
Citation: Zhang, J.; Kang, X.; Liu, Y.;

Ma, H.; Li, T.; Ma, Z.; Gataullin, S. A

Secure and Lightweight Multi-Party

Private Intersection-Sum Scheme

over a Symmetric Cryptosystem.

Symmetry 2023, 15, 319. https://

doi.org/10.3390/sym15020319

Academic Editors: Lianyong Qi,

Wajid Rafiq, Wenwen Gong, Maqbool

Khan and Lorentz Jäntschi

Received: 7 December 2022

Revised: 19 January 2023

Accepted: 19 January 2023

Published: 23 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

A Secure and Lightweight Multi-Party Private Intersection-Sum
Scheme over a Symmetric Cryptosystem
Junwei Zhang 1, Xin Kang 1, Yang Liu 1,*, Huawei Ma 2, Teng Li 1, Zhuo Ma 1 and Sergey Gataullin 3

1 School of Cyber Engineering, Xidian University, Xi’an 710071, China
2 Institute of Artificial Intelligence and Blockchain, Guangzhou University, Guangzhou 510006, China
3 Faculty of Digital Economy and Mass Communications, Moscow Technical University of Communications

and Informatics, 123423 Moscow, Russia
* Correspondence: bcds2018@foxmail.com

Abstract: A private intersection-sum (PIS) scheme considers the private computing problem of how
parties jointly compute the sum of associated values in the set intersection. In scenarios such as
electronic voting, corporate credit investigation, and ad conversions, private data are held by different
parties. However, despite two-party PIS being well-developed in many previous works, its extended
version, multi-party PIS, has rarely been discussed thus far. This is because, depending on the existing
works, directly initiating multiple two-party PIS instances is considered to be a straightforward way
to achieve multi-party PIS; however, by using this approach, the intersection-sum results of the two
parties and the data only belonging to the two-party intersection will be leaked. Therefore, achieving
secure multi-party PIS is still a challenge. In this paper, we propose a secure and lightweight multi-
party private intersection-sum scheme called SLMP-PIS. We maintain data privacy based on zero
sharing and oblivious pseudorandom functions to compute the multi-party intersection and consider
the privacy of associated values using arithmetic sharing and symmetric encryption. The security
analysis results show that our protocol is proven to be secure in the standard semi-honest security
model. In addition, the experiment results demonstrate that our scheme is efficient and feasible
in practice. Specifically, when the number of participants is five, the efficiency can be increased
by 22.98%.

Keywords: private intersection-sum; secure computation; cloud computing

1. Introduction

With the rapid development of artificial intelligence [1–6] and cloud computing [7–11],
as a carrier of collaborative computing, the use of data is becoming increasingly important
in various industries [12–17]. However, these data involve a large amount of private
information, and the leakage of private data will cause serious security problems. Therefore,
privacy computing [18–21] has been widely considered the optimal solution for maintaining
data security [22–25] and protecting privacy [26–29]. Private intersection-sum (PIS) is one of
the most commonly used privacy-preserving protocols in specific scenarios. It allows each
party to hold a private set of data, and non-leadership parties additionally hold a private
integer value associated with each datum, to jointly compute the sum of the associated
integer values in the intersection.

Up to now, the two-party PIS has been applied in various fields, such as ad conver-
sions [30] and electronic voting [31]. However, in other scenarios, private data are held
by different parties. For example, in enterprise credit investigations, it is necessary to
count the total amount of loans of multiple legal persons across different banks. Therefore,
the multi-party PIS protocol must be considered. In addition, it is difficult for parties to
participate in online computing in real time. Therefore, the outsourcing of data to the cloud
by the participant, i.e., outsourced multi-party PIS, is a potential solution.

Symmetry 2023, 15, 319. https://doi.org/10.3390/sym15020319 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15020319
https://doi.org/10.3390/sym15020319
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6023-2864
https://orcid.org/0000-0002-0446-0552
https://doi.org/10.3390/sym15020319
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15020319?type=check_update&version=2

Symmetry 2023, 15, 319 2 of 19

However, on the one hand, the existing PIS protocols primarily consider the two-party
scenarios [30–33]. The function of multi-party PIS can be realized by executing the two-
party PIS protocol multiple times, but using this approach, the intersection-sum results of
the two parties and the data only belonging to the two-party intersection will be leaked.
On the other hand, cloud systems store a large amount of user data and present greater
temptation for attackers to conduct data mining and other attacks on private user data in
the cloud. Therefore, it is challenging to design an outsourcing multi-party PIS protocol.

To summarize, we achieve the following contributions:

• We propose a secure and lightweight multi-party private intersection-sum scheme,
called SLMP-PIS, which avoids the data privacy leakage problem of only repeatedly
conducting existing two-party PIS schemes.

• SLMP-PIS is client-agnostic. The requester can ask the cloud server to obtain the
computation result without the help of data owners, and data owners can maintain
their offline status as long as their data have been outsourced securely to the cloud.

• SLMP-PIS is based on symmetric cryptosystem only. Therefore, the larger the number
of participants, the more efficient SLMP-PIS is. Specifically, when the number of
participants is five, the efficiency can be increased by 22.98%.

The remaining parts of this paper are organized as follows. Section 2 shows the related
work associated with our work. Section 3 describes preliminaries used in our scheme,
and we introduce the problem’s formulations, including the system model and adversary
model in Section 4. Section 5 presents the scheme’s construction in detail. In Section 6, we
conduct a security analysis, followed by Section 7, which shows the performance analysis.
Finally, the conclusions of this whole paper are summarized in Section 8.

2. Related Work

We first introduce the related work on PIS. Ion et al. [32] described three PIS with
cardinality protocols. One relies on a Diffie–Hellman-style double masking, and the other
two use random oblivious transfer and encrypted Bloom filters. Miao et al. [33] proposed a
private intersection-sum scheme with cardinality based on a shuffled, distributed, oblivious,
pseudorandom function (DOPRF); Pedersen commitments; ElGamal encryptions; and
Camenisch–Shoup encryptions. Niu et al. [34] described a privacy-preserving statistical
computing protocol for the private set intersection to complete the relevant statistical
computations of the intersection of two private sets, including cardinality, sum, average,
variance, range, and so forth.

Currently, the PIS protocol has been applied in specific fields. Ion et al. [30] proposed a
private intersection-sum protocol with the purpose of attributing aggregate ad conversions.
Lu et al. [31] described a private intersection weighted sum protocol for privacy-preserving
score-based voting with perfect ballot secrecy. Kulshrestha et al. [35] proposed a non-strict
private intersection-sum protocol to compute ∑x∈I T[x], where I = X0

⋂
(
⋃n−1

i=1 Xi) and T is
associated with values of X; the protocol was applied for estimating incidental collection in
foreign intelligence surveillance.

In summary, the current state of the research shows that there have been PIS schemes
based on different cryptographic primitives, and existing schemes are dedicated to minimiz-
ing the computational cost and communication overhead of the protocol while satisfying
the basic security properties of PIS. However, none of them consider the strict multi-party
privacy intersection-sum problem.

3. Preliminaries

In this section, we introduce some cryptographic tools, including oblivious transfer
(OT), oblivious pseudorandom function (OPRF), and arithmetic sharing (AS).

Symmetry 2023, 15, 319 3 of 19

3.1. Oblivious Transfer

Oblivious transfer [36,37] is a two-party protocol between a sender and a receiver.
For 1-out-of-2 OT, the sender uses two private inputs, m0 and m1, and the receiver uses
one private input bit σ(σ ∈ {0, 1}). After the protocol, the receiver obtains mσ. Moreover,
1-out-of-2 OT must satisfy the following properties:

(1) Receiver’s indistinguishability security. For any σ, τ ∈ {0, 1} and for any probabilistic
polynomial time (PPT) adversary A executing the sender’s part, the views that A sees
in case the receiver tries to obtain mσ and in case the receiver tries to obtain mτ are
computationally indistinguishable given m0 and m1.

(2) Sender’s indistinguishability security.For any adversary A substituting the receiver
and a simulator A′ playing the receiver’s role in the ideal model, the outputs of A
and A′ are statistically indistinguishable given m0 and m1.

3.2. Oblivious Pseudorandom Function

The oblivious pseudorandom function [38] involves two parties: one is the sender
(denoted by S), and the other is the receiver (denoted by R). R takes data y as input. After
the protocol is executed, R obtains the pseudorandom function value Fy = F(k, y) of the
data y, but cannot obtain any information about k. S obtains the key k of the pseudorandom
function, so the pseudorandom function value Fx = F(k, x) can be calculated for any data x.

3.3. Arithmetic Sharing

The arithmetic sharing protocol involves two parties: one is P0, and the other is P1.
For a secret x, P0 and P1 each obtain a shared value. No one can obtain x alone, and they
can recover x together.

Arithmetic sharing contains three algorithms, the shared values, sharing, and recon-
struction, which are described as follows:

• Shared Values: on input secret x(x ∈ ZN), output sharing values 〈x〉A0 , 〈x〉A1 satisfying
〈x〉A0 + 〈x〉A1 = x mod N.

• Sharing: Pi(i ∈ {0, 1}) chooses r(r ∈ ZN) and sets 〈x〉Ai = (x− r) mod N. Then, Pi

sends r to P1−i, that is, 〈x〉A1−i = r mod N.
• Reconstruction: P1−i sends 〈x〉A1−i to Pi, which computes x = (〈x〉A0 + 〈x〉A1) mod N.

4. Problem Formulations

In this section, we introduce the system model and adversary model of SLMP-PIS.

4.1. System Model

The system model of SLMP-PIS is shown in Figure 1. It contains three entities: a
requester (Re), a cloud server (CS), and data owners (DOs).

Symmetry 2023, 15, 319 4 of 19

Re CS

DOs

1)

2) 3)

4)

1)Outsourcing Request 2)Request Forwarding

3)Data Submission 4)Outsourcing Response

Cloud Server（CS）

1)

2)

3)

1) Outsourcing Request

2) Data Submission

3) Outsourcing Response

Requester（Re）

2)

Data Owner（DO）

2)

Data Owner（DO）

Data Owner（DO）

Figure 1. System model.

(1) Requester. The Re is responsible for submitting the processed data set to CS. In
addition, the Re obtains the sharing value of the intersection-sum from the CS and
computes the private intersection-sum result.

(2) Cloud Server. The CS acts as a connection between the Re and DOs. After receiving the
processed data set from the Re, the CS assists the DOs in performing data processing
and obtaining the processed data sets from the DOs. In addition, the CS computes the
sharing value of the intersection-sum and sends it to the Re.

(3) Data Owners. Each DO holds a private set of data, and additionally holds a private
integer value associated with each element. Each DO is responsible for submitting the
processed data set to the CS.

4.2. Adversary Model

In the adversary model of SLMP-PIS, the Re, CS, and DOs are semi-honest parties.
They strictly follow the protocol. However, the Re is interested in learning the data for the
DOs and the private integer value associated with each element in the DOs’ sets. Each DO
is willing to learn the data of the Re and the other DOs. The CS remains curious about the
raw data of the Re and DOs.

Therefore, we introduce three active adversaries in our model: A1, A2, and A3. The
goal of A1 is to learn the data of the Re. The goal of A2 is to obtain the data and associated
values of the DOs. The goal of A3 is to obtain the private intersection-sum result. A1, A2,
and A3 possess the following capabilities:

(1) A1,A2, and A3 may eavesdrop on all communication links to obtain data owned by
participants.

(2) A1 may compromise the CS to learn the data of the Re.
(3) A2 may compromise the CS to learn the DOs’ data and associated values, or compro-

mise one DO to learn the data and associated values of the other DOs.
(4) A3 may compromise the CS and DOs to obtain the intersection-sum result.

5. The Protocol Framework

In this section, we first provide some notations used in the protocol framework in
Table 1, and we present the overview of our scheme in Figure 2. The details will be
described in the following sections.

Symmetry 2023, 15, 319 5 of 19

Table 1. Notations.

Notation Description

|X| The size of the data set X
xi The i-th data of X
[m] The set {1, 2, . . . , m}

DO(u) The u-th DO of the DOs
Y(u) The data set of the DO(u)

y(u)i The i-th data of Y(u)

Enc The asymmetric encryption algorithm
Dec The asymmetric decryption algorithm

MTgen Merkle tree generation algorithm
F(·) Pseudorandom function

Data Submission

CS

Outsourcing Request

A data set X

Re CS

Shared Value

Obtaining

Re's

Data Processing

DOs' Data

Processing
()DO u

A data set (u)Y

()u

CSSh

Outsourcing Response

CS Re

Intersection-Sum

Computation

() ()
1 1

, , ; , ,u u
m m

x x y y
Sh Sh Sh Sh

()Associated value set uT

() () () ()
1 1

, , ; , ,u u u u
m my y y y

ES ES ER ER

() ()
1

, ,u u
my y

ES ES

() ()
1

, ,u u
my y

ER ER

Private

Intersection-Sum

Re Recipher root，

rescipher

1
, ,

mx xrandf randf
() () () ()

1 1

, , ; , ,u u u u
m my y y y

randf randf Sh Sh

Figure 2. Scheme overview.

5.1. Initialization

In this phase, multiple parties (i.e., the Re and DOs) negotiate a symmetric key kij|i 6= j
with each other. The CS chooses a random private key a, DO(u) chooses b(u), and the
Re chooses c. The CS negotiates the session key kab(u) with DO(u). The Re negotiates the
session key kac with the CS. The Re and DOs share a group key K (|K| = l). In addition,
several functions are selected: a pseudorandom function (PRF) F(K, x) : {0, 1}l ×{0, 1}∗ →
{0, 1}d1 , and hash functions H : {0, 1}w → {0, 1}d2 .

5.2. Outsourcing Request

In this phase, the Re runs data processing on the input of data set X(|X| = m) to
generate {EncRe, rootRe}. The details are shown in Algorithm 1, and we divide this stage
into several steps as follows:

(1) Generate the pseudorandom function value. The Re computes the pseudorandom
function value rand fxi of the data xi based on the group key K; namely, rand fxi =
F(K, xi).

(2) Generate the intersection sharing value. For each datum xi, the Re first computes the
pseudorandom function value Fj based on the symmetric key k0j(j ∈ [n]); namely,
Fj = F(k0j, xi). Then, the Re XORs multiple Fj according to the formula (1) to generate
the intersection sharing value Shxi :

Shxi = F1 ⊕ · · · ⊕ Fn (1)

Symmetry 2023, 15, 319 6 of 19

(3) Generate ciphertext and verification information for pseudorandom function values and in-
tersection sharing values. The Re calculates the ciphertext

{
cipherRe1 , · · · , cipherRem

}
and

the root rootRe of the Merkle tree according to the formula (2) based on pseudorandom
function values and intersection sharing values {rand fx1 ||Shx1 , · · · , rand fxm ||Shxm}:{

cipherRei = Enc(rand fxi ||Shxi , kac), i ∈ [m]

rootRe = MTgen(rand fx1 ||Shx1 , · · · , rand fxm ||Shxm)
(2)

Algorithm 1 Re’s data processing

Input: A data set X with |X| = m
Output: EncRe, rootRe

1: for i = 1 to m do
2: rand fxi ← F(K, xi)
3: Shxi ← 0
4: for j = 1 to n do
5: Fj ← F(k0j, xi)
6: Shxi⊕ = Fj
7: end for
8: EncRei ← Enc(PRFxi ||Shxi , kac)
9: end for

10: rootRe ← MTgen(PRFx1 ||Shx1 , · · · , PRFxm ||Shxm)
11: cipherRe ←

{
cipherRe1 , · · · , cipherRem

}
12: return {cipherRe, rootRe}

5.3. Data Submission

In this phase, the CS receives the ciphertext and verification information of pseudo-
random function values and intersection sharing values {cipherRe, rootRe} from Re.

Firstly, we introduce the validation of the pseudorandom function values and intersec-
tion sharing values. Assume that the CS decrypts EncRe to obtain

{
(rand fx1 ||Shx1)

′, . . . ,

(rand fxm ||Shxm)
′
}

: {
(rand fxi ||Shxi)

′
}
← Dec(cipherRei , kac)(i ∈ [m]). (3)

Then, the CS computes

root
′
Re ← MTgen((rand fx1 ||Shx1)

′, . . . , (rand fxm ||Shxm)
′). (4)

If rootRe = root
′
Re, the CS believes the verification passed and obtains {rand fx1 ||Shx1 , . . . ,

rand fxm ||Shxm}.
Then, on the input of the data set (Y(u), T(u))(|Y(u)| = |T(u)| = m), DO(u) runs data

processing to generate
{

ES(u), Sh(u), ER(u)
}

. The details are shown in Algorithm 2. We
take a DO as an example and divide this stage into several steps as follows:

Symmetry 2023, 15, 319 7 of 19

Algorithm 2 DO’s Data Processing

Input: A data set (Y(u), T(u)) with |Y(u)| = |T(u)| = m
Output: ES(u), Sh(u), ER(u)

1: for i = 1 to m do
2: r(u)i

$←− a random number

3: rand f
y(u)i
← F(K, y(u)i)

4: ES
y(u)i
← Enc(rand f

y(u)i
, t(u)i − r(u)i)

5: ER
y(u)i
← Enc(k0u, r(u)i)

6: Sh
y(u)i
← 0

7: for j = 0 to n, j 6= u do
8: Fj ← F(kuj, y(u)i)
9: Sh

y(u)i
⊕ = Fj

10: end for
11: end for
12: ES(u) ←

{
ES(u)

y1 , · · · , ES(u)
ym

}
13: Sh(u) ←

{
Sh(u)y1 , · · · , Sh(u)ym

}
14: ER(u) ←

{
ES(u)

y1 , · · · , ER(u)
ym

}
15: return

{
ES(u), Sh(u), ER(u)

}
(1) Generate calculation value. For each datum yi, the DO first computes the pseudo-

random function value rand fyi based on the group key K; namely, rand fyi = F(K, yi).
Then, the DO chooses a random number ri for associated datum ti and encrypts the
difference between ti and ri based on rand fyi to generate the calculation value ESyi ;
namely, ESyi = Enc(RPFyi , ti − ri).

(2) Generate intersection sharing value. For each datum yi, the DO first computes the
pseudorandom function value Fj based on the symmetric key negotiated with the
Re and other DOs kuj(j ∈ [n], j 6= u); namely, Fj = F(kuj, yi). Then, the DO XORs
multiple Fj according to the formula (5) to generate the intersection sharing value Shyi :

Shyi = F0 ⊕ · · · ⊕ Fu−1 ⊕ Fu+1 · · · ⊕ Fn (5)

(3) Generate calculation sharing value. For each datum yi, the DO chooses a random
number ri and generates calculation sharing value ESyi based on the symmetric key
k0u negotiated with the Re; namely, ERyi = Enc(k0u, ri).

Next, we introduce the CS to obtain the intersection sharing value. CS obtains the
pseudorandom function value of xi by verifying the ciphertext and verification information
sent by the Re. Each DO obtains the calculation value, the calculation sharing value, and
the intersection sharing value through data processing. The CS and each DO obtain shared
values, as shown in Algorithm 3. As a result, the CS obtains the shared value ShCS. We take
a DO as an example and divide this stage into several steps as follows:

Symmetry 2023, 15, 319 8 of 19

Algorithm 3 Obtaining Shared Values

Input: CS:rand fxi DO:rand fyi , ESyi ||Shyi ||ERyi (i ∈ [m])
Output: ShCS

1: CS and DO execute:
2: for i = 1 to m do
3: CS sends rand fxi to FOPRF
4: CS receives OFxi ← F(kOPRF, rand fxi)
5: end for
6: DO receives kOPRF
7: for i = 1 to m do
8: DO computes OFyi ← F(kOPRF, rand fyi)
9: end for

10: DO executes:
11: for i = 1 to m do
12: HDOi ← H(OFyi)
13: ThDOi ← OFyi ⊕ Shyi
14: end for
15: hd ← {0, 1}d

16: if hd /∈
{

HDO1 , · · · , HDOm

}
then

17: Thd ← a random number r
18: end if
19: H ←

{
HDO1 , · · · , HDOm , hd

}
20: cipherH ← Enc(H, kab)
21: Th←

{
ThDO1 , · · · , ThDOm , Thd

}
22: sends hash table T = {cipherH , Th} to CS
23: ES←

{
ESy1 , · · · , ESym

}
24: ER←

{
ESy1 , · · · , ERym

}
25: sends {ES, ER} to CS
26: CS executes:
27: H ← Dec(cipherH , kab)
28: for i = 1 to m do
29: HCSi ← H(OFxi)
30: ShCSi ← ThCSi ⊕OFxi
31: end for
32: ShCS ←

{
ShCS1 , · · · , ShCSm

}
33: return {ShCS}

(1) The CS and DO perform an oblivious pseudorandom function algorithm FOPRF. First,
the CS takes the pseudorandom function value rand fxi .Then, as the output of FOPRF,
the DO receives the key kOPRF, and the CS receives the value OFxi corresponding to
rand fxi ; namely, OFxi = F(kOPRF, SExi). In particular, the CS can only obtain OFxi

corresponding to rand fxi , and cannot obtain the key kOPRF.
(2) The DO generates an oblivious pseudorandom function value. Based on the kOPRF output by

FOPRF and the pseudorandom function value rand fyi , the DO generates the correspond-
ing oblivious pseudorandom function value OFyi ; namely, OFyi = F(kOPRF, SEyi).

(3) The DO generates the hash table T. Firstly, the DO generates hash value HDOi based on the
oblivious pseudorandom function value OFyi ; namely, HDOi = H(OFyi). Then, ThDOi is
generated based on OFyi and intersection sharing value Shyi ; namely, ThDOi = OFyi ⊕
Shyi . In addition, for the binary bit string hd, but not in

{
HDO1 , · · · , HDOm

}
, the DO se-

lects the random number r as hd corresponding to Thd. Finally, the DO encrypts H and
generates cipherH based on the session key kab, where H =

{
HDO1 , · · · , HDOm , hd

}
.

The DO takes cipherH , Th as two columns to generate a hash table T and sends it to
the CS.

(4) The CS obtains the intersection sharing value. Firstly, the CS obtains the hash table
T based on cipherH and kab. Then, based on the oblivious pseudorandom function

Symmetry 2023, 15, 319 9 of 19

value OFxi and T, the CS obtains the intersection sharing value ShCSi ; namely, ShCSi =
ThCSi ⊕OFxi . According to the steps of the DO generation hash table T, it can be
proven that ShCSi satisfies the formula (6):

ShCSi =

{
ThCS ⊕OFx = OFy ⊕ Shy ⊕OFx = Shy, x = y

ThCS ⊕OFx = r⊕OFx, x 6= y.
(6)

At this point, the data submission phase ends. The CS obtains the data sharing value{
Sh(u)CS , ES(u), ER(u)

}
for each DO(u).

5.4. Outsourcing Response

In this phase, the CS first computes the private set intersection based on the intersection
sharing values of the Re and DOs. Then, the private sum calculation result is computed
based on the calculation value and calculation sharing value generated by the DO. The
details of the CS computing the privacy sum are shown in the Algorithm 4. We take a DO
as an example and divide this stage into several steps as follows:

(1) Compute private set intersection. The CS, according to formula (7), executes XOR

based on the intersection sharing value Shxi generated by the Re and Sh(u)CSi
, which

is obtained by the interaction with each DO(u), and then generates resxi . If resxi = 0,
then the datum xi belong to the set intersection; namely, xi ∈ X

⋂
(
⋂n

u=1 Y(u)):

resxi = Shxi ⊕ Sh(1)CSi
⊕ · · · ⊕ Sh(n)CSi

(7)

(2) Compute private intersection-sum. The CS decrypts the calculation value ESxi based
on pseudorandom function value rand fxi ; namely, DSxi = Dec(rand fxi , ESxi). Then,
the CS sums multiple calculation values to obtain sum.

(3) Generate the ciphertext of the private sum result. Based on the private intersection-
sum result sum and the session key kac negotiated with the Re, the CS generates the
ciphertext of the private sum result; namely, cipherres = Enc(sum, kac). Then, the
CS generates ERRe based on calculated sharing values ERxi corresponding to the
intersection data xi and sends {cipherres, ERRe} to the Re.

Algorithm 4 Private Sum Computation

Input: Sh(u)CS ,Shxi
Output: cipherres

1: for i = 1 to m do
2: sum← 0
3: ERRe ← null
4: resxi ← Shxi
5: for u = 1 to n do
6: resxi⊕ = Sh(u)CSi
7: end for
8: if resxi == 0 then

9: DSxi ← Dec(rand fxi , ES(u)
xi)

10: sum+ = DSxi
11: end if
12: end for
13: cipherres ← Enc(sum, kac)
14: return {cipherres, ERRe}

After receiving {cipherres, ERRe} from the CS, the Re first decrypts each ERxi based
on the group key K to obtain ri and add all ri named sum1. Next, the Re decrypts cipherres

Symmetry 2023, 15, 319 10 of 19

based on the session key kac to obtain sum named sum0. Finally, Re adds sum0 and sum1 to
obtain the final result of privacy intersection-sum.

6. Security Analysis

In this section, we analyze the security of our proposed protocol from three points:
the security of the Re’s data, the security of the DOs’ data, and the security of intersection-
sum result.

6.1. Security of Re’s Data

SLMP-PIS guarantees the security of the Re’s data. In other words, no one except for
the Re learns X.

In the outsourcing request phase, for each datum xi, the Re generates rand fxi and
intersection sharing value Shxi . For rand fxi , Re executes pseudorandom function for xi
based on the group key K, and obtains rand fxi corresponding to xi. For Shxi , Re first
calculates Fu based on the symmetric key k0u(i ∈ [n]) negotiated with DO(u). Then, the Re
performs XOR on the n pseudorandom function values to obtain the data sharing value,
i.e., Shxi = F1 ⊕ · · · ⊕ Fn. If the adversary A1 wants to learn xi, they need to obtain key K
and kou. However, due to the security of PRF, the probability of an adversary’s challenge
being successful is negligible.

In the data submission phase, Re computes cipherRei = Enc(rand fxi ||Shxi ||ri, kac)
based on the session key kac negotiated between the Re and CS and sends it to the CS.
Therefore, the adversary A1 can only obtain the ciphertext of the pseudorandom function
value and intersection sharing value of the Re’s data. In the absence of kac, the confi-
dentiality of symmetric encryption ensures that the probability that outsiders obtain xi is
negligible.

To sum up, SLMP-PIS guarantees the security of the Re’s data based on the security of
PRF and symmetric encryption.

6.2. Security of DOs’ Data

SLMP-PIS guarantees the security of the DOs’ data. On the one hand, it is difficult for
the CS and Re to learn any of the DOs’ data, including datum Y and the related datum T.
On the other hand, it is hard for each DO to learn the data of other DOs.

In the data submission phase, the CS first performs OPRF with the DO. The CS obtains
OFxi without kOPRF with negligible probability. The DO calculates OFyi based on kOPRF.
Then, the DO generates a hash table based on OFyi and Shyi . During this process, the DO
calculates the hash value of OFyi as the first column of the hash table, and the XOR value
of OFyi and Shyi as the second column of the hash table. Finally, the CS obtains Shyi or
random numbers through the XOR operation based on the hash table. If the adversary A2
compromises CS’s ability to learn yi, it needs to break the one-way hash function and the
security of OPRF, and this probability is negligible.

In the initialization phase, each DO(u) negotiates the session key kab(u) with the CS
based on the Diffie–Hellman key exchange protocol. DO(u) encrypts the first column of the
hash table based on kab(u) . If the adversary A2 would like to learn the data through the first
column of hash table, the key kab(u) of the DO needs to be obtained. However, the probability
is negligible. In addition, each DO(u) negotiates a symmetric key kiu(i ∈ [0, n], i 6= u) with
Re and other DOs, and calculates the Sh

y(u)i
based on n−1 symmetric keys. The possibility

for any two DOs to obtain equal symmetric keys is negligible. Therefore, it is difficult for
other DOs to learn the DO’s data through the second column of the hash table.

In summary, SLMP-PIS guarantees the security of the DOs’ data based on OPRF
security, the one-way hash function, key security, and the discrete logarithm problem.

6.3. Security of Intersection-Sum Result

SLMP-PIS guarantees the security of the private intersection-sum result. In other
words, no one except for the Re obtains the intersection-sum result.

Symmetry 2023, 15, 319 11 of 19

In the outsourcing request phase, the Re generates a pseudorandom function value
for each datum xi. In the data submission phase, each DO generates a calculation value
ESxi and a calculation sharing value ERxi . After running the obtaining shared values
algorithm, the CS computes the intersection of X

⋂
(
⋂n

u=1 Y(u)). Then, the CS computes
the sharing value of intersection-sum based on ESxi , and sends the ciphertext to the Re.
In the outsourcing response phase, the Re generates another sharing value. Therefore,
the adversary A3 compromises the CS to learn the intersection-sum result with negligible
probability due to the arithmetic secret sharing.

In conclusion, SLMP-PIS guarantees the security of the intersection-sum result based
on arithmetic secret sharing and symmetric encryption.

7. Performance Analysis

In this section, we introduce the experimental settings and results of the SLMP-PIS.

7.1. Experimental Settings

We set the Re’s data set {xi = i|i ∈ [m]}. We set the DO’s data set Y as formula (8) and
associated values T as {ti = i|i ∈ [m]}. We set the AES arithmetic to AES-256 and the hash
algorithm to MD5 by default.

y(u)i =

{
i, 1 ≤ i ≤ m/2

random− number, m/2 < i ≤ m.
(8)

In addition, we introduce the experimental arrangement. First, we study the computa-
tional cost in the outsourcing request phase, the data submission phase involving the DOs
processing data and obtaining shared values, and the outsourcing response phase. Second,
we also research the parameters and algorithms in our scheme. We study the effects of
different AES algorithms and hash functions on the computational cost. Next, we compare
the computational cost of our scheme in online and offline phases with different data sizes
m. We set m = 29 and m = 211 as examples.

Finally, we compare our scheme with some related work, including Ion et al. [32],
Lu et al. [31], and Kulshrestha et al. [35]. The comparison results are shown in Table 2.
“
√

” means satisfied, and “×” means dissatisfied. Ion et al. [32] proposed a strict two-party
private intersection-sum protocol, Lu et al. [31] described a private intersection weighted
sum protocol, and Kulshrestha et al. [35] proposed a non-strict private intersection-sum
protocol to compute ∑x∈I T[x], where I = X0

⋂
(
⋃n−1

i=1 Xi) and T is associated with the
values of X. Therefore, we compare our scheme with the computational cost of executing
the model multiple times, as in Ion et al. [32], since they implement the same function.

Table 2. Comparison with related work.

Schemes Ion [32] Lu [31] Kulshrestha [35] SLMP-PIS

Data privacy
√ √ √ √

Strictly PIS
√

× ×
√

Party offline × × ×
√

Data update × × ×
√

Symmetric
cryptosystem × × ×

√

The experiments are implemented on a PC (CPU, Intel(R) Core(TM) i5-8265U CPU @
1.60 GHz 1.80 GHz; RAM, 8.00 G; OS, Windows 10) with centos7 virtual machines using
python 3.7.4. The code is shown in github: https://github.com/mokx1874/SLMP-PIS.git,
accessed on 19 January 2023.

https://github.com/mokx1874/SLMP-PIS.git

Symmetry 2023, 15, 319 12 of 19

7.2. Experimental Results
7.2.1. Computational Costs in Different Phases

At this stage, we evaluate the effect of data set size m and the number of DOs on the
computational cost in the outsourcing request phase, the data submission phase involving
the DO processing data and obtaining shared values, and the outsourcing response phase.
The computational cost of the SLMP-PIS is shown in Figure 3. We select m from 28 to 212

and |DOs| from 2 to 5.
In the outsourcing request phase, as shown in Figure 4, it is obvious that m and |DOs|

influence the computational cost. When setting |DOs| = 5, the computational cost is 0.63 s
(m = 28) and 10.11 s (m = 212). When setting m = 210, the computational cost is 1.43 s
(|DOs| = 2) and 2.47 s (|DOs| = 5). Therefore, the computational cost in the outsourcing
request phase is positively correlated with m and |DOs|.

In the DOs’ data processing in the data submission phase, as shown in Figure 5, it
is obvious that m and |DOs| influence the computation cost. When setting |DOs| = 5,
the computational cost is 0.71 s (m = 28) and 11.35 s (m = 212). When setting m = 210,
the computational cost is 1.76 s (|DOs| = 2) and 2.87 s (|DOs| = 5). Therefore, the
computational cost of the DOs’ data processing is a positive correlation with m and |DOs|.
As shown in Figure 6, we evaluate the computational overhead of this stage under different
m through multiple experiments. The computational costs are 0.79 s (m = 28), 1.37 s (m =
29), 2.35 s (m = 210), 3.51 s (m = 211), and 7.42 s (m = 212). Therefore, the computational
cost of obtaining shared values is a positive correlation with m.

2 3 4 5
The number of DOs

0

5

10

15

20

25

30

35

40

co
m

pu
ta

tio
n

co
st

s(
s)

m = 28

m = 29

m = 210

m = 211

m = 212

Figure 3. Computational cost of SLMP-PIS.

Symmetry 2023, 15, 319 13 of 19

2 3 4 5
The number of DOs

0

2

4

6

8

10

12

co
m

pu
ta

tio
n

co
st

s(
s)

m = 28

m = 29

m = 210

m = 211

m = 212

Figure 4. Computational cost of outsourcing requests.

2 3 4 5
The number of DOs

0

2

4

6

8

10

12

co
m

pu
ta

tio
n

co
st

s(
s)

m = 28

m = 29

m = 210

m = 211

m = 212

Figure 5. Computational cost of DOs’ data processing.

Symmetry 2023, 15, 319 14 of 19

25 50 75 100 125 150 175 200
The number of DOs

0

1

2

3

4

5

6

7

8

C
om

pu
ta

tio
n

co
st

s(
s)

m = 28

m = 29

m = 210

m = 211

m = 212

Figure 6. Computational cost of obtaining shared values.

In the outsourcing response phase, as shown in Figure 7, it is obvious that m and
|DOs| influence the computational cost. When setting |DOs| = 5, the computational cost is
0.56 s (m = 28) and 8.45 s (m = 212). When setting m = 210, the computational cost is 0.95 s
(|DOs| = 2) and 2.03 s (|DOs| = 5). Therefore, the computational cost in the outsourcing
response phase is positively correlated with m and |DOs|.

2 3 4 5
The number of DOs

0

1

2

3

4

5

6

7

8

9

co
m

pu
ta

tio
n

co
st

s(
s)

m = 28

m = 29

m = 210

m = 211

m = 212

Figure 7. Computational cost of outsourcing responses.

Symmetry 2023, 15, 319 15 of 19

As a result, the computational cost in different phases has a positive correlation with
m and the number of DOs, and it is acceptable.

7.2.2. The Effect of AES and Hash

We set m = 210 in Figures 8 and 9. The results show that the impact of hash functions
on computational cost is not obvious. When using MD5, the computational cost is 11.75 s,
and it is 11.79 s using SHA-1, 11.83 s using SHA-256, and 11.87 s using SHA-512. The
difference is negligible. For AES, we notice that AES algorithms have little impact on
computation cost. When using AES-128, the computational cost is 11.72 s, 11.74 s using
AES-192, and 11.81 s in using AES-256. The difference is negligible.

25 50 75 100 125 150 175 200
Time of experiments

11.0

11.2

11.4

11.6

11.8

12.0

C
om

pu
ta

tio
n

co
st

s(
s)

MD5
SHA-1
SHA-256
SHA-512

Figure 8. Computational cost with different hash functions.

As a result, the impact of different AES algorithms and hash functions on the compu-
tational cost is negligible.

Symmetry 2023, 15, 319 16 of 19

25 50 75 100 125 150 175 200
Time of experiments

10.00

10.25

10.50

10.75

11.00

11.25

11.50

11.75

12.00

C
om

pu
ta

tio
n

co
st

s(
s)

AES-128
AES-192
AES-256

Figure 9. Computational cost with different AES algorithms.

7.2.3. Online and Offline

The current PIS basically needs to be executed online, which places more stringent
requirements on the participants. Our solution enables parties to be offline after submitting
their data. As shown in Figure 10, we compare the calculation cost of online and offline
processes with different m. When setting m = 29 and |DOs| = 5, the computational cost is
3.21 s in online and 4.35 s in offline processes. When setting m = 211 and |DOs| = 5, the
computational cost is 10.81 s for online and 23.17 s for offline.

2 3 4 5
The number of DOs

0

5

10

15

20

25

C
om

pu
ta

tio
n

co
st

s(
s)

online_512
offline_512
online_2048
offline_2048

Figure 10. Computational cost of online and offline processes.

Symmetry 2023, 15, 319 17 of 19

As a result, we find that the difference between the computational cost of offline
processes and the computational cost of online processes gradually increases with the
increase in m, and the computational cost of online processes is smaller than that of offline
processes.

7.2.4. Comparison with Related Work

As shown in Figure 11, we compare the computational cost of our proposed scheme
and Ion’s [32] with different m. When setting m = 29 and |DOs| = 2, the computational
cost is 3.80 s in our scheme and 3.99 s in Ion’s. When setting m = 29 and |DOs| = 5, the
computational cost is 7.56 s for our scheme and 11.29 s for Ion’s. When setting m = 211 and
|DOs| = 2, the computational cost is 18.98 s for our scheme and 19.06 s for Ion’s. When
setting m = 211 and |DOs| = 5, the computational cost is 33.97 s for our scheme and 44.11 s
for Ion’s.

2 3 4 5
The number of DOs

0

10

20

30

40

50

C
om

pu
ta

tio
n

co
st

s(
s)

Ion_m512
ours_m512
Ion_m2048
ours_m2048

Figure 11. Computational cost of our scheme and Ion’s [32].

As a result, we find that the larger the number of DOs, the more efficient our scheme is.

8. Conclusions

In this paper, we demonstrate a secure and lightweight multi-party private intersection-sum
scheme that computes the sum of associated values based on the private set intersection.
On the one hand, the scheme achieves an outsourced multi-party private intersection-
sum. On the other hand, our scheme allows participants to be offline and still update
data. Specifically, we protect the privacy of outsourced data based on zero sharing and an
oblivious pseudorandom function, and consider the privacy of associated values based on
arithmetic sharing and symmetric encryption. We introduce the cloud computing technique
into our scheme, which allows data owners to stay offline after outsourcing their processed
data. Finally, the security analysis shows that the protocol is secure. The performance
results illustrate the efficiency and feasibility of our scheme. Specifically, when the number
of participants is five, the efficiency can be increased by 22.98%. As part of our future work,
we will continue to study how to design a PIS protocol with malicious security.

Symmetry 2023, 15, 319 18 of 19

Author Contributions: Conceptualization, X.K., Y.L., J.Z., H.M., T.L., Z.M. and S.G.; methodology,
X.K., Z.M., J.Z., Y.L. and T.L.; software, X.K., J.Z., Y.L. and H.M.; validation, J.Z., Y.L. and H.M.;
formal analysis, X.K. and Y.L.; investigation, J.Z., Y.L. and H.M.; resources, X.K., Y.L. and H.M.;
writing—original draft preparation, X.K., Z.M., Y.L. and J.Z.; writing—review and editing, X.K., Z.M.,
J.Z., Y.L. and S.G.; visualization, X.K., Z.M. and Y.L.; supervision, X.K., Z.M., J.Z., Y.L. and S.G.;
project administration, Z.M. J.Z. and H.M.; funding acquisition, Z.M., J.Z. and Y.L. All authors have
read and agreed to the published version of the manuscript.

Funding: This work was funded by the National Key Research and Development Program of China
(Grant No. 2021YFB3101100, 2022YFB3103500), the National Natural Science Foundation of China
(U21A20464, 61872283), the Natural Science Basic Research Program of Shaanxi (2023-JC-JQ-49,
2022JZ-33, 2021JC-22), CNKLSTISS, the China 111 Project (No. B16037).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sun, L.; Gupta, R.K.; Sharma, A. Review and potential for artificial intelligence in healthcare. Int. J. Syst. Assur. Eng. Manag. 2022,

13, 54–62.
2. Boute, R.N.; Gijsbrechts, J.; Van Mieghem, J.A. Digital lean operations: Smart automation and artificial intelligence in financial

services. In Innovative Technology at the Interface of Finance and Operations; Springer: Cham, Switzerland, 2022; pp. 175–188.
3. Ye, H.; Liu, J.; Wang, W.; Li, P.; Li, T.; Li, J. Secure and efficient outsourcing differential privacy data release scheme in

cyber–physical system. Future Gener. Comput. Syst. 2020, 108, 1314–1323. [CrossRef]
4. Li, T.; Li, J.; Liu, Z.; Li, P.; Jia, C. Differentially private Naive Bayes learning over multiple data sources. Inf. Sci. 2018, 444, 89–104.

[CrossRef]
5. Heidari, A.; Jabraeil Jamali, M.A. Internet of Things intrusion detection systems: A comprehensive review and future directions.

Clust. Comput. 2022. [CrossRef]
6. Heidari, A.; Navimipour, N.J.; Unal, M.; Zhang, G. Machine Learning Applications in Internet-of-Drones: Systematic Review,

Recent Deployments, and Open Issues. ACM Comput. Surv. 2022. [CrossRef]
7. Li, Y.; Jiang, Z.L.; Wang, X.; Fang, J.; Zhang, E.; Wang, X. Securely outsourcing ID3 decision tree in cloud computing. Wirel.

Commun. Mob. Comput. 2018, 2018, 2385150. [CrossRef]
8. Xie, R.; He, C.; Xie, D.; Gao, C.; Zhang, X. A secure ciphertext retrieval scheme against insider kgas for mobile devices in cloud

storage. Secur. Commun. Netw. 2018, 2018, 7254305.
9. Cai, Z.; Yan, H.; Li, P.; Huang, Z.A.; Gao, C. Towards secure and flexible EHR sharing in mobile health cloud under static

assumptions. Clust. Comput. 2017, 20, 2415–2422. [CrossRef]
10. Zhu, Y.; Zhang, Y.; Li, X.; Yan, H.; Li, J. Improved collusion-resisting secure nearest neighbor query over encrypted data in cloud.

Concurr. Comput. Pract. Exp. 2019, 31, e4681. [CrossRef]
11. Althobaiti, O.S.; Mahmoodi, T.; Dohler, M. Intelligent Bio-Latticed Cryptography: A Quantum-Proof Efficient Proposal. Symmetry

2022, 14, 2351. [CrossRef]
12. Khan, N.U.; Shah, M.A.; Maple, C.; Ahmed, E.; Asghar, N. Traffic Flow Prediction: An Intelligent Scheme for Forecasting Traffic

Flow Using Air Pollution Data in Smart Cities with Bagging Ensemble. Sustainability 2022, 14, 4164.
13. Makin, S.; Brack, C.; Kynn, M.; Murchie, P. 1013 DIAGNOSTIC TEST ACCURACY OF FRAILTY SCREENING TOOLS USING

DATA IN ELECTRONIC PRIMARY CARE RECORDS. Age Ageing 2022, 51, 005.
14. Huang, H. Cryptosystems Based on Tropical Congruent Transformation of Symmetric Matrices. Symmetry 2022, 14, 2378.

[CrossRef]
15. Almaiah, M.A.; Al-Zahrani, A.; Almomani, O.; Alhwaitat, A.K. Classification of cyber security threats on mobile devices and

applications. In Artificial Intelligence and Blockchain for Future Cybersecurity Applications; Springer: Cham, Switzerland, 2021;
pp. 107–123.

16. Gabr, M.; Younis, H.; Ibrahim, M.; Alajmy, S.; Khalid, I.; Azab, E.; Elias, R.; Alexan, W. Application of DNA Coding, the Lorenz
Differential Equations and a Variation of the Logistic Map in a Multi-Stage Cryptosystem. Symmetry 2022, 14, 2559. [CrossRef]

17. Bahig, H.M.; Hazber, M.A.G.; Al-Utaibi, K.; Nassr, D.I.; Bahig, H.M. Efficient Sequential and Parallel Prime Sieve Algorithms.
Symmetry 2022, 14, 2527. [CrossRef]

18. Chen, W.; Li, J.; Huang, Z.; Gao, C.; Yiu, S.; Jiang, Z.L. Lattice-based unidirectional infinite-use proxy re-signatures with private
re-signature key. J. Comput. Syst. Sci. 2021, 120, 137–148. [CrossRef]

19. Wang, X.; Li, J.; Yan, H. An improved anti-quantum MST3 public key encryption scheme for remote sensing images. Enterp. Inf.
Syst. 2021, 15, 530–544.

http://doi.org/10.1016/j.future.2018.03.034
http://dx.doi.org/10.1016/j.ins.2018.02.056
http://dx.doi.org/10.1007/s10586-022-03776-z
http://dx.doi.org/10.1145/3571728
http://dx.doi.org/10.1155/2018/2385150
http://dx.doi.org/10.1007/s10586-017-0796-5
http://dx.doi.org/10.1002/cpe.4681
http://dx.doi.org/10.3390/sym14112351
http://dx.doi.org/10.3390/sym14112378
http://dx.doi.org/10.3390/sym14122559
http://dx.doi.org/10.3390/sym14122527
http://dx.doi.org/10.1016/j.jcss.2021.03.008

Symmetry 2023, 15, 319 19 of 19

20. Yan, H.; Chen, M.; Hu, L.; Jia, C. Secure video retrieval using image query on an untrusted cloud. Appl. Soft Comput. 2020,
97, 106782.

21. Almaiah, M.A.; Dawahdeh, Z.; Almomani, O.; Alsaaidah, A.; Al-Khasawneh, A.; Khawatreh, S. A new hybrid text encryption
approach over mobile ad hoc network. Int. J. Electr. Comput. Eng. 2020, 10, 6461–6471. [CrossRef]

22. Yuan, H.; Chen, X.; Wang, J.; Yuan, J.; Yan, H.; Susilo, W. Blockchain-based public auditing and secure deduplication with fair
arbitration. Inf. Sci. 2020, 541, 409–425.

23. Yu, J.; Xue, H.; Liu, B.; Wang, Y.; Zhu, S.; Ding, M. Gan-based differential private image privacy protection framework for the
internet of multimedia things. Sensors 2020, 21, 58. [PubMed]

24. Xu, L.; Sun, Z.; Li, W.; Yan, H. Delegatable searchable encryption with specified keywords for EHR systems. In Wireless Networks;
Spinger: New York, NY, USA, 2020; pp. 1–13.

25. Ali, A.; Almaiah, M.A.; Hajjej, F.; Pasha, M.F.; Fang, O.H.; Khan, R.; Teo, J.; Zakarya, M. An Industrial IoT-Based Blockchain-
Enabled Secure Searchable Encryption Approach for Healthcare Systems Using Neural Network. Sensors 2022, 22, 572. [CrossRef]
[PubMed]

26. Jing, Z.; Gu, C.; Yu, Z.; Shi, P.; Gao, C. Cryptanalysis of lattice-based key exchange on small integer solution problem and its
improvement. Clust. Comput. 2019, 22, 1717–1727.

27. Li, J.; Tang, X.; Wei, Z.; Wang, Y.; Chen, W.; Tan, Y.A. Identity-based multi-recipient public key encryption scheme and its
application in IoT. Mob. Netw. Appl. 2021, 26, 1543–1550.

28. Bahig, H.M.; Nassr, D.I.; Mahdi, M.A.; Bahig, H.M. Small Private Exponent Attacks on RSA Using Continued Fractions and
Multicore Systems. Symmetry 2022, 14, 1897. [CrossRef]

29. Mahad, Z.; Ariffin, M.R.K.; Ghafar, A.H.A.; Salim, N.R. Cryptanalysis of RSA-Variant Cryptosystem Generated by Potential
Rogue CA Methodology. Symmetry 2022, 14, 1498. [CrossRef]

30. Ion, M.; Kreuter, B.; Nergiz, E.; Patel, S.; Saxena, S.; Seth, K.; Shanahan, D.; Yung, M. Private intersection-sum protocol with
applications to attributing aggregate ad conversions. Cryptology ePrint Archive. 2017. Available online: https://eprint.iacr.org/20
17/738 (accessed on 1 August 2017).

31. Lu, S.; Li, Z.; Miao, X.; Han, Q.; Zheng, J. PIWS: Private Intersection Weighted Sum Protocol for Privacy-Preserving Score-Based
Voting With Perfect Ballot Secrecy. IEEE Trans. Comput. Soc. Syst. 2022 , 31, 1–18. [CrossRef]

32. Ion, M.; Kreuter, B.; Nergiz, A.E.; Patel, S.; Saxena, S.; Seth, K.; Raykova, M.; Shanahan, D.; Yung, M. On deploying secure
computing: Private intersection-sum-with-cardinality. In Proceedings of the 2020 IEEE European Symposium on Security and
Privacy (EuroS&P), Genoa, Italy, 7–11 September 2020; pp. 370–389.

33. Miao, P.; Patel, S.; Raykova, M.; Seth, K.; Yung, M. Two-Sided Malicious Security for Private Intersection-Sum with Cardinality.
In Proceedings of the Advances in Cryptology—CRYPTO 2020; Micciancio, D., Ristenpart, T., Eds.; Springer International Publishing:
Cham, Switzerland, 2020; pp. 3–33.

34. Niu, Z.; Wang, H.; Li, Z.; Song, X. Privacy-preserving statistical computing protocols for private set intersection. Int. J. Intell. Syst.
2021. [CrossRef]

35. Kulshrestha, A.; Mayer, J. Estimating Incidental Collection in Foreign Intelligence Surveillance: Large-Scale Multiparty Private
Set Intersection with Union and Sum. In Proceedings of the 31st USENIX Security Symposium (USENIX Security 22); USENIX
Association: Boston, MA, USA, 2022; pp. 1705–1722.

36. Döttling, N.; Garg, S.; Hajiabadi, M.; Masny, D.; Wichs, D. Two-round oblivious transfer from CDH or LPN. In Proceedings of
the Annual International Conference on the Theory and Applications of Cryptographic Techniques; Springer: Cham, Switzerland, 2020;
pp. 768–797.

37. Wang, X.; Kuang, X.; Li, J.; Li, J.; Chen, X.; Liu, Z. Oblivious transfer for privacy-preserving in VANET’s feature matching. IEEE
Trans. Intell. Transp. Syst. 2020, 22, 4359–4366. [CrossRef]

38. Freedman, M.J.; Ishai, Y.; Pinkas, B.; Reingold, O. Keyword Search and Oblivious Pseudorandom Functions. In Proceedings of the
Theory of Cryptography; Kilian, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 303–324.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.11591/ijece.v10i6.pp6461-6471
http://www.ncbi.nlm.nih.gov/pubmed/33374259
http://dx.doi.org/10.3390/s22020572
http://www.ncbi.nlm.nih.gov/pubmed/35062530
http://dx.doi.org/10.3390/sym14091897
http://dx.doi.org/10.3390/sym14081498
https://eprint.iacr.org/2017/738
https://eprint.iacr.org/2017/738
http://dx.doi.org/10.1109/TCSS.2022.3162869
http://dx.doi.org/10.1002/int.22420
http://dx.doi.org/10.1109/TITS.2020.2973738

	Introduction
	Related Work
	Preliminaries
	Oblivious Transfer
	Oblivious Pseudorandom Function
	Arithmetic Sharing

	Problem Formulations
	System Model
	Adversary Model

	The Protocol Framework
	Initialization
	Outsourcing Request
	Data Submission
	Outsourcing Response

	Security Analysis
	Security of Re's Data
	Security of DOs' Data
	Security of Intersection-Sum Result

	Performance Analysis
	Experimental Settings
	Experimental Results
	Computational Costs in Different Phases
	The Effect of AES and Hash
	Online and Offline
	Comparison with Related Work

	Conclusions
	References

