was replaced with the worst alter-
native X∗1 where rating values of X∗1 were assumed to be ([〈0.1, 0.2], [0.6, 0.7], (0.2, 0.6)〉),
(〈[0.2, 0.3], [0.5, 0.6], (0.3, 0.5)〉), and (〈[0.25, 0.35], [0.3, 0.4], (0.1, 0.5)〉). Following the ob-
servations, the presented approach was used, and the aggregated score values of the
alternatives were sc(X1) = 0.1606, sc

(
X∗1
)
= 0.0031, sc(X3) = 0.3676, and sc(X4) = 0.3646.

As a result, the ranking order was X4 � X3 � X1 � X∗1 with the best alternative remaining
the same as in the proposed approach. Thus, the presented approach yielded consistent
findings in term of test criterion 1.

Validity test using criteria 2 and 3
For testing validity according to criteria 2 and 3, the fragmented decision-making sub-

cases are taking as {X1, X2, X4}, {X2, X3, X4}, and {X2, X3, X1}. Then, using the described
process, their rank order is as follows: X4 � X2 � X1, X4 � X2 � X3 and X2 � X3 � X1,
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for criterion 2 and 3, respectively. When all of the results are combined, the overall ranking
is X4 � X2 � X3 � X1 which is the same as the outcomes of the original decision-making
approach. Hence, our proposed approach is valid under test criteria 2 and 3.

4.3. Comparative Analysis

In the literature, there are numerous types of fuzzy sets that are used for specific
situations based on their properties. The fuzzy sets, intuitionistic fuzzy sets, Pythagorean
fuzzy sets, and Fermatean fuzzy sets are some of the most popular sets of fuzzy set theory.
Cubic Fermatean fuzzy sets with confidence levels are an innovative variation of the fuzzy
set theory that we introduce in this study. Table 4 compares each of these fuzzy sets with
respect to a number of attributes. Each of them has a graded membership value and the
capacity to describe uncertainty across multiple attributes.

Table 4. Different type of fuzzy sets and their features.

Characteristics
Different Types of Fuzzy Sets

Fuzzy Set IFS PFS FFS CFFS CFFSCL

Membership
value X X X X X X

Describe
ambiguity MG MG and NMG MG and NMG MG and NMG MG and NMG

MG and NMG
with confidence

levels

Unknown
parameters × × × × × X

Ability of
multi-attribute

modeling
X X X X X X

Modeling of
increasing

uncertainty
× × × × × X

Taking
reluctance into
account while

making
decisions

× X × X × X

Abbreviations: IFS: intuitionistic fuzzy set; PFS: Pythagorean fuzzy set; FFS: Fermatean fuzzy set; CFFS: Cubic
Fermatean fuzzy set; CFFSCL: Cubic Fermatean fuzzy set with confidence levels; MG: membership grade;
NMG: Non-membership grade.

4.4. Comparison with Some Existing Approaches

An evaluation was conducted to examine the performance of the new method com-
pared to existing approaches [23,27,28,32] in the context of CPFSs and CIFSs. Sacrific-
ing flexibility, we examined the situation by using the weight of decision-makers as
ξ = (0.25, 0.35, 40) which allows for the existing approaches to be used with the origi-
nal dataset. The results obtained with different methods are summarized in Table 5 and
we conclude that the ranking order of the given alternatives is X4 � X2 � X3 � X1, hence
the best alternative is X4 which coincides with the proposed approach results given in
Table 3, which validates the stability of our approach. Furthermore, the structure of the
relative score values follows the same pattern, demonstrating that the presented approach
is conservative in nature.
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Table 5. Comparison with existing studies.

Existing
Approaches sc(X1) sc(X2) sc(X3) sc(X4) Ranking Order

Garg and Kaur [32] −0.6294 −0.4567 −0.5321 −0.2310 X4 � X2 � X3 � X1
Amin et al. [27] −0.7312 −0.5438 −0.4877 −0.3421 X4 � X2 � X3 � X1
Rahim et al. [28] −0.3643 −0.3241 −0.3575 −0.2783 X4 � X2 � X3 � X1

Kaur and Garg [23] −0.5666 −0.4763 −0.5198 −0.3417 X4 � X2 � X3 � X1

According to the comparative study described above, the presented strategy for
handling decision-making problems has significant improvements over existing ones.

(1) Cubic Fermatean fuzzy sets are a new development in fuzzy set theory, which can
handle the uncertainty more accurately in real situations. Therefore, the proposed
approach is more suitable than existing approaches to solve real-life and engineering
decision problems.

(2) Furthermore, Table 4 demonstrates that the findings calculated using the different
available methods are performed without taking the confidence levels of the attributes
into account throughout the analysis. In other words, all of these techniques exam-
ined their theories on the premise that decision-makers are completely confident
in the analyzed objects. However, in practice these sorts of prerequisites are only
partially met.

(3) The existing aggregation operators are a special case of the presented operators. As
a result, we conclude that the presented aggregation operators are more general in
nature and more appropriate to solve real-world issues than the existing ones.

5. Conclusions

The main purpose of this research was to modify the existing operational laws of
cubic Fermatean fuzzy sets, and propose a number of aggregation operators by taking
into account the degree of confidence levels of each decision-maker during evaluation.
Previously, all decision-makers were considered to express their opinions of numerous
alternatives with a same level of certainty. However, this issue has been solved in the
current article by factoring in the decision- maker’s confidence levels. We introduced a
number of aggregating operators under the cubic Fermatean fuzzy framework, including
CCFFWA, CCFFOWA, CCFFWG, and CCFFHA, by taking confidence levels into account.
A few significant traits of each were also described. Additionally, the standard cubic
Fermatean fuzzy weighted averaging and cubic Fermatean fuzzy weighted geometric
operators were transformed into the provided aggregation operators when σ = 1 for all
preferences. A comparison with several existing operators was performed to show that the
provided operators offer a reducible approach to the MCDM problem.

Future research may further develop the outlined technique to support a wider range
of applications and address a variety of uncertain programming difficulties, such as K-
mean clustering [33] and fuzzy controllers [34,35]. The application will also be expanded
to include neural networks and convolutional networks [36–39].
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