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Abstract: In this paper, a new technique using a tensor product is presented in order to provide exact
solutions to some certain fractional differential equations. Particularly, the well-known third order
Gardner’s equation, which is also known in some contexts as KdV-mKdV, of the fractional type. This
type of equations plays an important role in modeling many symmetric and asymmetric problems.
Moreover, the existence of an atomic solution using a tensor product technique for certain second
order equations has been proved.
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1. Introduction

A large variety of biological, chemical and physical phenomena are governed by
different kinds of nonlinear partial differential equations. Most of the exciting advances in
theoretical physics and nonlinear science are the ones related to the development of methods
to find the exact solutions of nonlinear partial differential equations. Such solutions play
an important role in nonlinear science, since they can provide more insight of the physical
aspects of the problem which can lead to further applications, see for instance, [1–9].

In recent years, several powerful methods for obtaining the exact solution of nonlinear
evolution equations have been established, such as homogeneous balance method [2,7],
Hirota’s method [10,11], projective Riccati equation method [3,12], separation of vari-
ables [4,13,14] and Jacobi elliptic functions method [15].

Using a tensor product of two Banach spaces Zigan and others, [16,17], have presented
a new method to find the exact solution of homogeneous and non-homogeneous first
order abstract Cauchy problem. After that, different kinds of ordinary and fractional type
differential equations have been solved using the tensor product methods [18–23], while
atomic solution of certain inverse problems has been obtained [24,25].

It is known that the Gardner equation is one of those type of equations that plays an
important role in applications in many different kinds of fields in science and engineering.
For example, in fluid mechanics, plasma and physics, Gardner equation has the form

∂u
∂s

+ λu
∂u
∂ω

+ βu2 ∂u
∂ω

+ γ
∂3u
∂ω3 = 0,

which is also called the KdV-mKdV equation. By changing the value of λ, β and γ different
types of equations can be obtained.

If β and γ are chosen to be 0 and 1, respectively, then the KdV equation has the form

∂u
∂s

+ λu
∂u
∂ω

+
∂3u
∂ω3 = 0, (1)
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where λ is any real number. Taking the value of λ = ±1 or λ = ±6, the KdV equation
represent a large variety of phenomena such as diving waves in plasma and acoustic
ion waves.

Moreover, if λ = 0 and γ = 1, the mKdV equation can be written as

∂u
∂s

+ βu2 ∂u
∂ω

+
∂3u
∂ω3 = 0, (2)

that is completely integrable and can be obtained easily from the KdV using Miura trans-
form [5].

In the last few years, differential equations of fractional order type received a great
attention because they play a big aspect in the model life problems, symmetric and non-
symmetric problems and their applications in physics, finance, and other branches of
science and engineering, see e.g., [26–30].

Over the years, many different forms of fractional differential operators have been
introduced, such as Riemann, Caputo, etc. [31,32]. Most of them use integral form and they
are generally not equivalent. All definitions appear to satisfy linearity property and all of
them do not satisfy the familiar rules of ordinary derivative. To overcome these difficulties
and others, new simple interesting definition appeared and extended the definition of the
usual derivation [33,34] as follows:

If g is a function from [0, ∞) to the set of real numbers R, the α− conformable derivative
of the function g is defined as

Dα(g)(s) = lim
ε→0

g(s + εs1−α)− g(s)
ε

,

for all 0 < α ≤ 1 and all s > 0 . If g has α−conformable derivative in some interval (0, b),
b > 0 and lim

s→0+
gα(s) exists, then gα(0) = lim

s→0+
gα(s), where gα(s) stands for Dα(g)(s) and

g(2α)(s) represents DαDα(g)(s).
In this paper, we focus on studying the atomic solution of the conformable fractional

Gardner’s equations:

∂αu
∂sα

+ λu
∂αu
∂ωα

+
∂α

∂ωα

(
∂α

∂ωα

(
∂αu
∂ωα

))
= 0,

and
∂αu
∂sα

+ βu2 ∂αu
∂ωα

+
∂α

∂ωα

(
∂α

∂ωα

(
∂αu
∂ωα

))
= 0,

using a tensor product technique.

2. Main Result

In the theory of tensor product of two Banach spaces A and B, a linear operator of
the form g = h⊗ j : A∗ → B is defined by h⊗ j(ω∗) = ω∗(h)j, where A∗ is the dual of the
Banach space A and h⊗ j ∈ A⊗ B, is called an atom.

It is known that, g is bounded as a linear operator and has norm equal to ||h|| ||j||. By
A⊗ B we denote the linear space spanned by the set {ω ⊗ y, (ω, y) ∈ A× B}. There are
many norms that one can define on A⊗ B. One of most popular ones is the injective norm

||.||∨, see [35]. For Υ =
n

∑
i=1

ωi ⊗ yi ∈ A⊗ B,

||Υ||∨ = sup{
n

∑
i=1
|〈ω, ω∗〉〈y, y∗〉|, ω∗ ⊗ y∗ ∈ A∗ × B∗, ||ω∗|| = ||y∗|| = 1}.

The space (A⊗ B, ||.||∨) need not to be complete. We let A
∨
⊗ B denote the completion

of A⊗ B in the space of all bounded linear operators from A∗ to B, which is denoted by



Symmetry 2023, 15, 440 3 of 9

L(A∗, B) with respect to the injective norm. It is known [35], that C(I, A) (The space of

all continuous function from I to A) is isometrically isomorphic to C(I)
∨
⊗ A. If A = C(I),

then C(I)
∨
⊗ C(I) ' C(I, C(I)) which is isomorphic to C(I × I), see [36]. That means any

continuous function of two variables can be represented by an element in C(I)
∨
⊗ C(I), the

completion of C(I)⊗ C(I), since there exists a one-one correspondence between the two

spaces. If u(x, y) ∈ C(I × I), then u(x, y) can be represented by f ∈ C(I)
∨
⊗ C(I) which has

the form f =
∞

∑
i=1

Pi ⊗Qi Pi, Qi ∈ C(I), i = 1, 2, 3, . . . .

If sum is finite, then we say that u(x, y) can be represented by a finite rank operator

f =
n

∑
i=1

Pi ⊗Qi. If n = 1, then the function u(x, y) can be represented by one atom. If the

solution of the differential equation can be represented by an atom we say that it has an
atomic solution.

In this section, we prove the existence of an atomic solution of the fractional type
Gardner differential equation. To handle this, we need the following lemma.

Lemma 1. [21] Let u1⊗ v1 and u2⊗ v2 be two non zero atoms in C(I)
∨
⊗C(I). Then the following

are equivalent:

(1) u1 ⊗ v1 + u2 ⊗ v2 = u3 ⊗ v3, a non zero atom.
(2) u1, u2 or v1, v2 are linearly dependent.

In the sequel, we state our main results of this paper, where we prove the existence
of an atomic solution of the non-linear KdV-mKdV equations of conformable fractional
type using a tensor product technique, a simple new method to find the exact solution
of such non-linear fractional partial differential equations that cannot be solved by the
well known separation of variables method, and in addition, is more accurate than the
numerical approximate methods.

Theorem 1. Let u ∈ C(I × I), where I = [0, 1] or [0, ∞) with values in the Banach space A. If u
is an α−differentiable in some α ∈ (0, 1], then the fractional partial differential equation

u(α)
s + λuu(α)

ω + u(3α)
ω = 0, (3)

has an atomic solution.

Proof. Let u(ω, s) = X ⊗ T, where X and T are functions of ω and s, respectively. Then
u(α)

ω = X(α) ⊗ T, u(α)
s = X ⊗ T(α)and u(3α)

ω = X(3α) ⊗ T. This implies that Equation (3)
becomes

X⊗ T(α) + λ[X⊗ T][X(α) ⊗ T] = −X(3α) ⊗ T,

which implies
X⊗ T(α) + λXX(α) ⊗ T2 = −X(3α) ⊗ T. (4)

Using Equation (4) and Lemma 1, we have either X = λXXα or T(α) = T2.
Case 1: If T(α) = T2, then

T−2T(α) = 1∫
T−2dαT =

∫
dαs

−1
T

= (
1
α
)sα

T(s) = −αs−α.
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Hence,
X⊗ T(α) + λXX(α) ⊗ T2 = −X(3α) ⊗ T,

and
[X + λXX(α)]⊗ T2 = −X(3α) ⊗ T.

Therefore, T2 = T and X + λXX(α) = −X(3α). This is a contradiction since in this case
T2 6= T.
Case 2: If X = λXX(α), then X− λXX(α) = 0 which implies X[1− λX(α)] = 0, and hence
X = 0 or 1− λX(α) = 0.

(i) If X = 0, then it is a zero solution.
(ii) if 1− λX(α) = 0, then X(α) = 1

λ , which leads to

dαX
dωα

=
1
λ

,

by integrating both sides, we obtain

X =
∫ 1

λ
dαω,

and hence,

X(ω) =
1

αλ
ωα.

Now, we have X(ω) = 1
αλ ωα, X(α)(ω) = 1

λ , X(2α)(ω) = X(3α)(ω) = 0. Hence,

X⊗ T(α) + λXX(α) ⊗ T2 = −X(3α) ⊗ T,

which implies,
X⊗ T(α) + X⊗ T2 = 0⊗ T,

and hence,
X⊗ [T(α) + T2] = 0.

Since here X 6= 0, we have T(α) + T2 = 0, which implies

T(α) = −T2,

T−2Tα = −1,∫
T−2dαT =

∫
−1dαs,

−1
T

= (
−1
α

)sα,

T(s) = αs−α.

To verify (4), set u = X ⊗ T, u(α)
ω = X(α) ⊗ T, u(α)

s = X ⊗ T(α) and u(3α)
ω = X(3α) ⊗ T,

where X(ω) = 1
αλ ωα, X(α)(ω) = 1

λ , X(2α)(ω) = X(3α)(ω) = 0, and T(s) = αs−α T(α)(s) =
−α2s−2α = −T2(s), then X(3α) ⊗ T = 0.
Now,

X⊗ T(α) + λXX(α) ⊗−T(α) = X⊗ T(α) + X⊗−T(α)

= 0

= X(3α) ⊗ T.

This implies that u = X ⊗ T is an atomic solution of Equation (3), where X(ω) = 1
αλ ωα

and T(s) = αs−α.



Symmetry 2023, 15, 440 5 of 9

Theorem 2. Let u ∈ C(I × I), where I = [0, 1] or [0, ∞) with values in the Banach space A. If u
is an α−differentiable in some α ∈ (0, 1], then the fractional partial differential equation

u(α)
s + βu2u(α)

ω + u(3α)
ω = 0, (5)

has an atomic solution.

Proof. Let u(ω, s) = X ⊗ T, where X and T are functions of ω and s, respectively. Then,
u2 = [X ⊗ T][X ⊗ T] = X2 ⊗ T2, u(α)

ω = X(α) ⊗ T, u(α)
s = X ⊗ T(α) and u(3α)

ω = X(3α) ⊗ T.
This implies that Equation (5) becomes

X⊗ T(α) + β[X2 ⊗ T2][X(α) ⊗ T] + X(3α) ⊗ T = 0,

X⊗ T(α) + βX2X(α) ⊗ T3 + X(3α) ⊗ T = 0,

so,
βX2X(α) ⊗ T3 + X(3α) ⊗ T = −X⊗ T(α). (6)

In this case, either βX2X(α) = X(3α) or T3 = T.
Case 1: If βX2X(α) = X(3α), then substitute it in Equation (6) to obtain

X(3α) ⊗ T3 + X(3α) ⊗ T = −X⊗ T(α)

X(3α) ⊗ [T3 + T] = X⊗−T(α),

and therefore, X(3α) = X and T3 + T = −T(α). This is a contradiction, since X = X(3α) =
βX2X(α) implies X = 0 or X = βX2X(α).

(i) X = 0 =⇒ X(α) = X(3α) = 0, which is a zero solution.
(ii) X = βX2X(α) =⇒ 1 = βXX(α) =⇒ X =

√
2

αβ ω
α
2 6= X(3α), a contradiction.

Case 2: If T3 = T, then T = 0 and T2 = 1.
(i) If T(s) = 0, then it is a zero solution (trivial solution).
(ii) If T2 = 1⇒ T(s) = ±1 and T(α)(s) = 0, then Equation (6) becomes

βX2X(α) ⊗ T + X(3α) ⊗ T = −X⊗ T(α),

[βX2X(α) + X(3α)]⊗ T = 0,

and since T(s) 6= 0, we have βX2X(α) + X(3α) = 0, and hence

X(3α) = −βX2X(α),∫
X(3α)dωα = −β

∫
X2X(α)dαω,

X(2α) =
−β

3
X3.

Set η = −β
3 , then X(2α) = ηX3. Put X(2α) = y(α) by chain rule we have y(α) = y′(X)dαX =

y′y, so

y(α) = y′y = ηX3,∫
ydy =

∫
ηX3dX,

y2

2
=

η

4
X4,

y =

√
η

2
X2.
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Then,

X(α) =

√
η

2
X2,

dαX
dωα

=

√
η

2
X2,

X(ω) =
−α√

η
2

ω−α.

To verify (6), set u = X⊗ T, u(α)
ω = X(α) ⊗ T, u(α)

s = X⊗ T(α) and u(3α)
ω = X(3α) ⊗ T, where

X(ω) = −α√
η
2

ω−α, then

X(α)(ω) = α2√
η
2

ω−2α =
√

η
2 X2,

X(2α)(ω) =
√

η
2 X2+α, and

X(3α)(ω) = −βX2X(α),

and T(s) = ±1 = T3(s), T(α)(s) = 0, then X⊗ T(α) = βX2X(α) = 0.
Now,

X⊗ T(α) + βX2X(α) ⊗ T3 + X(3α) ⊗ T = βX2X(α) ⊗ T3 + X(3α) ⊗ T,

= [βX2X(α) + X(3α)]⊗ T,

= βX2X(α) +−βX2X(α)

= 0

= βX2X(α)

= X⊗ T(α).

Therefore, u = X⊗ T is a solution of (5), where X(ω) = −α√
η
2

ω−α and T(s) = ±1.

3. A Further Result

In this section, we give an atomic solution of a conformable fractional version of a
second order Gardner’s equation type of the form

∂u
∂s

+ λu
∂u
∂ω

+
∂2u
∂ω2 = 0.

Theorem 3. Let u ∈ C(I × I), where I = [0, 1] or [0, ∞) with values in the Banach space A. If u
is an α−differentiable in some α ∈ (0, 1], then the fractional partial diffrential equation

u(α)
s + λuu(α)

ω + u(2α)
ω = 0, (7)

has an atomic solution.

Proof. Let u(ω, s) = X⊗ T, where X is a function of ω and T is a function of s. Then

u(α)
ω = X(α) ⊗ T, u(α)

s = X⊗ T(α)and u(2α)
ω = X(2α) ⊗ T.

This implies that Equation (7) becomes

X⊗ T(α) + λ[X⊗ T][X(α) ⊗ T] = −X(2α) ⊗ T,

then we have
X⊗ T(α) + λXX(α) ⊗ T2 = −X(2α) ⊗ T. (8)
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This is the form where the sum of two atoms equal an atom. Hence, by Lemma 1 either
X = λXXα or Tα = T2.
Case 1: If T(α) = T2, then

T−2Tα = 1,∫
T−2dαT =

∫
dαs,

−1
T

= (
1
α
)sα,

T(s) = −αs−α.

Hence,

X⊗ T(α) + λXX(α) ⊗ T2 = −X(2α) ⊗ T,

[X + λXX(α)]⊗ T2 = −X(2α) ⊗ T.

Therefore, T2 = T and X + λXX(α) = −X(2α). This is a contradiction since T = −αs−α 6=
αs−2α = T2.
Case 2: If X = λXX(α), then X − λXX(α) = 0, and so X[1− λX(α)] = 0, which implies
X = 0 or 1− λX(α) = 0.

(i) If X = 0, then it is a zero solution.
(ii) if 1− λX(α) = 0, then X(α) = 1

λ =⇒

dαX
dωα

=
1
λ

,

X =
∫ 1

λ
dαω,

X(ω) =
1

αλ
ωα.

Now, we have X(ω) = 1
αλ ωα, X(α)(ω) = 1

λ , X(2α)(ω) = 0.
Hence,

X⊗ T(α) + λXX(α) ⊗ T2 = −X(2α) ⊗ T,

X⊗ T(α) + X⊗ T2 = 0⊗ T,

X⊗ [T(α) + T2] = 0.

Since here X 6= 0, we have Tα + T2 = 0 which implies

Tα = −T2,

T−2Tα = −1,∫
T−2dαT =

∫
−1dαs,

−T−1 = (
−1
α

)sα,

T(s) = αs−α.

To verify (8), set u = X⊗ T, u(α)
ω = X(α) ⊗ T, u(α)

s = X⊗ T(α)and u(2α)
ω = X(2α) ⊗ T, where

X(ω) = 1
αλ ωα,

X(α)(ω) = 1
λ , λXX(α) = λ 1

αλ ωα 1
λ = 1

αλ ωα = X,
X(2α)(ω) = 0,

and

T(s) = αs−α, T(α)(s) = −α2s−2α = −T2(s).
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Then, X(2α) ⊗ T = 0,

X⊗ T(α) + λXX(α) ⊗−T(α) = X⊗ T(α) + λXX(α) ⊗−T(α)

= X⊗ T(α) + X⊗−T(α)

= X⊗ T(α) − X⊗ T(α)

= 0

= X(2α) ⊗ T.

This implies that u = X ⊗ T is an atomic solution of equation (7), where X(ω) = 1
αλ ωα

and T(s) = αs−α.

4. Conclusions

In this paper, we presented exact solutions to some certain fractional differential
equations, specifically, the well-known second and third order Gardner’s equations of
fractional type using a tensor product technique, a simple and new method to solve such
non-linear equations that gives an exact and accurate solution of well-known problems
appear in many applications in science and engineering rather than other methods that are
known to be approximate methods and include some kind of error estimate or some kind
of conclusion and computational difficulties.
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