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Abstract: In this paper, we introduce a new type of synchronization for the fractional order (FO)
hyperchaotic models with different orders called compound-combination synchronization (CCS).
Using the tracking control method, a theorem to calculate the analytical controllers which achieve our
proposed synchronization is described and proved. We introduce, also, the FO hyperchaotic complex
Lü, Chen, and Lorenz models with complex periodic forcing. The symmetry property is found in the
FO hyperchaotic complex Lü, Chen, and Lorenz models. These hyperchaotic models are found in
many areas of applied sciences, such as physics and secure communication. These FO hyperchaotic
models are used as an example for our proposed synchronization. The numerical simulations show
a good agreement with the analytical results. The complexity and existence of additional variables
mean that it is safer and interesting to transmit and receive signals in communication theory. The
proposed scheme of synchronization is considered a generalization of many types in the literature
and other examples can be found in similar studies.

Keywords: compound-combination synchronization; fractional order; tracking control; hyperchaotic;
symmetry

1. Introduction

During recent decades, fractional calculus has been used in a broad area of applications,
including chaotic models [1–5], signal processing [6,7], fluid mechanics [8,9], and biological
population models [10,11]. FO derivatives provide an excellent instrument to describe
memory and the inherited properties of various materials and processes compared to
integer-order derivatives [12]. Therefore, modeling with FO derivatives may be more
accurate than modeling with integer-order derivatives. Many models have chaotic and
hyperchaotic solutions in fractional calculus, such as chaotic neural networks models [13],
hyperchaotic complex Duffing–van der Pol models [14] and chaotic generalized fractional
Lü and Lorenz models [15], etc. For other models see [16–20].

Chaos synchronization has begun to receive increasing attention and has become an
interesting problem due to its potential applications in secure communication and control
processing. Many control methods, including the adaptive control scheme [21], adaptive
back-stepping technique [22], active control method [23], sliding mode control scheme [24],
and tracking control method [25], have been developed for chaos synchronization for FO
calculus. Furthermore, many types of synchronization for FO calculus, such as combina-
tion synchronization between three hyperchaotic FO models, have been investigated [26].
Mahmoud et al. introduced combination–combination synchronization among four chaotic
FO models [27], while Sun et al. illustrated compound synchronization among four chaotic
FO models [28]. Different kinds of modulus–modulus synchronization were investigated
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by Mahmoud et al. [29]. In this paper, we introduce a new type of synchronization (syn-
chronization between three master models and two slave models) for the FO hyperchaotic
models, which has possible applications in modeling FO hyperchaotic circuits, such as the
hyperchaotic models in [30–32].

There also exist interesting cases of complex dynamical models [33–37], which have
many applications in many important fields of physics and engineering. Many hyperchaotic
complex Lü models with complex periodic forcing are introduced in [35], for examples the
following three models:

ẋ1 = a1(y1 − x1) + k1(1 + i)cosw1t,

ẏ1 = c1y1 − x1z1,

ż1 =
1
2
(x1ȳ1 + x̄1y1)− b1z1,

(1)

ẋ2 = a2(y2 − x2),

ẏ2 = c2y2 − x2z2 + k2(1 + i)sinw2t,

ż2 =
1
2
(x2ȳ2 + x̄2y2)− b2z2,

(2)

ẋ3 = a3(y3 − x3) + k3exp(jw3t),

ẏ3 = c3y3 − x3z3,

ż3 =
1
2
(x3ȳ3 + x̄3y3)− b3z3,

(3)

where ai, bi,, ci, wi, and ki; i = 1, 2, 3 are positive parameters, xi = xi1 + jxi2, yi = xi3 + jxi4,
zi = xi5; j =

√
−1 are the state variables for models (1)–(3), respectively.

Mahmoud et al. introduced the complex Chen model with complex periodic forcing [36]
and the complex Lorenz model with complex periodic forcing [37] as:

ẋ4 = a4(y4 − x4) + k4(1 + i)cosw4t,

ẏ4 = (c4 − a4)x4 + c4y4 − x4z4,

ż4 =
1
2
(x4ȳ4 + x̄4y4)− b4z4,

(4)

ẋ5 = a5(y5 − x5) + k5exp(jw5t),

ẏ5 = c5x5 − y5 − x5z5,

ż5 =
1
2
(x5ȳ5 + x̄5y5)− b5z5,

(5)

where al , bl ,, cl , wl , and kl ; l = 4, 5 are positive parameters, xl = y(l−3)1 + jy(l−3)2,
yl = y(l−3)3 + jy(l−3)4, zl = y(l−3)5, are the state variables for models (4) and (5), re-
spectively. The models (1)–(5) without periodic forcing are symmetric.

The aims of this paper are: (1) propose a scheme for the CCS between three master
and two slave FO hyperchaotic models with different orders using the tracking control
method. (2) A theorem to calculate the analytical controllers which achieve our proposed
synchronization is stated and proved. (3) We stated special cases of our synchronization
which give other kinds of synchronization [26–28]. (4) The FO hyperchaotic complex Lü,
Chen and Lorenz models with complex periodic forcing are introduced. (5) As an example
for our proposed synchronization, we used the FO hyperchaotic complex Lü, Chen, and
Lorenz models. (6) The numerical simulation results verify the feasibility of the proposed
CCS scheme.

The rest of this paper is organized as follows. Section 2 defines CCS for five FO
hyperchaotic models with different orders. In Section 3, the CCS for five identical FO
hyperchaotic models is investigated by tracking control method and the FO stability theory.
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In Section 4, we introduce the FO hyperchaotic complex Lü, Chen and Lorenz models with
complex periodic forcing. Using Lyapunov exponents via a modified technique of Wolf
algorithm [38], these models have hyperchaotic solutions. These models are used as an
example for proposed CCS. In Section 5, the numerical treatments of our example are used
to test the analytical formula of the controller forces to achieve the CCS. Finally, Section 6
concludes the results of this paper.

2. Compound-Combination Synchronization Definition

The CCS among three master and two slave FO models with different orders is
designed in this section.

First, the three master FO models are given as:

cDα1 x1(t) = f1(t, x1(t)), (6)

cDα2 x2(t) = f2(t, x2(t)), (7)

cDα3 x3(t) = f3(t, x3(t)). (8)

second, the two slave FO models are defined as:

cDβy1(t) = g1(t, y1(t)) + u1, (9)

cDβy2(t) = g2(t, y2(t)) + u2, (10)

where cDαi and cDβ are the Caputo derivatives for fractional orders αi and β, respectively, αi,
β ∈ (0, 1] (i = 1, 2, 3) [39], xi = diag(xi1, xi2, xi3, . . . , xin) and yj = diag(yj1, yj2, yj3, . . . , yjn)
are the state variables of models (6)–(10), fi(t, xi) = diag( fi1(t, xi), fi2(t, xi), . . . , fin(t, xi)),
gj(yj) = diag(gj1(t, yj), gj2(t, yj), . . . , gjn(t, yj)) are continuous diagonal matrices functions,
and uj(t, x1, x2, x3, y1, y2) = diag(uj1, uj2, . . . , ujn), i = 1, 2, 3, j = 1, 2, are controllers of the
slave models (9) and (10).

Definition 1. If there exist five constant diagonal matrices A1, A2, A3, B1, B2 ∈ (Rn ×Rn) and
B1 6= 0 or B2 6= 0, such that

lim
t→∞
‖e‖ = lim

t→∞
‖B1y1 + B2y2 − A1x1(A2x2 + A3x3)‖ = 0, (11)

the compound-combination synchronization of the master FO models (6)–(8) and the slave FO
models (9) and (10) is hold. Where ‖.‖ expresses the matrix norm.

Remark 1. A compound synchronization of four FO hyperchaotic models [28] can be obtained, if
B1 = 0 or B2 = 0 in the above definition.

Remark 2. The combination–combination synchronization of four FO hyperchaotic models [27] is
given from Definition 1 for the case of x1 as a constant matrix.

Remark 3. For the choice x1 as a constant matrix and either B1 or B2 as zero, then the combination
synchronization of three FO hyperchaotic models is deduced [26].

3. The Compound-Combination Synchronization Planner

This section introduces the planner of the CCS of models with three master FO
models (6)–(8) and two slave FO models (9) and (10). We suppose the controller
U = B1u1 + B2u2 as follows:

U(t, x1, x2, x3, y) = ρ(t, x1, x2, x3) + τ(t, x1, x2, x3, y1, y2), (12)
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where ρ(t, x1, x2, x3) ∈ Rn ×Rn is a compensation control and given by:

ρ(t, x1, x2, x3) =
cDβ(A1x1(A2x2 + A3x3))− g1(t, A1x1 A2x2)− g2(t, A1x1 A3x3), (13)

and τ : R× (Rn ×Rn)× (Rn ×Rn)× (Rn ×Rn)× (Rn ×Rn)× (Rn ×Rn) −→ (Rn ×Rn)
is a matrix function.

Using Equations (9) and (10), we have

B1
cDβy1 + B2

cDβy2 = B1g1(t, y1) + B2g2(t, y2) + U. (14)

due to Equations (12)–(14), the model of error for CCS is:

cDβe = B1g1(t, y1) + B2g2(t, y2)− g1(t, A1x1 A2x2)− g2(t, A1x1 A3x3) + τ(t, x1, x2, x3, y1, y2). (15)

it is clear that CCS can be achieved if the error model (15) is asymptotically stable. So, the
following theory is presented to obtain the analytical formula of the matrix τ,

Theorem 1. If the matrix function τ(t, x1, x2, x3, y1, y2) takes the form:

τ(t, x1, x2, x3, y1, y2) = g1(t, A1x1 A2x2) + g2(t, A1x1 A3x3)− B1g1(t, y1)− B2g2(t, y2)− Ke, (16)

the CCS for the three master FO models (6)–(8) and the two slave FO models will be achieved

Proof. Since τ is given by Equation (16), the error of model (15) can be written as:

cDβe = −Ke. (17)

one defines a Lyapunov function as:

V(t) =
1
2

eTe, (18)

the FO derivative of V(t) is given by,

cDβV(t) = cDβ(
1
2

eTe) ≤ eTcDβe, (19)

using Equation (17), then we have

cDβV(t) ≤ eT(−Ke) = −K‖e‖2 ≤ −µmin‖e‖2 < 0. (20)

where µmin = min(µ1, µ2, . . . , µn) is the minimum value of the eigenvalues of K. Since
V(t) is positive definite function and its FO derivative is negative definite, then the error
e(t) → 0 as t → ∞, and, hence, the CCS among three master FO models (6)–(8) and the
two slave FO models (9) and (10) can be achieved.

Corollary 1. (i) The master FO models (6)–(8) will be in compound synchronization with the slave
FO model (9) if B2 = 0. So the controllers are written as:

U = B1u1 = ρ(t, x1, x2, x3) + τ(t, x1, x2, x3, y1), (21)

where ρ(t, x1, x2, x3) = cDβ(A1x1(A2x2 + A3x3)) − g1(t, A1x1(A2x2 + A3x3)), and
τ(t, x1, x2, x3, y1) = −Ke− B1g1(y1) + g1(t, A1x1(A2x2 + A3x3)).

(ii) The master models (6)–(8) will be in compound synchronization with the slave model (10)
if B1 = 0. Then, the controllers are:

U = B2u2 = ρ(t, x1, x2, x3) + τ(t, x1, x2, x3, y2), (22)
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where ρ(t, x1, x2, x3) =
cDβ(A1x1(A2x2 + A3x3))− g2(A1x1(A2x2 + A3x3)),

and τ(t, x1, x2, x3, y2) = −Ke− B2g2(y2) + g2(A1x1(A2x2 + A3x3)).

Corollary 2. For the choice x1 = N as a constant matrix, the master models (7) and (8) will
be in combination–combination synchronization with the slave models (9) and (10) under the
following controllers:

U = B1u1 + B2u2 = ρ(t, x2, x3) + τ(t, x2, x3, y1, y2), (23)

where ρ(t, x2, x3) = cDβ(A1N(A2x2 + A3x3)) − g1(A1NA2x2) − g2(A1NA3x3), and
τ(t, x2, x3, y1, y2) = −Ke− B1g1(y1)− B2g2(y2) + g1(A1NA2x2) + g2(A1NA3x3).

Corollary 3. (i) The master models (7) and (8) will be in combination synchronization with the
slave model (9) if B2 = 0 and x1 = N is a constant matrix. Therefore, the controllers are given as:

U = B1u1 = ρ(t, x2, x3) + τ(t, x2, x3, y1), (24)

where ρ(t, x2, x3) = cDβ(A1N(A2x2 + A3x3)) − g1(A1N(A2x2 + A3x3)), and
τ(t, x2, x3, y1) = −Ke− B1g1(y1) + g1(A1N(A2x2 + A3x3)).

(ii) The master models (7) and (8) will be in combination synchronization with the slave
model (10) if B1 = 0 and x1 = N is a constant matrix. Then, the controllers are written as:

U = B2u2 = ρ(t, x2, x3) + τ(t, x2, x3, y2), (25)

where ρ(t, x2, x3) = cDβ(A1N(A2x2 + A3x3)) − g2(A1N(A2x2 + A3x3)), and
τ(t, x2, x3, y2) = −Ke− B2g2(y2) + g2(A1N(A2x2 + A3x3)).

4. An Example

We study the CCS for five hyperchaotic fractional models with different orders as an
example using the scheme of Section 3. We consider the fractional versions of models (1)–(3)
in real forms, respectively, as:

cDα1 x11 = a1(x13 − x11) + k1cosw1t,
cDα1 x12 = a1(x14 − x12) + k1cosw1t,
cDα1 x13 = c1x13 − x11x15,
cDα1 x14 = c1x14 − x12x15,
cDα1 x15 = x11x13 + x12x14 − b1x15,

(26)

cDα2 x21 = a2(x23 − x21),
cDα2 x22 = a2(x24 − x22),
cDα2 x23 = c2x23 − x21x25 + k2sinw2t,
cDα2 x24 = c2x24 − x22x25 + k2sinw2t,
cDα2 x25 = x21x23 + x22x24 − b2x25,

(27)

cDα3 x31 = a3(x33 − x31) + k3cosw3t,
cDα3 x32 = a3(x34 − x32) + k3sinw3t,
cDα3 x33 = c3x33 − x31x35,
cDα3 x34 = c3x34 − x32x35,
cDα3 x35 = x31x33 + x32x34 − b3x35,

(28)

where cDαi are the Caputo fractional derivatives with order 0 < αi ≤ 1; i = 1, 2, 3. For
the choice a1 = 35, b1 = 4, c1 = 25, k1 = 10, w1 = 5, α1 = 0.95 for the model (26) and the
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initial values x10 = diag(−4.2595,−4.3055,−6.1868, −6.2533, 27.5840), we used a modified
technique of the Wolf algorithm to calculate the Lyapunov exponents of the model, and
the results are: λ1 = 12.4479, λ2 = 2.9483, λ3 = 0.5194, λ4 = −6.6970, and λ5 = −19.6768.
These Lyapunov exponent results show that model (26) has hyperchaotic solution of order 3,
as shown in Figure 1 in (x12, x14, x15) space. Model (27) has a hyperchaotic solution for the
values of the parameters a2 = 34, b2 = 4, c2 = 25, k2 = 10, w2 = 5, α2 = 0.96 and the initial
values x20 = diag(0.1, 0.2, 0.14, 0.2, 0.4) as depicted in Figure 2 for (x23, x21, x25) space. By
similar way, if we choose a3 = 35, b3 = 4, c3 = 25, k3 = 10, w3 = 5, α3 = 0.97 and the initial
values x30 = diag(0.1, 0.2, 0.14, 0.2, 0.4), model (28) has hyperchaotic solution as drown in
Figure 3 in (x31, x32, x35) space.

Figure 1. Hyperchaotic solution for the fractional complex Lü model with complex periodic forc-
ing (26).

Figure 2. Hyperchaotic solution for the fractional complex Lü model with complex periodic forc-
ing (27).
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Figure 3. Hyperchaotic solution for the fractional complex Lü model with complex periodic forc-
ing (28).

The FO of models (4) and (5) can be written in the real forms, respectively, as:

cDβy11 = a4(y13 − y11) + k4cosw4t,
cDβy12 = a4(y14 − y12) + k4cosw4t,
cDβy13 = (c4 − a4)y11 + c4y13 − y11y15,
cDβy14 = (c4 − a4)y12 + c4y14 − y12y15,
cDβy15 = y11y13 + y12y14 − b4y15,

(29)

cDβy21 = a5(y23 − y21) + k5cosw5t,
cDβy22 = a5(y24 − y22) + k5sinw5t,
cDβy23 = c5y21 − y23 − y21y25,
cDβy24 = c5y22 − y24 − y22y25,
cDβy25 = y21y23 + y22y24 − b5y25.

(30)

for the choice a4 = 42, b4 = 4, c4 = 26, k4 = 85, w4 = 5, β = 0.99 for the model (29)
and the initial values y10 = diag(5.441, 5.5045, 4.3299, 4.3645, 16.6665), model (29) has
hyperchaotic solution, as shown in Figure 4 in (y11, y13, y15) space. Model (27) also has a
hyperchaotic solution for the values of the parameters a5 = 15, b5 = 5, c5 = 45, k5 = 10,
w5 = 13, β = 0.99 and the initial values y20 = diag(1, 2, 3, 4, 5) as depicted in Figure 5 for
(y21, y22, y24) space.

We consider the three hyperchaotic fractional complex Lü models (26)–(28) as the mas-
ter models and the hyperchaotic fractional complex Chen model (29) and the hyperchaotic
fractional complex Lorenz model (30) as the slave models as an example to achieve the
CCS. The slave models after adding the controllers are:

cDβy11 = a4(y13 − y11) + k4cosw4t + u1,
cDβy12 = a4(y14 − y12) + k4cosw4t + u2,
cDβy13 = (c4 − a4)y11 + c4y13 − y11y15 + u3,
cDβy14 = (c4 − a4)y12 + c4y14 − y12y15 + u4,
cDβy15 = y11y13 + y12y14 − b4y15 + u5,

(31)
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cDβy21 = a5(y23 − y21) + k5cosw5t + v1,
cDβy22 = a5(y24 − y22) + k5sinw5t + v2,
cDβy23 = c5y21 − y23 − y21y25 + v3,
cDβy24 = c5y22 − y24 − y22y25 + v4,
cDβy25 = y21y23 + y22y24 − b5y25 + v5.

(32)

Figure 4. Hyperchaotic solution for the fractional complex Chen model with complex periodic
forcing (29).

Figure 5. Hyperchaotic solution for the fractional complex Lorenz model with complex periodic
forcing (30).

5. Numerical Simulation

In this section, we tested and demonstrated the validity of the CCS for our ex-
ample. Using Theorem 1 and the same values of the parameter values of the master
models (26)–(28) and the slave models (29) and (30) which are used in Figures 1–5, the gain
matrix K = diag(1, 2, 3, 4, 5) and the scaling matrices are chosen as A1 = A2 = A3 = B1
= B2 = I, where I is (5× 5) identity matrix, then the matrix τ takes the form:
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τ =− diag(1, 2, 3, 4, 5)diag(e1, e2, e3, e4, e5) + diag(a4(x13x23 − x11x21) + k4cosw4t, a4(x14x24 − x12x22) + k4cosw4t,

(c4 − a4)x11x21 + c4x13x23 − x11x21x15x25, (c4 − a4)x12x22 + c4x14x24 − x12x22x15x25, x11x21x13x23

+ x12x22x14x24 − b4x15x25) + diag(a5(x13x33 − x11x31) + k5cosw5t, a5(x14x34 − x12x32) + k5sinw5t,

c5x11x31 − x13x33 − x11x31x15x35, c5x12x32 − x14x34 − x12x32x15x35, x11x31x13x33 + x12x32x14x34 − b5x15x35)

− diag(a4(y13 − y11) + k4cosw4t, a4(y14 − y12) + k4cosw4t, (c4 − a4)y11 + c4y13 − y11y15, (c4 − a4)y12 + c4y14

− y12y15, y11y13 + y12y14 − b4y15)− diag(a5(y23 − y21) + k5cosw5t, a5(y24 − y22) + k5sinw5t, c5y21 − y23 − y21y25,

c5y22 − y24 − y22y25, y21y23 + y22y24 − b5y25),

(33)

where e = diag(e1, e2, e3, e4, e5), the matrix of error, ei = ri − di = y1i + y2i − x1i(x2i + x3i);
i = 1, 2, . . . , 5.

For our example, the error of model (17) is:

cDβe = −


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

e. (34)

According to Theorem 1, the CCS between the three master models (26)–(28) and
the two slave models (31) and (32) is hold. In the numerical results, we used the PECE
(Predict–Evaluate–Correct–Evaluate) method [40]. The results of the CSS are described
in Figures 6–8. Figure 6 shows the same hyperchaotic solution for the three master
models (26)–(28) in (d1, d2, d5) space and the two slave model (31) and (32) in (r1, r2, r5)
space. The state variables between the three master models (26)–(28) and the two slave
models (31) and (32) are depicted in Figure 7. Figure 8 gives the time slave of the synchro-
nization errors; it is clear that CCS is achieved, as indicated by the convergence of the error
state variables to zero.

Figure 6. Hyperchaotic solution for (a) the three master models (26)–(28) in (d1, d2, d5) space, (b) the
two slave model (31) and (32) in (r1, r2, r5) space.
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Figure 7. The state variables after the CCS between the three master models (26)–(28) (solid curves)
and the two slave models (31) and (32) (dashed curves): (a) d1 and r1 versus t, (b) d2 and r2 versus t,
(c) d3 and r3 versus t, (d) d4 and r4 versus t, (e) d5 and r5 versus t.

Figure 8. The synchronization errors of the three master models (26)–(28) and the two slave
models (31) and (32).

6. Conclusions

In this paper, we proposed a new type of synchronization for three master fractional
models and two slave fractional models with different orders, called CCS. According to
Remarks 1–3, this kind of synchronization can be considered as a generalization of other
synchronization types. The proposed CCS is achieved using stability theory and tracking
control. We stated and proved Theorem 1 to derive the analytical controller which used
to achieve the CCS. The FO hyperchaotic complex Lü (1)–(3), Chen (4), and Lorenz (5)
models with complex periodic forcing are presented. These models have hyperchaotic
solutions as shown in Figures 1–5, respectively. To test our proposed CCS, we used these
models as an example. Numerical simulations used to test the correction and validity of
the CCS. Because the CCS has more dimensions, our results increase the security of signal
transmission and reception in secure communications. The results of the CCS are depicted
in Figures 6–8.
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