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Abstract: Human society always wants a safe environment from pollution and infectious diseases,
such as COVID-19, etc. To control COVID-19, we have started the big effort for the discovery of a
vaccination of COVID-19. Several biological problems have the aspects of symmetry, and this theory
has many applications in explaining the dynamics of biological models. In this research article, we
developed the stochastic COVID-19 mathematical model, along with the inclusion of a vaccination
term, and studied the dynamics of the disease through the theory of symmetric dynamics and ergodic
stationary distribution. The basic reproduction number is evaluated using the equilibrium points
of the proposed model. For well-posedness, we also test the given problem for the existence and
uniqueness of a non-negative solution. The necessary conditions for eradicating the disease are also
analyzed along with the stationary distribution of the proposed model. For the verification of the
obtained result, simulations of the model are performed.

Keywords: stochastic COVID-19 epidemic model; stationary distribution; extinction; numerical
simulations

1. Introduction

For the control and extinction of COVID-19, several effective measurements have been
taken from many researchers and policymakers of each country of the globe. Many of
them are very economical and have produced a disturbance in the routine activities of
social media and psychological effects. Controlling of the said disease viruses for all people
showing signs of infection or not is the significant and key work of the higher-ups and
managerial staff. Still now in the process of developing safety against COVID-19, the most
important tool is vaccination [1,2]. This infection may spread through human-to-human
contact in the society, like (MERS-CoV), which is transmitted from civet cats into the human
environment. Various efforts have been made against it, which can be studied in [3,4].

The mathematical formulation may well present the dynamical behavior of the in-
fectious diseases of different epidemics. Therefore, different approaches of mathematical
modeling for the biological dynamics have been used in the past history. Among them is
deterministic mathematical modeling, which mostly discusses the idealistic situation of
real-world problems. It depends on input and output data. The stochastic modeling is an-
other approach which mostly describes the real situation. It presents both the randomness
of various compositions with division and also the deterministic version. Because of the
noise terms as an input source, the said division may have dynamics of uncertainty [5–8].

So, for vaccination, the conversion of real global problems into mathematical terms is a
very significant tool for the analysis of epidemics. Epidemiological infections are transferred
through mathematical formulation to various types of differential equations and systems of
it. Policy makers and many other scholars also provide some ideas and parameters which
can be used for reducing infections [9]. From the beginning of the twenty-first century,
the conversion of real-world problems to mathematical terms made the information very
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easy and made the situation very simple regarding future predictions [10,11]. Mostly, the
infections are written in mathematical formulation. Different mathematical formulation
are applied to mostly infectious diseases. The techniques of mathematical modeling are
divided into different mechanisms. Among them are the deterministic, stochastic and
difference equations. The stochastic-type approach is much more realistic as compared
to other mechanisms of mathematical formulations. Such a scheme type gives the result
in the form of up and down for unknown quantities along with the distribution of an
approximate solution [10–13]. For such dynamics, one can study different articles, such as
that given in reference [14,15].

The stochastic analysis of real-world phenomena is very good, as it involves both the
input and output of the data of that responsible for the transmission of the disease. Due
to this, it answers all questions related to infectious disease modeling. It discusses how
to construct a mathematical model for infectious disease. It also answers the question of
how to formulate the intermediate frequently transmitted disease. The rate of disease and
its suitable position in the model is also discussed by the stochastic approach. So for the
need of these points, we formulate the COVID-19 problem by the mathematical term of
stochastic approach. Changing the densities of different model quantities, we construct the
model for the said infection with a long period of time investigation.

Several biological problems have the aspects of symmetry, and this theory has many
applications in explaining the dynamics of biological models. The systematic theory of
symmetry has several applications in the development and study of models of biological
shapes and phenomena. In engineering and physics, symmetries are frequently accurate or
nearly so, whereas in the biological sciences, perfect symmetry is uncommon. Because sym-
metries are only approximations in most biological systems, their application in models is
an idealization. This type of idealization is beneficial because it simplifies the mathemat-
ical analysis and also because systems with approximated symmetries frequently reflect
idealized symmetric models more precisely than ordinary asymmetric ones. The symmetri-
cal methods are especially suited in biological environments where somewhat consistent
patterns are found.

The analysis of symmetry features of ODEs and PDEs is a popular and well-established
topic (see [16,17]) and provides a valuable tool for better comprehension of the solution’s
qualitative behavior. In contrast, a similar theory of SDE symmetries was just recently
constructed; the readers are suggested to see [18–20]. In this work, we studied a stochastic
COVID-19 model by using a very general and elegant approach for solving a SDE via
symmetries in a dynamical perspective. Unfortunately, the scale and complexity of many
models in mathematical biology renders a brute force application of symmetry methods
impractical. In other words, the analysis of SDEs using symmetry methods is non-standard
in mathematical biology; thus, we will focus mainly on other available techniques for SDEs
and will give less attention to the underlying symmetry methods.

The remaining part of this research paper is organized as follows: In Section 2, we
develop the COVID-19 mathematical formulation with stochastic fluctuation in the rate
of infection. In Section 3, we present the qualitative analysis of a non-negative solution
for a long duration of time to the proposed stochastic model. We give some important
conditions for the COVID-19 infection to vanish it from the society in Section 4. In Section 6,
the condition for the stationary distribution existence is provided. The scheme of the
analytical solution and their graphical representation are given in Section 7. For the
interested reader, we conclude the article with some future remarks in Section 8.

2. Models Formulation

The virus of COVID-19 has a proper incubation period and will result in confinement
in the beginning from the community and after the detection of disease. Healthy individuals
will have an incubation duration before disease onset. We construct the COVID-19 model
with five ordinary equations of derivative. The quantities of the model are composed of
Susceptible (S), Immunize or Vaccinated (V), Asymptomatic or Exposed (E), Symptomatic
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or Infectious (I), hospitalized (H), and recover individuals (R), i.e., S(t) +V(t) +E(t) +
I(t) +H(t) +R(t)) = N(t) represents the whole density size, which is varying with time t.
The finalized quantities epidemic model for the COVID-19 dynamical behavior with the
vaccination effect is given as follows:

dS(t)
dt

= Π− ηS(t)I(t)
N

− (κ + δ)S(t),

dV(t)
dt

= κS(t)− (1− τ)ηV(t)I(t)
N

− δV(t),

dE(t)
dt

=
ηS(t)I(t)

N
+

(1− τ)ηV(t)I(t)
N(t)

− (σ + δ)E(t),

dI(t)
dt

= σE(t)− (ρ1 + ρ2 + ρ3 + δ)I(t),

dH(t)
dt

= ρ1I(t)− (µ1 + µ2 + δ)H(t),

dR(t)
dt

= ρ2I(t) + µ1H(t)− δR(t).

(1)

The used parameters in the proposed model are given in Table 1.

Table 1. Description of the parameters.

Parameter Description

Π Rate of recruitment.
η Rate of infection effectively
κ Vaccinated population in percentage.
τ effect of Vaccination
δ Rate of natural death
σ Rate of sign reported by lab
ρ2 Recovery rate from I
ρ3 COVID-19 death rate
ρ1 Transferred rate from I to to H
µ2 COVID-19 death rate
µ1 recovered rate of H

The vaccination parameter is assumed to be effective in the analyzed article, i.e., it has
no cure rate of the COVID-19 virus. By this, powerful immunized density is required when
coming into contact with infectious people. It should be noted that 0 < τ < 1(τ = 1 shows
a big effective vaccine, while τ = 0 represents a vaccine that has no immunity).

The spreading dynamical analysis of the aforesaid COVID-19 problem is fully investi-
gated by the basic reproductive value, which is given as

RD
0 = ρ

(
FV−1

)
=

αηΠ[(1− τ)ρ + d]
d(d + ρ)(α + d)(δ + d)

.

Further, if RD
0 < 1, (DFE) X0 = (S0,V0,E0, I0,H0,R0) =

(
Π

ρ+d , ρΠ
d(ρ+d) , 0, 0, 0, 0

)
is

local asymptotic stable if RD
0 < 1, and it is global asymptotic stable in the same region.

Next, if RD
0 > 1, then DFE is unstable. In such a situation, Equation (1) contains another

equilibrium point called the endemic equilibrium (EE) X∗ = (S∗,V∗,E∗, I∗,H∗,H∗) which
is local and global asymptotic stable if RD

0 < 1 and not stable if RD
0 > 1.
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It is noted that the uncertainty of the duration of incubation and the variation of
detection along with population movements with stochastically given dynamics of the
proposed system (1) incorporate random perturbation by transferring into a mathematical
investigation. In this article, we take the random perturbation, which is directly related
to the changing of Healthy (S), Immunized or Vaccinated (V), Asymptomatic or Exposed
(E), Symptomatic or Infected (I), Hospitalized (H), and Recover (R) under the effect of
white noise as given in the stochastic model

dS(t) =
[

Π− ηS(t)I(t)
N

− (κ + δ)S(t)
]

dt + Φ1S(t)dB1(t),

dV(t) =
[

κS(t)− (1− τ)ηV(t)I(t)
N

− δV(t)
]

dt + Φ2V(t)dB2(t),

dE(t) =
[

ηS(t)I(t)
N

+
(1− τ)ηV(t)I(t)

N
− (σ + δ)E(t)

]
dt + Φ3EdB3(t),

dI(t) =
[

σE(t)− (ρ1 + ρ2 + ρ3 + δ)I(t)
]

dt + Φ4 I(t)dB4(t),

dH(t) =
[

ρ1I(t)− (µ1 + µ2 + δ)H(t)
]

dt + Φ5H(t)dB5(t),

dR(t) =
[

ρ2I(t) + µ1H(t)− δR(t)
]

dt + Φ6R(t)dB6(t).

(2)

here, B1(t), B2(t), B3(t), B4(t), B5(t), B6(t) are the parameters for the Brownian motions,
and Φ1, Φ2, Φ3, Φ4, Φ5, Φ6 are the frequency intensity of the Gaussian white noise.

3. The Qualitative Analysis for the Positive Solution

In this section, we investigate the existence of a positive solution along with the
uniqueness of the said solution of the proposed stochastic model (2).

Theorem 1. We consider (St,Vt,Et, It,Ht,Rt) as a positive solution of the given stochastic
epidemic model (2) is one on t ≥ 0 with initial approximations (S0,V0,E0, I0,R0) ∈ R6

+. Further,
the root will always lie in R6

+ having one probability, as (S0,V0,E0, I0,R0) ∈ R6
+ ∀ t ≥ 0 mostly

sure (a.s).

Proof. As the initial conditions, (S0,V0,E0, I0,H0,R0) ∈ R6
+ are coefficients that are pre-

defined and local Lipschitz. Therefore, we have unique root (St,Vt,Et, It,Ht,Rt) of the
system over t ∈ [0, τe). For extra analysis of more time τe, we give the reference [21,22].
For computation, the globally nature of the root, we have to derive that τe = ∞ almost
surely. Let us have a large positive value k0, all of the initial conditions on the state variable
defined in [ 1

k0
, k0]. Consider that for all positive integer k ≥ k0, the time for vanishing is

τk =

{
t ∈ [0, τe) : min{St,Vt,Et, It,Ht,Rt} ≤

1
k

or max{St,Vt,Et, It,Ht,Rt}
}

. (3)

In the whole article, the taking of inf φ = ∞ is chosen. Here, φ is the void set. From
the output of τk, we know that this increases as k goes to ∞. Set τ∞ = limk→∞ and
τe ≥ τ∞, almost surely deriving τ∞ = ∞. The verification about the τe = ∞ is noted and so,
(St,Vt,Et, It,Ht,Rt) will be in R5

+ almost surely ∀t ≥ 0. So, this will be sufficient to derive
that τe = ∞ almost surely. This shows that in the given case, there are two positive constant
ε, from (0, 1) and T:
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P{T ≥ τ∞} > ε. (4)

So, let k1 ≥ k0 and
P{T ≥ τk} ≥ ε, ∀ k1 ≤ k.

Next, we define a C2 mapping H : R5
+ → R+ as follows:

G(S,V,E, I,H,R) = S+V+E+ I+H+R− 6− (logS+ logV+ logE+ log I+ logH+ logR). (5)

It is validated that the H is a positive operator, and may be conformed from the
statement 0 ≤ y− logy− 1, ∀ 0 < y. Consider that k0 ≤ K and 0 < T are any arbitrary
fixed values. Using Itô′s for Equation (5) provides

dG(S,V,E, I,H,R) = LG(S,V,E, I,H,R) + Φ1(S− 1)dB1(t) + xi2(V− 1)dB2(t)

+ Φ3(E− 1)dB3(t) + Φ4(I− 1)dB4(t) + Φ5(H− 1)dB5(t) + Φ6(R− 1)dB6(t).
(6)

In Equation (6), LG : R6
+ → R+, whose definition is given by the given equation:

LG(S,V,E, I,H,R) =
(

1− 1
S

)(
Π− ηSI

N
− (κ + δ)S

)
+

Φ2
1

2
+

(
1− 1

V

)(
κS− (1− τ)ηVI

N
− δV(t)

)
+

Φ2
2

2

+

(
1− 1

E

)(
ηSI
N

+
(1− τ)ηVI

N
− (σ + δ)E

)
+

Φ2
3

2
+

(
1− 1

I

)(
σE− (ρ1 + ρ2 + ρ3 + δ)I

)
+

Φ2
4

2

+

(
1− 1

H

)(
ρ1I− (µ1 + µ2 + δ)H

)
+

Φ2
5

2
+

(
1− 1

R

)(
ρ2I+ µ1H− δR

)
+

Φ2
6

2
.

(7)

LG ≤ Π + η + (1− τ)η + 5δ + κ + σ + ρ1 + ρ2 + ρ3 + µ1 + µ2 +
Φ1

2 + Φ2
2 + Φ3

2 + Φ4
2 + Φ5

2 + Φ6
2

2
:= K.

The remaining proof is almost the same as that presented in Theorem 2.1 of [22].
Hence, we must omit it here, and this completes the proof of the theorem.

4. Extinction

This section is for the exploration of the parameters’ values for the extinction of
infection given in model (2). We derive the significant result of our article in the form of a
lemma as follows.

Lemma 1. For any given initial value (S0,V0,E0, I0,H0,R0) ∈ R6
+, the solution (St,Vt,Et, It,Ht,Rt)

of system (2) has the following properties:

lim
t→∞

S(t)
t

= 0,

lim
t→∞

V(t)
t

= 0,

lim
t→∞

E(t)
t

= 0,

lim
t→∞

I(t)
t

= 0,

lim
t→∞

H(t)
t

= 0,

lim
t→∞

R(t)
t

= 0, a.s.

(8)
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Furthermore, when δ > 1
2 (Φ

2
1 ∨Φ2

2 ∨Φ2
3 ∨Φ2

4 ∨Φ2
5 ∨Φ2

6) holds, then

lim
t→∞

1
t

∫ t

0
S(r)dB1(r) = 0,

lim
t→∞

1
t

∫ t

0
V(r)dB2(r) = 0,

lim
t→∞

1
t

∫ t

0
E(r)dB3(r) = 0,

lim
t→∞

1
t

∫ t

0
I(r)dB4(r) = 0,

lim
t→∞

1
t

∫ t

0
H(r)dB5(r) = 0,

lim
t→∞

1
t

∫ t

0
R(r)dB6(r) = 0, a.s.

(9)

Proof. The derivation of Lemma 1 is similar to [21], thus we skip it.

Lemma 2 ([11,12] (High number strong Law)). Consider that M = {M}t≥0 is a continuous
function of the real output, having a non-global Martingale and finishing at t = 0, then

lim
t→∞

〈
M, M

〉
t = ∞, a.s., implies that lim

t→∞

Mt〈
M, M

〉
t
= 0, a.s, and also

lim
t→∞

sup

〈
M, M

〉
t

t
< 0, a.s., implies that lim

t→∞

Mt

t
= 0, a.s.

(10)

5. Extinction

Define the following threshold quantity:

Re
0 =

2ση(2− τ)(σ + δ)(
ρ1 + ρ2 + ρ3 + δ +

Φ2
4

2

)(
(σ + δ)2 ∧ σ2 Φ2

3
2

) . (11)

Now, we construct a sufficient condition to ensure the extinction of COVID-19 in the
stochastic formulation (2).

Theorem 2. Let (St,Vt,Et, It,Ht,Rt) be a unique and positive solution of the stochastic Formu-
lation (2) with a positive starting data (S0,V0,E0, I0,H0,R0). If the stochastic threshold Re

0 is
strictly less than one, then E(t) and I(t) classes will go extinct almost surely, i.e.,

lim
t→∞

E(t) = 0, and lim
t→∞

I(t) = 0 a.s.

Meanwhile,

lim
t→∞
〈S(t)〉 = Π

(κ + δ)
, and lim

t→∞
〈V(t)〉 = κΠ

δ(κ + δ)
a.s. (12)

Proof. Firstly, we define the following combination linear of E and I:

ε(E, I) = a1E(t) + a2I(t),

where a1 = σ and a2 = σ + δ. By using Itô’s formula to ln ε, we obtain
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d ln ε(E, I) =
{

σηSI
N(σE+ (σ + δ)I) +

ση(1− τ)VI
N(σE+ (σ + δ)I) −

(ρ1 + ρ2 + ρ3 + δ)(σ + δ)I
σE+ (σ + δ)I

−
σ2Φ2

3E2 + (σ + δ)Φ2
4I2

2(σE+ (σ + δ)I)2

}
dt +

σΦ3E
σE+ (σ + δ)IdB3(t)︸ ︷︷ ︸

=M1(t)

+
(σ + δ)Φ4I

σE+ (σ + δ)IdB4(t)︸ ︷︷ ︸
=M2(t)

.

Then, we obtain that

d ln ε(E, I) ≤
{

ση(2− τ)

(σ + δ)
−

(ρ1 + ρ2 + ρ3 + δ +
Φ2

4
2 )(σ + δ)2I2 + σ2 Φ2

3
2 E2

[σE+ (σ + δ)I]2

}
dt + M1(t) + M2(t),

≤
{

ση(2− τ)

(σ + δ)
−

(ρ1 + ρ2 + ρ3 + δ +
Φ2

4
2 )

[
(σ + δ)2 ∧ σ2 Φ2

3
2

]
2(σ + δ)2

}
dt + M1(t) + M2(t).

(13)

Integrating from 0 to t and then dividing by t on both sides leads to

ln ε(E(t), I(t))
t

≤ ση(2− τ)

(σ + δ)
−

(ρ1 + ρ2 + ρ3 + δ +
Φ2

4
2 )

[
(σ + δ)2 ∧ (σ2 Φ2

3
2 )

]
2(σ + δ)2 − ln ε(E(0), I(0))

t

+
σΦ3

t

∫ t

0

E(r)
σE(r) + (σ + δ)I(r)dB3(r)︸ ︷︷ ︸

=Mi
1(t)

+
(σ + δ)Φ4

t

∫ t

0

I(r)
σE(r) + (σ + δ)I(r)dB4(r)︸ ︷︷ ︸

=Mi
2(t)

,
(14)

where Mi
1(t) and Mi

2(t) are two local continuous martingales. Then based on the strong law
of large numbers, it implies that limt→∞ t−1Mi

1(t) = 0 and limt→∞ t−1Mi
2(t) = 0. Provided

thatRe
0 < 1, taking the superior limit of both sides leads to

lim
t→∞

ln ε(E(t), I(t))
t

≤
(ρ1 + ρ2 + ρ3 + δ +

Φ2
4

2 )

[
(σ + δ)2 ∧ σ2 Φ2

3
2

]
2(σ + δ)2

(
Re

0 − 1
)
< 0.

Due to the positivity of the solution, we obtain

lim
t→∞

E(t) = 0, and lim
t→∞

I(t) = 0 a.s.

Now, we will conclude the result presented in (12). From the first equation of the
perturbed model (2), we obtain

S(t)− S(0)
t

= Π− η

t

∫ t

0

S(r)I(r)
N(r)

dr− (κ + µ)

t

∫ t

0
S(r)dr +

Φ1

t

∫ t

0
S(r)dB1(r). (15)

Under the hypothesisRe
0 < 1, we have

lim
t→∞
〈S(t)〉 = Π

(κ + δ)
a.s.

In the same way, we obtain from the second equation of (2) that

lim
t→∞
〈V(t)〉 = κΠ

δ(κ + δ)
a.s.

The derivation of the resulting Theorem 2 is completed.
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6. The Stationary Distribution of the Disease

In this section, we assume that the stochastically considered system has no endemic
equilibrium point. So, the investigation of stability cannot be used as a scheme for studying
epidemic infection. One may say that either the root is a Lie group or not, and if it is, then
it must be so with the help of the theory of stationary distribution as the key task, and we
may search for the Lie group of the endemic.With this task, we give the following along
with the citation of a well-known theorem from Hasminskii [23]. Let

〈
X(t)

〉
=

1
t

∫ t

0
X(r)dr. (16)

Stationary Distribution

Let X(t) be defined on its domain and obey the Markov procedure (homogeneity of
time) in Rn

+ with different dynamics as follows:

dX(t) = b(X)dt +
k

∑
r

σrdBr(t).

The defuse matrix is

A(X) = [aij(x)], aij(x) =
k

∑
r=1

σi
r(x)σr

j (x).

Lemma 3 ([11,12]). Technique X(t) has one distribution for its stationary condition m(.) if their
lie group, the input data, has bounds with continuous boundary. U, Ū ∈ Rd Ū closure Ū ∈ Rd,
have the following properties:

1. In both sides, open input U and in its neighbor, the smallest eigenvalue of A(t) has bounds
that are separate.

2. If x ∈ RdU, the average time τ (at which a curve starts from x going to the set U) is of
finiteness, and Supx∈kExτ < ∞ for every compact subset K ⊂ Rn. Next, if f (.) is an
integrating function having measurement π, then

P
{

lim
T→∞

1
T

∫ T

0
f (Xx(t))dt =

∫
Rd

f (x)π(dx)
}

= 1

for all x ∈ Rd.

Define a parameter

Rs
0 =

δησ(
η + κ + δ + Φ1

2

2

)(
σ + δ + Φ3

2

2

)(
ρ1 + ρ2 + ρ3 + δ + Φ4

2

2

) . (17)

Theorem 3. The root (S(t),V(t),E(t), I(t),H(t),R(t)) of system (2) is ergodic and has one
distribution for its stationary point π(.) whenever RS

0 > 1.

Proof. For the validation of Equation (2) of Lemma (3), we take a positive C2-operator

V1 = S+V+E+ I+H+R− c1 lnS− c2 lnE− c3 ln I,

where c1, c2 and c3 are the positive constants to be calculated later in the rest of the sections.
Using the Itô’s result and the take problem (2), we obtain
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L(S+V+E+ I+H+R) =Π− δ(S(t) +V(t) +E(t) + I(t) +H(t) +R(t))− ρ3I− µ2H,

L(− lnS) =− Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2

,

L(− lnV) =− κS
V +

(1− τ)ηI
N

+ δ +
Φ2

2
2

,

L(− lnE) =− ηSI
NE
− (1− τ)ηVI

NE
+ (σ + δ) +

Φ2
3

2
,

L(− ln I) =− σE
I + (ρ1 + ρ2 + ρ3 + δ) +

Φ2
4

2
,

L(− lnH) =− ρ1I
H + µ1 + µ2 + δ +

Φ2
5

2
,

L(− lnR) =− ρ2I
R −

µ1H
R + δ +

Φ2
6

2
.

(18)

So, we have

LV1 = Π− δ(S(t) +V(t) +E(t) + I(t) +H(t) +R(t))− c1 A
S +

c1ηI
N

+ c1

(
κ + δ +

Φ2
1

2

)
− c2ηSI

NE

− c2(1− τ)ηVI
NE

+ c2

(
σ + δ +

Φ2
3

2

)
− c3σE

I + c3

(
ρ1 + ρ2 + ρ3 + δ +

Φ2
4

2

)
.

(19)

This implies that

LV1 ≤− 4
[

δ(S(t) +V(t) +E(t) + I(t) +H(t) +R(t))× c1Π
S × c2ηSI

NE
× σE

I

] 1
4

+ c1

(
η + κ + δ +

Φ2
1

2
) + c2

(
σ + δ +

Φ2
3

2

)
+ c3

(
ρ1 + ρ2 + ρ3 + δ +

Φ2
4

2

)
+ Π.

(20)

Let

c1

(
η + κ + δ +

Φ2
1

2
) = c2

(
σ + δ +

Φ2
3

2

)
= c3

(
ρ1 + ρ2 + ρ3 + δ +

Φ2
4

2

)
= Π. (21)

Namely,

c1 =
Π(

η + κ + δ +
Φ2

1
2 )

,

c2 =
Π(

σ + δ +
Φ2

3
2

) ,

c3 =
Π(

ρ1 + ρ2 + ρ3 + δ +
Φ2

4
2

) .

(22)

Consequently,

LV1 ≤ −4


 Π4δησ(

η + κ + δ +
Φ2

1
2 )

(
σ + δ +

Φ2
3

2

)(
ρ1 + ρ2 + ρ3 + δ +

Φ2
4

2

)


1
4

−Π

− c2
(1− τ)ηVI

NE
.
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LV1 ≤ −4Π
[
(RS

0 )
1/4 − 1

]
In addition, we obtain

V2 = c4(S+V+E+ I+H+R− c1 lnS− c2 lnE− c3 ln I)− lnS− lnV− lnH− lnR+ S(t) +V(t) +E(t) + I(t) +H(t) +R(t),

= (c4 + 1)(S+V+E+ I+H+R)− (c1c4 + 1) lnS− c2c4 lnE− c3c4 ln I− lnV− lnH− lnR,

here, the fixed c4 > 0 will be computed later on. It very difficult to show that

lim inf
(S,V,E,I,H,R)∈R6

+\Uk

V2(S,V,E, I,H,R) = +∞, as k→ ∞, (23)

here Uk = ( 1
k , k)× ( 1

k , k)× ( 1
k , k). Further for the new steps we show that V2(S,V,E, I,H,R)

has one and at least one value V2(S0,V0,E0, I0,H0,R0).
Partial order differentiation of V2(S,V,E, I,H,R) with respect to t (S,V,E, I,H,R) is

as follows

∂V2(S,V,E, I,H,R)
∂S = 1 + c4 −

1 + c1c4

S ,

∂V2(S,V,E, I,H,R)
∂V = 1 + c4 −

1
V ,

∂V2(S,V,E, I,H,R)
∂E = 1 + c4 −

c2c4

E ,

∂V2(S,V,E, I,H,R)
∂I = 1 + c4 −

c3c4

I ,

∂V2(S,V,E, I,H,R)
∂H = 1 + c4 −

1
H ,

∂V2(S,V,E, I,H,R)
∂R = 1 + c4 −

1
R .

It is very easy to obtain that V2 has a one point of stagnation

(S(0),V(0),E(0), I(0),H(0),R(0)) =
(

1 + c1c4

1 + c4
,

1
1 + c4

,
c2c4

1 + c4
,

c3c4

1 + c4
,

1
1 + c4

,
1

1 + c4

)
. (24)

Next, the hessian matrix of V2(S,V,E, I,H,R) at (S(0),V(0),E(0), I(0),H(0),R(0)) is

B =



1+c1c4
S2(0) 0 0 0 0 0

0 1
V2(0) 0 0 0 0

0 0 c2c4
E2(0) 0 0 0

0 0 0 c3c4
I2(0) 0 0

0 0 0 0 1
H2(0) 0

0 0 0 0 0 1
R2(0)


. (25)

Definitely, the matrix of the Hessian is definitely positive. Hence, V2(S,V,E, I,H,R)
must have a small value V2(S(0),V(0),E(0), I(0),H(0),R(0)). By Equation (23) and by
the assumption of the continuity of V2(S,V,E, I,H,R), we write that V2(S,V,E, I,H,R)
has one and at least one constant point V2(S(0),V(0),E(0), I(0),H(0),R(0)) in R6

+.
Next, we give the formula for a non-negative C2− operator V : R6

+ → R+ as under

V(S,V,E, I,H,R) = V2(S,V,E, I,H,R)−V2(S(0),V(0),E(0), I(0),H(0),R(0)).
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By the application of Ito′s formula to the said problem, we obtain

L(V) ≤ c4

{
− 4Π

[
(R̃S

0 )
1/4 − 1

]}
− Π

S +
ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N

+ δ +
Φ2

2
2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δ(S(t) +V(t) +E(t) + I(t) +H(t) +R(t)).

(26)

leading to the assertion as follows:

L(V) ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H

+ µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN.

(27)

where

C5 = 4Π
[
(RS

0 )
1/4 − 1

]
> 0.

Next we formulate

D = {ε1 < S <
1
ε2

, ε1 < V <
1
ε2

, ε1 < E <
1
ε2

, ε1 < I < 1
ε2

ε1 < H <
1
ε2

ε1 < R <
1
ε2
},

where εi > 0 for (i = 1, 2, · · · , 12) are minimum constant values to be computed later on.
For simplification, we can write R6

+\D in the domain as follows:

D1 =

{
(S,V,E, I,H,R) ∈ R5

+, 0 < S ≤ ε1

}
,

D2 =

{
(S,V,E, I,H,R) ∈ R5

+, 0 < V ≤ ε1,S > ε2

}
,

D3 =

{
(S,V,E, I,H,R) ∈ R5

+, 0 < E ≤ ε1,V > ε2

}
,

D4 =

{
(S,V,E, I,H,R) ∈ R5

+, 0 < I ≤ ε1,E > ε2

}
,

D5 =

{
(S,V,E, I,H,R) ∈ R5

+, 0 < H ≤ ε1, I > ε2

}
,

D6 =

{
(S,V,E, I,H,R) ∈ R5

+, 0 < R ≤ ε1,H > ε2

}
,

D7 =

{
(S,V,E, I,H,R) ∈ R5

+,S ≥ 1
ε2

}
,

D8 =

{
(S,V,E, I,H,R) ∈ R5

+,V ≥ 1
ε2

}
,

D9 =

{
(S,V,E, I,H,R) ∈ R5

+,E ≥ 1
ε2

}
,

D10 =

{
(S,V,E, I,H,R) ∈ R5

+, I ≥ 1
ε2

}
,

D11 =

{
(S,V,E, I,H,R) ∈ R5

+,H ≥ 1
ε2

}
,

D12 =

{
(S,V,E, I,H,R) ∈ R5

+,R ≥ 1
ε2

}
.

Going ahead, we have to derive LV(S,V,E, I,H,R) < 0 on R6
+\D, which is similar to

how it is shown on the above-cited eight areas.

Case 1. If (S,V,E, I,H,R) ∈ D1, then by Equation (27), we obtain
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LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− δε1.

Setting ε1 > 0, givesLV < 0 for every (S,V,E, I,H,R) ∈ D1.
Case 2. If (S,V,E, I,H,R) ∈ D2, then from Equation (27), we can get

LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− Π
ε1

.

We choose maximally high c4 > 0 and maximally low ε1 > 0, so we can obtain LV < 0
for any (S,V,E, I,H,R) ∈ D2.
Case 3. If (S,V,E, I,H,R) ∈ D3, then from Equation (27), we obtain

LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− S
ε1

.

Selecting small ε1 > 0, thus, we have LV < 0 for every (S,V,E, I,H,R) ∈ D3.
Case 4. I f (S,V,E, I,H,R) ∈ D4, from Equation (27), we obtain

LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− S
ε1

.

Select small ε2 > 0 to obtain LV < 0 for each (S,V,E, I,H,R) ∈ D4.
Case 5. If (S,V,E, I,H,R) ∈ D5, from Equation (27), we obtain

LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− δε2.

We choose small ε2 > 0, so we can obtain LV < 0 for any (S,V,E, I,H,R) ∈ D5.
Case 6. If (S,V,E, I,H,R) ∈ D6, from Equation (27), we obtain

LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− δε2.
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We can choose sufficiently small ε2 > 0, so we can obtain LV < 0 for any (S,V,E,
I,H,R) ∈ D6.
Case 7. If (S,V,E, I,H,R) ∈ D7, from Equation (27), we obtain

LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− Π
ε2

.

By considering the smallest value of ε2 > 0, we can obtain LV < 0 for any (S,V,E,
I,H,R) ∈ D7.
Case 8. If (S,V,E, I,H,R) ∈ D8, from Equation (27), we obtain

LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− κε1

ε1
.

Let us select the smallest value of ε1, ε2 > 0 so that we can obtain LV < 0 for any
(S,V,E, I,H,R) ∈ D8.
Case 9. If (S,V,E, I,H,R) ∈ D9, from Equation (27), we obtain

LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− δε2.

If ε2 > 0, then we can find LV < 0 for each (S,V,E, I,H,R) ∈ D9.
Case 10. If (S,V,E, I,H,R) ∈ D10, from Equation (27), we obtain

LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− δε2.

If ε2 > 0, then we can find LV < 0 for each (S,V,E, I,H,R) ∈ D10.
Case 11. If (S,V,E, I,H,R) ∈ D11, from Equation (27), we obtain

LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− ρ1I
ε2

.

If ε2 > 0, then we can find LV < 0 for each (S,V,E, I,H,R) ∈ D11.
Case 12. If (S,V,E, I,H,R) ∈ D12, from Equation (27), we obtain
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LV ≤ c4c5 −
Π
S +

ηI
N

+ (κ + δ) +
Φ2

1
2
− κS

V +
(1− τ)ηI

N
+ δ +

Φ2
2

2
− ρ1I

H + µ1 + µ2 + δ +
Φ2

5
2
− ρ2I

R −
µ1H
R + δ +

Φ2
6

2
− ρ3I− µ2H+ Π− δN,

≤ c4c5 +
ηI
N

+ (κ + δ) +
(1− τ)ηI

N
+ δ + µ1 + µ2 + δ + δ + Π +

Φ2
1 + Φ2

2 + Φ2
5 + Φ2

6
2

− ρ1ε2

ε1
.

For the smallest value of ε1, ε2 > 0, we can obtain LV < 0 for any (S,V,E, I,H,R)
∈ D12.

So, we reach the concluding remarks that here is a fixed W > 0:

LV(S,V,E, I,H,R) < −W < 0 for all (S,V,E, I,H,R) ∈ R6
+\D.

Therefore,

dV(S,V,E, I,R) < −Wdt + [(c4 + 1)S− (c1c4 + 1)ζ1]dB1(t) + [(c4 + 1)V− ζ2]dB2(t)

+ [(c4 + 1)E− c2c4ζ3]dB3(t) + [(c4 + 1)I− c3c4ζ4]dB4(t)

+ [(c4 + 1)H− ζ5]dB5(t) + [(c4 + 1)R− ζ5]dB6(t).

(28)

Assume that (S(0),V(0),E(0), I(0),H(0),R(0)) = (x1, x2, x3, x4, x5, x6) = x ∈ R6
+\D,

and τx is that time at which a path starting from x reaches set D,

τn = in f {t : |X(t)| = n} and τ(n)(t) = min{τx, t, τn}.

By taking the integral of inequality (28) from zero to τ(n)(t), considering the expected
result, and by application of Dynkin’s expression, we obtain

EV(S(τ(n)(t)),V(τ(n)(t)),E(τ(n)(t)), I(τ(n)(t)),H(τ(n)(t)),R(τ(n)(t)))−V(x)

= E
∫ τ(n)(t)

0 LV(S(u),V(u),E(u), I(u),H(u),R(u))du,

≤ E
∫ τ(n)(t)

0 −Wdu = −WEτ(n)(t).

As V(x) > 0, so

Eτ(n)(t) ≤ V(x)
W

.

for the proof of (3), we obtain P{τe = ∞} = 1. Alternatively, we can say that the model
(2) is continuous. So, we write that as t → ∞ and n → ∞, then one has τ(n)(t) → τx

almost surely.

By Fatou’s Lemma,

Eτ(n)(t) ≤ V(x)
W

< ∞.

Thus, supx∈KEτx < ∞, where K is a compact subset of R6
+. It is proved in a direct way

by the result (ii) of Lemma 3.
Furthermore, the matrix of diffusion model (2) is as follows:

B =



ξ2
1S2 0 0 0 0 0
0 ξ2

2V2 0 0 0 0
0 0 ξ2

3E2 0 0 0
0 0 0 ξ2

4I2 0 0
0 0 0 0 ξ2

5H2 0
0 0 0 0 0 ξ2

6R2

.



Symmetry 2023, 15, 285 15 of 21

Choosing

M = min
(S,V,E,I,H,R)∈D∈R6

+

{ξ2
1S2, ξ2

2V2, ξ2
3E2, ξ2

4 I2, ξ2
5 H2, ξ2

6R2}, (29)

we obtain

6

∑
i,j=1

aij(S,V,E, I,H,R)ξiξ j = ξ2
1S2ζ2

1 + ξ2
2V2ζ2

2 + ξ2
3E2ζ2 + ξ2

4 I2ζ2
4 + ξ2

5ζ2
5 + ξ2

6R2ζ2
6

≥ M|ξ|2, (S,V,E, I,H,R) ∈ D,

(30)

here ξ = (ζ1, ζ2, ζ3, ζ4, ζ5, ζ6) ∈ R6
+. This implies that Equation (1) of Lemma 3 also fulfilled.

From this, we conclude that Lemma 3 is sure for model (2), which is ergodic and on
stationary distribution.

7. Numerical Simulations

For the validation of our obtained scheme, we establish the graphical representation
using the approximate scheme to the model (2). The graphical representation depends
on the qualitative analysis of the discussion, and the numerics of the used parameters are
epidemiologically justifiable. Further, for the use of a stochastic approach of the RK method
of the 4th order, the discretization of model (2) is

Si+1 = Si +

[
Π− ηSi Ii

N
− (κ + δ)Si

]
4 t + ξ1Si

√
4tζ1,i +

ξ2
1

2
Si(ζ

2
1,i − 1)4 t,

Vi+1 = Vi +

[
Si −

(1− τ)ηVi Ii
N

− δVi

]
4 t + ξ2Vi

√
4tζ2,i +

ξ2
2

2
Vi(ζ

2
2,i − 1)4 t,

Ei+1 = Ei +

[
ηSi Ii

N
+

(1− τ)ηVi Ii
N

− (σ + δ)Ei

]
4 t + ξ3Ei

√
4tζ3,i +

ξ2
3

2
Ei(ζ

2
3,i − 1)4 t,

Ii+1 = Ii +

[
σEi − (ρ1 + ρ2 + ρ3 + δ)Ii

]
4 t + ξ4Ii

√
4tζ4,i +

ξ2
4

2
Ii(ξ

2
4,i − 1)4 t,

Hi+1 = Hi +

[
ρ1Hi − (µ1 + µ2 + δ)Hi

]
4 t + ξ4Hi

√
4tζ4,i +

ξ2
5

2
Ii(ξ

2
5,i − 1)4 t,

Ri+1 = Ri +

[
ρ2II + µ1HI − µRi

]
4 t + ξ6Ri

√
4tζ6,i +

ξ2
6

2
Ri(ζ

2
6,i − 1)4 t.

(31)

ζi,j(i = 1, 2, 3, 4, 5), is normal distribution satisfying the division of N(0, 1), and the
difference ∆t. Take ξi > 0, (i = 1, 2, 3, 4, 5) as the white noise intensities.

For the well dynamics, the stability of the stochastically described model, and optimal
controlling, we must point out the parameters values for the numerical simulations of (2).

Now here, we give the discussion of the graphical representation and epidemiological
feasibility of the proposed problem (2). For this, we use the numerical parameters values
of Table 2 (S1). The initial values for all the agents are also written Table 2 (S1). Using
Theorem 2 gives the conditions for vanishing the epidemic. Few of the achievements are
obtained from the analysis of stability in the stochastically investigated model. Theorem 2
is satisfied if the reproduction value is R0 < 1. This shows that the epidemic vanishing
probability will be one in the stochastic model. Similarly, if RD

0 < 1, the idealistic problem
(2) will be asymptotic and globally stable. For both curves, they converge to the free critical
value. This is given in Figure 1, which implies that COVID-19 infection will die out of
society, given some important conditions.The simulations of all the agents are provided in
Figure 1a–e.

Next, we provide the digital findings for the stationary points of distributions. In
Lemma 3, an ergodic condition is used to prove that the system is more realistic in the
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stochastic approach and has one stationary distribution. The stochastically given problem
(2) is proposed for the parameter values given in Table 2 (S2) and evaluated as Rs

0 > 1,
so using Theorem 3, which is fulfilled, because of small intensities of white noises, the
infection reflection will lie. We observe in Figure 2 that the infected system (2) will lie or
remain in the mean, which may validate the output of Theorem 3 which implies that the
system (2) lies on ergodic stationary distributions. The Susceptible, Vaccinated, Expose,
Infected, and Recovered individual stationary distribution numerical simulations can be
clearly seen in Figure 2a–f, respectively. Theorem 3 implies that model (2) must be ergodic
stationary distributions. Figure 3 confirms this.

Table 2. Parameter values used in the simulation of model (2).

Parameters S1 S2 Source

Π 1.50 3.50 assumed
τ 0.02 0.30 assumed
η 0.07 0.03 assumed
δ 0.01 0.03 assumed
σ 0.01 0.05 assumed
κ 0.02 0.04 assumed
ρ1 0.05 0.10 assumed
ρ2 0.35 0.20 assumed
ρ3 0.05 0.30 assumed
µ1 0.55 0.40 assumed
µ2 0.15 0.50 assumed
S(0) 50.0 4.00 assumed
V(0) 20.0 3.00 assumed
E(0) 30.0 1.00 assumed
I(0) 40.0 2.00 assumed
H(0) 40.0 2.00 assumed
R(0) 10.0 1.00 assumed
Φ1 1.25 1.20 assumed
Φ2 1.23 1.25 assumed
Φ3 1.35 1.15 assumed
Φ4 1.20 1.05 assumed
Φ5 1.15 1.22 assumed
Φ6 1.10 1.15 assumed
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Figure 1. Solution paths of the model (2) when the numerical values are taken as shown in the 2nd
column of Table 2.
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Figure 2. Solutions paths of the model (2) when the numerical values are taken as shown in the third
column of Table 2.
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Figure 3. Ergodic stationary distribution of model (2).

8. Conclusions

In this article, we discussed the asymptotic dynamics of a stochastic COVID-19 epi-
demic model with a general incident rate and the effect of vaccination. Firstly, we analyzed
the considered model for the unique globally non-negative root along with an initial ap-
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proximation. The stability of the solution of the given model was also computed by the
help of the Lyapunov operator. For eliminating the infection from society, we derived
the reproduction value R0 < 1. The Lyapunov function method proved that an ergodic
stationary division for the non-negative root of the given system exists and is unique,
which shows that for Rs

0 > 1, the disease may lie in the community. Few of the numerical
simulations have been performed by the RK4 approach for the validation of the obtained
results. We also will study in our future research work the effect of Levy noises on the
dynamics of a more complex population system.
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