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Abstract: Despite its centennial successes in describing physical systems at thermal equilibrium,
Boltzmann–Gibbs (BG) statistical mechanics have exhibited, in the last several decades, several
flaws in addressing out-of-equilibrium dynamics of many nonlinear complex systems. In such
circumstances, it has been shown that an appropriate generalization of the BG theory, known as
nonextensive statistical mechanics and based on nonadditive entropies, is able to satisfactorily handle
wide classes of anomalous emerging features and violations of standard equilibrium prescriptions,
such as ergodicity, mixing, breakdown of the symmetry of homogeneous occupancy of phase space,
and related features. In the present study, we review various important results of nonextensive
statistical mechanics for dissipative and conservative dynamical systems. In particular, we discuss
applications to both discrete-time systems with a few degrees of freedom and continuous-time ones
with many degrees of freedom, as well as to asymptotically scale-free networks and systems with
diverse dimensionalities and ranges of interactions, of either classical or quantum nature.

Keywords: nonextensive statistical mechanics; long-range dynamical systems; entropy; complex
systems

1. Introduction

Statistical mechanics constitutes one of the pillars of contemporary theoretical physics.
It was introduced in the 19th century by L. Boltzmann and J.W. Gibbs, and the name
was coined by Gibbs himself. It is based on mechanics (classical, quantum, relativistic),
electromagnetism, and theory of probabilities. Probabilities enter through the so-called
entropic functional S, whose generic form for discrete stochastic variables is given by

S({pi}) = kF({pi})
(

W

∑
i=1

pi = 1

)
, (1)

where F({pi}) is an appropriate generic functional, k being typically equal either to unity
or to the Boltzmann constant kB. Historically, Boltzmann and Gibbs used continuous
variables (p(x) instead of pi). The corresponding discrete form is given by

SBG({pi}) = −k
W

∑
i=1

pi ln pi . (2)
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Later on, J. von Neumann extended this functional by introducing quantum me-
chanical operators, and C.E. Shannon made an important connection to the theory of
communications. The BG entropy (2) is additive in the following sense [1]: if we have two
probabilistically independent systems A and B, i.e., pA+B

ij = pA
i pB

j , ∀(i, j), we straightfor-
wardly verify that

SBG(A + B) = SBG(A) + SBG(B). (3)

The powerful BG statistical mechanics is grounded on entropy (2), and correctly
describes a wide number of thermal properties of uncountable systems. However, it
fails when generic long-range space–time correlations are present in the system, which is
typically the case of the so called complex natural, artificial, and social systems (see [2] and
references therein). A paradigmatic such situation is well known to occur in gravitation.

In order to overcome this crucial difficulty for vast classes of systems, the BG theory
was generalized in 1988 [3] by building on the following generalized entropic form

Sq({pi}) = k
1−∑W

i=1 pq
i

q− 1
(q ∈ R; S1 = SBG) , (4)

hereafter referred to as the q-entropy. This entropic functional satisfies

Sq(A + B)
k

=
Sq(A)

k
+

Sq(B)
k

+ (1− q)
Sq(A)

k
Sq(B)

k
. (5)

It is, consequently, nonadditive for q 6= 1.
The entropy (4) can be alternatively written in the following forms:

Sq = k
W

∑
i=1

pi lnq
1
pi

= −k
W

∑
i=1

pq
i lnq pi = −k

W

∑
i=1

pi ln2−q pi , (6)

where the q-logarithmic function is defined as follows:

lnq z ≡ z1−q − 1
1− q

(ln1 z = ln z) . (7)

Its inverse function, the q-exponential, is defined as follows,

ez
q ≡ [1 + (1− q)z]

1
1−q
+ (ez

1 = ez) , (8)

where [. . . ]+ = [. . . ] if [. . . ] > 0, and zero otherwise. For the particular instance of equal
probabilities, i.e., pi = 1/W, ∀i, we obtain

Sq = k lnq W , (9)

which recovers, for q = 1, the celebrated formula SBG = k ln W, carved on Boltzmann’s
tombstone in Vienna.

Under appropriate canonical constraints, the entropy (4) is extremized by the follow-
ing distribution,

pi = e
−βq(Ei−µq)
q , (10)

which, for q = 1, recovers the ubiquitous BG weight

pi =
e−β Ei

Z
≡ e−β Ei

∑W
j=1 e−β Ej

, (11)

Z being the usual BG partition function.
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The real quantities βq ≡ 1/kTq and µq play, respectively, the roles of q-generalized
inverse temperature and chemical potential.

The BG theory is undoubtedly successful in a myriad of physical systems at thermal
equilibrium. However, as mentioned above, it fails, or it is even ill-defined, for describing
vast classes of natural, artificial and social complex systems at nontrivial stationary or qua-
sistationary states. The goal of the present review is to focus on the most typical systems for
which the BG theory fails, whereas the present q-generalized theory (also currently referred
to as nonextensive statistical mechanics or q-statistics in the literature [4]) satisfactorily
describes various relevant thermostatistical properties. Illustrations of this fact include
distributions emerging in high-energy physics (e.g., at LHC/CERN and Brookhaven en-
ergies) [5,6], outer space [7], cold atoms in dissipative optical lattices [8,9], and granular
matter [10], among many others.

In general, the set of probabilities {pi} can be directly defined within the realm of a
purely probabilistic model (e.g., [11]), or through a dynamical model within a phase space,
in such a way that the dynamics itself creates, along time, the necessary set of probabilities
(e.g., [2] and references therein). The present paper mainly, though not exclusively, focuses
on this latter possibility.

In Section 2 we discuss dynamical systems (either dissipative or conservative) with
few degrees of freedom. In Section 3, we discuss dynamical systems (either dissipative
or conservative) with many degrees of freedom and variable dimensionality and range of
interaction. In Section 4, asymptotically scale-free networks are addressed. In Section 5,
several clues about the domains of validity of either BG statistical mechanics or q-statistics
are presented. Some final remarks and conclusions close the paper with Section 6.

2. Few Degrees of Freedom

In the study of the statistical characterization of nonlinear dynamical systems, models
with few degrees of freedom are very popular due to the relative ease of use compared to
more complex systems. Here, we will focus first on the most paradigmatic model for the
dissipative case with few degrees of freedom, namely the logistic map [12–15], and we will
review its statistical characterizations, which are available to date in the literature.

Then, we will do the same for the standard map [16], which can be considered as the
most paradigmatic conservative (area-preserving) model studied in dynamical systems theory.

2.1. Dissipative Models

The logistic map is defined as

xt+1 = 1− a x2
t , (12)

where 0 < a ≤ 2 is the control parameter and xt ∈ [−1, 1], with t = 0, 1, 2, . . . . This
map attains its first edge of chaos, denoted by ac, at ac = 1.40115518909 . . . , which can
be reached from the periodic region by period doubling through the accumulation of 2∞

periods, or from the chaotic region by the merging of an infinite number of bands.

2.1.1. Sensitivity to Initial Conditions

We will briefly review the three different methods presented in the literature to study
the sensitivity to initial conditions of the logistic map.

Sensitivity Function Method: The first method studies the sensitivity to initial condi-
tions that use the sensitivity function ξ(t), defined as

ξ(t) ≡ lim
∆x(0)→0

∆x(t)
∆x(0)

, (13)
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where ∆x(0) and ∆x(t) are the discrepancies of the initial conditions at times 0 and t [17,18].
The functional form suggested for handling both the strongly chaotic region and the chaos
threshold is

ξ(t) =
[
1 + (1− q)λqt

]1/(1−q)
(q ∈ R), (14)

where λq is the generalized Lyapunov coefficient. It is easy to verify that the standard
exponential form exp (λ1t) is recovered for q = 1 (here, λ1 is the standard Lyapunov
exponent). Generically, when q 6= 1 we have a power-law behaviour and if λq < 0 and
q > 1 (λq > 0 and q < 1), the system is said to be weakly insensitive (sensitive) to the
initial conditions. This is clearly different from the standard case where we have strong
insensitivity (sensitivity) for λ1 < 0 (λ1 > 0). We calculate ξ(t) through

ln ξ(t) = ∑
t

ln
[

d f (xt)

dx

]
, (15)

with f (x) = 1 − ax2
t and x0 = 0; ξ(t) exhibits, at the chaos threshold, a power-law

divergence in the form ξ ∝ t1/(1−qsens), from where the value of qsens can be calculated by
measuring, on a log–log plot, the upper bound slope 1/(1− qsens). We plot our results
in Figure 1, from where the value qsens = 0.245 . . . [18] is obtained. This constitutes the
first method in the literature to evaluate qsens and it has already been used for several map
families [18–22].

1 

 

 

Figure 1. Log–log plot of the sensitivity function versus time for the logistic map at the chaos
threshold (ac = 1.4011551890920505).

Multifractal Spectrum Method: The second method in the literature for estimating
the value of qsens is based on the geometrical aspects of the attractor of the map at the
chaos threshold. It is known [23] that the multifractal singularity spectrum f (α) reflects
the fractal dimension of the subset with singularity strength α. In this function, the two
points where f (α) vanishes, namely αmin and αmax, characterize the scaling behavior of the
most concentrated and most rarefied regions on the attractor. By using these points, the
scaling relation
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1
1− qsens

=
1

αmin
− 1

αmax
(qsens < 1) (16)

has been proposed, from which one can, once again, deduce the qsens value from a com-
pletely different method [19]. This relation can be arranged as 1/(1− qsens) = ln 2/ ln αF,
which clearly exhibits that this scaling is dependent on the Feigenbaum constant αF. In-
deed, this enables us to estimate qsens value with an extraordinary precision because αF is
available in the literature with over 10,000-digit precision [24].

Entropy Increase Method: Finally, the third method proposed for the estimation of qsens
is based on the generalization of the Kolmogorov–Sinai (KS) entropy [25–27]. Although the
KS entropy is defined in principle through a single trajectory in phase space, an ensemble-
based procedure is much simpler computationally. The KS entropy rate is defined through
the limit Kq ≡ limt→∞ limW→∞ limN→∞ Sq(t)/t, where t is the time, W is the number of
regions in the partition of the phase space, N is the number of initial conditions (all chosen
at t = 0 within one region among the W available ones) that are evolving in time, and the
entropy is given by

Sq(t) =
1−∑W

i=1[pi(t)]q

q− 1
. (17)

The method is based on the conjecture that there is a unique value qsens, such that
Kq is finite for q = qsens, vanishes for q > qsens, and diverges for q < qsens [25]. This value
coincides with the one previously obtained by the other two methods.

2.1.2. Relaxation Dynamics

Now let us focus on the dynamic evolution, in phase space, of an ensemble of initial
conditions uniformly distributed over the phase space and explore its relaxation dynamics.
Typically, a partition of the phase space on Nbox cells of equal size is performed and the
evolution in time of a set of M identical copies of the system is implemented. Then, there is
a proper entropy Sq, with q = qrel , which evolves at a constant rate such that

Kqrel = lim
Nbox→∞

[Sqrel (t)− Sqrel (0)]/t (18)

goes to a constant value as t→ ∞. The number of occupied cells evolves in time as

W(t) = [W(0)1−qrel + (1− qrel)Kqrel t]
1/(1−qrel), (19)

with the exponent µ = −1/(qrel − 1) < 0 governing the asymptotic power-law de-
cay [28,29]. Although early numerical assumptions predicted a value of µ close to −0.71,
more precise approaches estimated this value as µ = −0.800138 . . . , from which qrel =
2.249784 . . . is obtained [30–32]. Numerical results are shown in Figure 2. In order to reach
the analytical result, we need to take the limits Nbox → ∞ and M → ∞. However, our
computer limitations allow us now to achieve M = 265× 106, and this order of magnitude
yields the approximative value µ = 0.800 . . . for small time steps, provided that the ratio
r = M/Nbox is large enough. In addition, due to the fact that the number of boxes is very
small, the curve saturates. On the other hand, as we increase the number of boxes, because
M stays constant due to computer limitation, this ratio decreases. This makes the initial
part of the curve slightly depart from the theoretical result though the final part goes farther
before saturation and stays closer to the analytic curve (black dotted line).
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Figure 2. The volume occupied by the ensemble W(t) as a function of time.

2.1.3. Central Limit Behavior

Now we can finally discuss a third q parameter, known as qstat (“stat” stands for
stationary state), which comes from the analysis of the central limit behavior. In order to
achieve this task, let us focus on the probability distribution of the sum of iterates of the
logistic map (or any other dynamical system) given by

y :=
N

∑
i=1

(xi − 〈x〉) , (20)

where N is the number of iterations, xi are the iterates of the logistic map and 〈. . . 〉 stands
for the time average. It can be analytically shown that, for strongly chaotic systems, the
distribution becomes Gaussian for N → ∞ [33,34] due to the standard central limit theorem
(CLT). However, several complex systems exist where this tendency fails and, consequently,
the standard CLT is violated. Defining

〈x〉 = 1
M

1
N

M

∑
j=1

N

∑
i=1

x(j)
i , (21)

(where M is the number of randomly chosen initial conditions) we can study the behavior
of such systems. It should be noted here that the average is not only taken over a large
time series but also over a large number of initial conditions. The first map studied in
this way was the logistic map in the vicinity of chaos threshold [35,36]. It was shown
that, if the chaos threshold is appropriately approached (see [37] for details) by using the
Huberman–Rudnick law [38], it is possible to verify that the limit distribution seems to
converge to a q-Gaussian defined as

P(y) =

{
P(0)

[
1− β(1− q)y2] 1

1−q for β(1− q)y2 < 1
0 otherwise

, (22)

where q < 3 and β > 0 are parameters. This distribution recovers the Gaussian case as
q→ 1. Results for the probability distribution of y for the logistic map are given in Figure 3.
It is clear that a q-Gaussian behavior gradually develops, with periodic oscillations, as we



Symmetry 2023, 15, 444 7 of 33

get closer to the chaos threshold. This is not only correct for the standard period-doubling
route to chaos but also for any other periodic cycles available in the chaotic region [37].

Figure 3. Normalized probability distribution functions of the logistic map as the chaos threshold
point is approached via Huberman–Rudnick law. Numerical convergence to a q-Gaussian with
q ' 1.65 with log-periodic oscillations is appreciated. Figure reproduced from Ref. [36].

2.2. Conservative Models

After all these findings for dissipative maps, it is natural to study conservative maps
on similar grounds. A very suitable model is the standard map [16,39], given by

pi+1 = pi − K sin xi

xi+1 = xi + pi+1, (23)

where pi and xi (i = 1, 2, 3 . . . ) are taken as modulo 2π, and K ≥ 0. This map is a
low-dimensional area-preserving one, i.e., it is a conservative system like a Hamiltonian.
Therefore, it is a natural system to be analysed in terms of a central limit behavior, exactly
in the same sense that it has already been done for the dissipative case.

The phase space portrait of the standard map is shown in Figure 4 for four representa-
tive values of the map parameter. It is evident that the chaotic sea grows inside the stability
islands as the value of K increases.

Because the chaotic sea dominates the full phase space for the K = 10 case, one
would expect that, for the probability distribution of the random variable y defined in
Equation (20), the usual CLT holds. This is indeed verified in Figure 5. A Gaussian trend is
clearly visible, as expected.

However, at the other end, where the full phase space is dominated by the stability
islands (namely, for K = 0 case), a completely non-Gaussian trend is evident from Figure 6.
It was shown in [40] that the probability distribution can be approximated by a q-Gaussian
with q ' 1.94. Later on, the asymptotic value of q was analytically found to be q = 2 [41].
Obviously, this value can only be approached numerically as N → ∞ and M→ ∞ limits
are taken simultaneously.
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Figure 4. Phase space portrait for four representative K values of the standard map. As K values
increases, the appearance of the chaotic sea is evident.

Figure 5. Normalized probability distribution functions of the standard map for K = 10 case.
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Figure 6. Normalized probability distribution functions of the standard map for K = 0 case. In this
simulation, N = 222 and M = 108. The q-Gaussian fit is realized with q ' 1.94.

For the values of the K parameter between these two extreme cases, the phase space is
typically a mixture of the chaotic sea with periodic islands. For those cases, the behavior
of the probability distribution has been found to be a linear combination of the Gaussian
and the q-Gaussian cases that rule the chaotic and stability island regions of the map,
respectively [40,42].

After these findings for the standard map, very recently other conservative maps have
already been discussed in this perspective in the literature [43–45].

3. Many Degrees of Freedom

Long-range interacting systems with many degrees of freedom have been intensively
studied in recent years and new methodologies have been developed in an attempt to
understand their intriguing features. One of the most promising directions is the com-
bination of statistical mechanics tools and methods adopted in dynamical systems [46].
In particular, phase transitions have been extensively explored in both conservative and
dissipative long-range systems.

3.1. Coupled Pendula Models

In this context, the Hamiltonian Mean Field (HMF) model [47–50] and the Kuramoto
model [51,52] represent two interesting toy models of coupled pendula, the former con-
servative and the latter dissipative, which are paradigmatic for many real systems with
long-range forces and have several applications. Both models share the same order param-
eter and display a spontaneous phase transition from an homogeneous/incoherent phase
to a magnetized/synchronized one.

The HMF model describes the dynamics of N classical spins or inertial rotors, char-
acterized by the angles θi ∈ [−π, π[ and the conjugate momenta pi ∈]−∞, ∞[, which can
also be represented as particles moving on the unit circle. In its ferromagnetic version the
Hamiltonian of the model is given by

H = K + V =
N

∑
i=1

p2
i

2m
+

1
2N

N

∑
i,j=1

[
1− cos(θi − θj)

]
, (24)

where the mass m is usually set to 1. The potential term of Equation (24) reveals the mean
field nature of the model, because each rotor can interact with all the others. Such a nature
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becomes more evident if we define as order parameter the magnetization M = Meiφ =
1
N ∑N

j=1 eiθj , where 0 < M < 1 and φ are the modulus and the global phase. Within this
assumption, the Hamilton equations of motion can be written as

θ̈i =
1
N

N

∑
j=1

sin(θj − θi) = M sin(φ− θi), i = 1, . . . , N, (25)

which correspond to the equations of single pendula in a mean field potential. In other
words, each particle can be considered as moving in a mean-field potential determined by
the instantaneous positions of all the other particles.

The Kuramoto model is considered one of the simplest models exhibiting spontaneous
collective synchronization. It describes a large population of coupled limit-cycle oscillators,
each one characterized by a phase θi and a natural frequency ωi, whose dynamics is
given by

θ̇i = ωi +
K
N

N

∑
j=1

sin(θj − θi) i = 1, . . . , N, (26)

where K ≥ 0 is the coupling strength. The natural frequencies are time-independent and
are randomly chosen from a symmetric, unimodal distribution g(ω). Usually, uniform or
Gaussian g(ω) distributions are considered. As in the case of HMF model, one can imagine
the oscillators as particles moving on the unit circle. The order parameter of the Kuramoto
model is perfectly equivalent to the magnetizaton in the HMF model and it is given by
r = reiφ = 1

N ∑N
j=1 eiθj , where φ is, again, the average global phase corresponding to the

centroid of the phases of the oscillators and the modulus 0 < r < 1 represents the degree of
synchronization of the population. In terms of the variables r and φ, Equation (26) can be
rewritten as

θ̇i = ωi + Kr sin(φ− θi), i = 1, . . . , N, (27)

where the mean field character of the system becomes obvious, as was also the case for the
HMF model.

As anticipated, HMF and Kuramoto models can be considered as limiting cases, respec-
tively conservative and overdamped, of a more general model of coupled pendula [53,54].
Let us consider the following mean field equations describing a system of driven and
damped pendula (with unit mass):

θ̈i + Bθ̇i + CM sin(θi − φ) = Γ, i = 1, . . . , N, (28)

where the C is the coupling term, M the mean field order parameter, B the damping
coefficient and Γ the torque term.

In the conservative case, putting B = Γ = 0 and C = 1, from Equation (28) one
recovers the mean field equations of motions of HMF model:

θ̈i = −M sin(θi − φ) i = 1, . . . , N. (29)

On the other hand, considering the overdamped limit of Equations (28), obtained for
B >> 1, the second derivatives can be neglected and, putting C/B = K, M = r and
Γ/B = ωi, they reduce to the Kuramoto rate equations

θ̇i = ωi − K r sin(θi − φ) i = 1, . . . , N, (30)

where the constant natural frequencies play the role of the constant torque.
In the next two sections, we briefly summarize some interesting results obtained for

both models, also showing that their common origin is actually reflected in some analogous
dynamical features characterized by an anomalous behavior.
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3.2. The Kuramoto Model

The main feature of the Kuramoto model, which makes it paradigmatic for a large
class of phenomena [55–59], is its capacity to produce the spontaneous synchronization
of a population of incoherent oscillators provided that a critical value KC of the coupling
is exceeded. In fact, for small values of K, the oscillators act as if they were uncoupled
and each oscillator tends to run independently and incoherently with its own frequency.
Instead, for K > KC, the coupling term in each of Equations (26) tends to synchronize each
oscillator with all the others, and the system exhibits a spontaneous transition from the
previous incoherent state to a synchronized one, where all the oscillators rotate at the same
frequency Ω (a value which corresponds to the average frequency of the system, preserved
by the dynamics). As shown by Kuramoto itself [51], the critical value of the coupling
depends only on the central value g(ω = 0) of the distribution g(ω) in accordance with
the expression KC = 2

πg(0) .
For a given value of K, as the population becomes more coherent, the order parameter

r grows and the effective coupling Kr increases. In this regime of partial synchronization,
as predicted by the solutions of Equation (27), two kinds of oscillators coexist depending
on the size of |ωi| relative to Kr: (i) oscillators with |ωi| > Kr, called dri f ting− oscillators,
that run incoherently around the unit circle, and (ii) oscillators with |ωi| ≤ Kr, called
locked− oscillators, which are trapped in a rotating cluster. The dynamic interplay between
these two kinds of oscillators is probably at the root of the microscopic chaotic behavior
which, as we will show, characterizes the regime of partial synchronization. On the other
hand, when the effective coupling Kr becomes strong enough, all the oscillators rotate in
the same cluster at the frequency Ω and any fingerprints of chaos disappears: in fact, in
this case, the system behaves like a single giant oscillator and becomes thus integrable.

It is interesting to study the shape of the phase transition in the Kuramoto model
together with the behavior of the largest Lyapunov exponent (LLE), both as a function of
the chosen distribution g(ω). Ref. [54] explored what happens by using bounded Gaussian
distributions with ω ∈ [−3, 3] and a standard deviation σ going from 1.0 to 5.0, being g(ω)
in this latter case almost uniform (see the original paper for details about the numerical
integration and the adopted software). By calculating the order parameter and the LLE
as function of K for several values of σ, one obtains the curves shown in Figure 7 for N
= 20,000. In this figure, for increasing values of σ, a transformation from a continuous
second-order phase transition (lower panel, on the right) toward an abrupt first-order-like
one (on the left) is clearly visible, together with an analogous change in the peak of the
largest Lyapunov exponent (upper panel), whose maximum value is also related with
g(ω). In correspondence, the critical value KC, initially depending on σ, moves from
right to left toward a final value which does not depend on σ any more and is very close
to the theoretical value KC = 12/π predicted for a true uniform g(ω) with ω ∈ [−3, 3]
(which in principle would strictly request σ = ∞). At the same time, the region of partial
synchronization, which is mainly situated after the phase transition for small values of σ,
progressively shifts before the phase transition for increasing values of σ.

As we will see in the next section, the Kuramoto second-order phase transition obtained
for a Gaussian g(ω) is very similar to that observed for the HMF model, where an analogous
behavior of the LLE has also been found. In the following, let us focus on a very peculiar
dynamical feature, which is present in both models, even if with different characteristics.
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Figure 7. (Lower panel) The asymptotic order parameter r of the Kuramoto model is plotted as a
function of the coupling K for a system of N = 20,000 oscillators and for several bounded Gaussian
distributions g(ω), with increasing standard deviations σ and ω ∈ [−3, 3]. (Upper panel) The largest
Lyapunov exponent is plotted as function of K. Increasing σ its behavior changes continuously from
the characteristic peak of the Gaussian g(ω) to the sharper peak characteristic of the uniform one.
Each dot represents an average over 10 runs. See text. Figure reproduced from Ref. [54].

In Figure 8, again for a system of N = 20,000 oscillators, we draw the temporal
evolution of the order parameter r(t) for several single runs for three values of K/KC near
the phase transition, for both Gaussian (left column) and uniform (right column) g(ω). It
clearly appears that in the latter case (panels (e) and (f)) stationary states with high and
low asymptotic values of r coexist, whereas in the former case (panels (a), (b), and (c)) only
partially synchronized stationary states are visible. Such a result reinforces the distinction
between the first-order-like and second-order-like dynamical phase transitions, occurring
in the Kuramoto model depending on the different g(ω) distributions, which seem to play
a very crucial role. As already noticed in Ref. [54], in some cases (see for example panels
(a) and (f)) metastable states appear for both g(ω) distributions. As we will see in the next
section, this phenomenon can be also recognized in the HMF model, where analogous
metastable quasistationary states (QSS) have been observed when the system starts from
out-of-equilibrium initial conditions.

Another interesting feature, common to both Kuramoto and HMF models, is the
violation of the standard CLT in conditions of weak chaos (i.e., when LLE∼ 0) (see Ref. [60];
see the original paper for details about the numerical integration and the adopted software).
In the Kuramoto model, one can use the angles of the N oscillators as stochastic variables
and build the corresponding rescaled sums y’s by picking out, for each oscillator, n values
of the angle θi at fixed intervals of time δ along the deterministic time evolution imposed
by Equation (26), i.e.:

yi =
1√
n

n

∑
k=1

θi(kδ), with i = 1, 2, . . . , N. (31)

In such a way, the product δ× n will give the total simulation time over which the
sum is calculated. The resulting PDFs are shown in the bottom panels of Figure 9 for both
uniform (left column) and Gaussian (right column) g(ω) and for values of the coupling
below the critical threshold (K = 0.1 and K = 0.6, respectively).
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Figure 8. Temporal evolution of the order parameter r(t) near the phase transition for several runs
and different distributions g(ω): the Gaussian one (panels a–c) and the uniform one (panels d–f).
Metastable states are visible in panels (a,f). See text. Figure reproduced from Ref. [54].

Figure 9. CLT PDFs for a Kuramoto system with N = 20,000 and K below the critical threshold for both
uniform (left panels, K = 0.1) and Gaussian (right panels, K = 0.6) velocity distributions. In both cases,
δ = 200 and n = 220: due to the weak chaos regime, robust fat-tailed attractors appear (bottom panels),
well fitted by q-Gaussians (full lines) functions with q = 1.7 and different values of β. A standard
Gaussian with unitary variance (dashed line) is reported for comparison in each plot. In the upper rows
of the figure, the order parameter r(t) (top panels) and the LLE (middle panels) are also reported as
function of time, after a transient of 100 time-steps. See text. Figure reproduced from Ref. [60].
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Fat-tailed distributions clearly appear, which can be well fitted by q-Gaussians with
q = 1.7, as expected because both the order parameter (top panels) and the LLE (middle
panels) stay very close to zero for the whole time interval considered. This confirms that,
for these values of K, the system results to be incoherent and weakly chaotic regardless
of the velocity distribution adopted. In the next section we will see that, again, a similar
feature can be observed also in the context of the HMF model.

3.3. The HMF Model

A general Hamiltonian for the HMF model was introduced originally in Refs. [61,62]
and then initially investigated from a dynamical point of view in Refs. [47,63,64]. The
Hamiltonian can be written as

H = K + V =
N

∑
i=1

p2
i

2
+

ε

2N

N

∑
i,j=1

[1− cos(θi − θj)] . (32)

As anticipated in Section 3.1, this model can be seen as N classical XY-spins with
infinite range couplings, or also as a system of N particles moving on the unit circle. In
the latter case the coordinate θi of particle i represents its position on the circle and pi its
conjugate momentum. For ε > 0, particles attract each other or, in the other case, spins tend
to align (ferromagnetic case, see Equation (24)), whereas for ε < 0, particles repel each other
and spins tend to antialign (antiferrorromagnetic case) [47]. At short distances, particles
cross each other or they collide elastically because they have the same mass, equal to 1.

As we have already seen, it is useful to introduce the mean field vector M = Meiφ =
1
N ∑N

i=1 mi, where mi = (cos θi, sin θi). Here, M and φ represent the modulus and the
phase of the order parameter, which characterizes the degree of clustering in the particle
interpretation, while it is the magnetization of the XY spins. Thus, the potential energy can
be rewritten as a sum of single-particle potentials vi

V =
1
2

N

∑
i=1

vi with vi = 1−M cos(θi − φ) . (33)

The motion of each particle is, therefore, coupled to all the others, because the variables
M and φ are determined at each time t by the instantaneous positions of all particles.

The mean-field nature of the system can be also appreciated looking at Equation (25),
presented in Section 3.1. These equations can be integrated numerically at fixed energy
(see for example Refs. [47,62–64] for technical details). Considering the ferromagnetic case
and defining the temperature T of the system as 2 < K > /N (where < K > denotes the
time averaged kinetic energy), it is easy to verify that, starting from equilibrium initial
conditions for both angles and velocities, one can recover the so-called caloric curve, i.e.
the following relation between the temperature and the energy per particle U = H/N
predicted by the Boltzmann–Gibbs (BG) statistical mechanics in canonical ensemble [47,62],

U =
1

2β
+

1
2
(1−M2) , (34)

where β = 1/T is the inverse temperature. The theoretical equilibrium solution for the
caloric curve is reported as a solid line in panel (a) of Figure 10, and it is compared
with the results of microcanonical numerical simulations for two different sizes of the
system, namely N = 102 and N = 103. The agreement is clearly very good, and the same
holds for the behavior of the magnetization M as function of U, shown in panel (b). In
both plots, a second-order phase transition from a ferromagnetic (condensed) phase to a
paramagnetic (homogeneous) one is also visible, in correspondence with the critical value
of either the energy density, Uc = 0.75, or the critical temperature, Tc = 0.5, as predicted
by the theory. On the other hand, if the system is started with strong out-of-equilibrium
initial conditions in an energy range going from U = 0.5 up to Uc, the model shows a
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nontrivial dynamical relaxation to the BG equilibrium. The class of out-of-equilibrium
initial conditions we consider, called water bag initial conditions, consists of θi = 0 ∀i
and the momenta uniformly distributed (according to the total energy density U). In
Figure 11 we report, for U = 0.69 and N = 500, the time evolution of 2 < K > /N
(where < K > denotes the time-averaged kinetic energy), a quantity that coincides with the
temperature T. As expected, the system does not relax immediately to the BG equilibrium,
but rapidly reaches a quasistationary state (QSS) consisting of a plateau associated with
a temperature value TQSS = 2U − ε, lower than the canonical prediction, corresponding
to the continuation of the linear part of the caloric curve to lower energies. The T vs. U
plot (caloric curve), shown in inset (c) for the QSS regime, confirms a large disagreement
with the equilibrium prediction (inset d). Furthermore, it turns out that the system remains
trapped in such a state for a time that diverges with the size N of the system [65]. This
means that if the thermodynamic limit is performed before the infinite-time limit, the QSS
become stable and the system never relaxes to the BG equilibrium, exhibiting different
equilibrium properties characterized by non-Gaussian velocity distributions (see inset
a) [65]. Such velocity distributions have been fitted in Ref. [65] and have been shown to be
in agreement with the prediction of the Tsallis’ generalized thermodynamics.

0.0 0.2 0.4 0.6 0.8 1.0 1.2

U
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0.6

0.8

1.0

M

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.0

0.2
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Exact equilibrium  solution

N=100

N=1000

(a)

(b)

fig cc.eps - finite size effects for ferro and antiferro in T and M

Figure 10. The temperature T and the magnetization M are reported as a function of the energy per
particle U in the ferromagnetic case. Symbols refer to equilibrium molecular dynamics simulations
for N = 102 and 103, whereas the solid lines refer to the canonical equilibrium prediction obtained
analytically (see text). The vertical dashed line indicates the critical energy density Uc = 0.75 and
βc =

1
Tc

= 2. Figure reproduced from Ref. [48]; see also text.

The characteristics of the QSS have been studied in several papers: vanishing Lya-
punov spectrum [62] negative microcanonical specific heat [63], dynamical correlations
in phase-space [49,50], Lévy walks and anomalous diffusion [64], nonergodicity [66], and
glassy behaviour [50,67]. Let us here focus on the violation of the standard central limit
theorem (CLT) due to the weak chaos observed in the QSS [66]. Analogous to what we saw
in the previous section for the Kuramoto model, for the HMF model we can construct the
probability density functions of quantities expressed as a finite sum of stochastic variables
and select these variables along the deterministic time evolutions of the N rotors. More
precisely, we can study the distribution quantity y defined as

yi =
1√
n

n

∑
k=1

pi(k) f or i = 1, 2, . . . , N , (35)
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where pi(k), with k = 1, 2, . . . , n, are the rotational velocities of the ith rotor taken at fixed
intervals of time δ along the same trajectory obtained by integrating the HMF equations
of motions. The product δ × n gives the total simulation time over which the sum of
Equation (35) is calculated. In panel (a) of Figure 12 we plot the ensemble average PDF of
the velocities calculated (over 100 different realizations) at t = 200, i.e., at the beginning of
the QSS regime, and after a very long transient, at t = 250,000 (full circles), for a system with
N = 50,000 rotors. In panel (b), we plot the time average PDF for the normalized variable
y with n = 5000 and δ = 100, after a transient of 200 time units and over a simulation
time of 500,000 units along the QSS. The shape of the time average PDF (b) results in a
robust q-Gaussian, with q = 1.4, not only in the tails, but also in the center (see inset).
Because the time average PDF is completely different from the ensemble average PDF, we
can also confirm the inequivalence between the two kinds of averages and the existence of
a q-Gaussian attractor in the QSS regime of the HMF model [66].
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Figure 11. Microcanonical numerical simulations for N = 500 and energy density U = 0.69. In
the central part of the figure, we twice plot the average kinetic energy per particle (which gives
the temperature) as a function of time (filled red triangles). One can see a long matastable plateau
(QSS regime) preceeding the relaxation toward the Boltzmann–Gibbs equilibrium temperature (BG
regime). In the BG regime, one finds as expected, a very good agreement with the equilibrium
thermodynamics value for the temperature, panel (d). In this regime, the velocity PDFs reported
in panel (b) are Gaussians. At variance, in the QSS region, we can see strong deviations from the
expected equilibrium temperature. Here the specific heat becomes negative, (panel c), and the velocity
PDFs (reported in panel a), are very different from the Gaussian equilibrium curve, reported as a full
line for comparison. Figure reproduced from Ref. [48].
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Figure 12. Numerical simulations for the HMF model for N = 50,000, U = 0.69 and water bag initial
conditions in the QSS regime. (a) PDFs of single-rotor velocities at the times t = 200 and t = 250,000
(ensemble average over 100 realizations). (b) Time average PDF for the variable y calculated over
only one single realization in the QSS regime and after a transient time of 200 units. In this case we
used δ = 100 and n = 5000. A q-Gaussian reproduces very well the calculated PDF both in the tails
and in the central part (see inset). Figure reproduced from Ref. [66] (see also text for further details).

3.4. Classical Inertial Rotors in d Dimensions

A generalization of the HMF (or XY) model, the so-called α-XY model, was first
introduced in Ref. [68]. Its Hamiltonian is

Hα = K + Vα =
N

∑
i=1

p2
i

2
+

ε

2Ñ ∑
i 6=j

1− cos(θi − θj)

rα
ij

, (36)

where the parameter α determines the range of the interactions and rij = |ri − rj| is the
distance, in lattice units, between rotors i and j, which are located in a d-dimensional
hypercubic lattice (d = 1, 2, 3). The prefactor 1/Ñ, with

Ñ = ∑
i 6=j

1
rα

ij
(37)

in front of the potential energy term in (36) allows for an extensive total potential energy Vα

for all values of α/d and reduces to Ñ = N − 1 ∼ N for α = 0 (thus recovering the HMF
model) and to Ñ = 2d for α→ ∞ (nearest-neighbours interactions).

Throughout the whole long-range regime, 0 6 α/d 6 1, the α-XY model not only
shares with the HMF model the appearance of QSSs, but also the same equation of state,
given by Equation (34).

Finally, the equations of motion for the α-XY model are given by{
θ̇i = pi
ṗi = ε mi ×Mi

, (38)

with Mi =
1
Ñ ∑j 6=i

mj
rα

ij
.

Equations (38) have been solved by means of a fourth-order symplectic algorithm [69],
together with a fast Fourier transform algorithm, with an integration step h = 0.2, which
provided conservation of the energy per particle within a relative precision of 10−5 through-
out all the calculations.

The scaling with the system size of the largest Lyapunov exponent, in the high-energy
regime, as a function of the interaction range for the α-XY model has been studied in
Ref. [70]. A scaling in the form λ ∼ N−κ(α/d) was found, with a κ dependence on α
and d only through the quotient α/d. The authors numerically obtained κ(0) = 1/3, as
analytically estimated in Ref. [71] for the HMF model and a decaying trend of κ with α/d
down to the value κ(α/d > 1) = 0. Nevertheless, recent numerical results, to be published
elsewhere, indicate that positive values of κ are also obtained in the region α/d > 1.
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In Ref. [72], probability distribution functions of time averaged momenta and individ-
ual energies for the α-XY model were obtained, as shown in Figure 13 for the Boltzmann–
Gibbs regime (that is, after the transition from the QSS to the final state characterized
by the Boltmann–Gibbs temperature). Far from the usual Maxwellians and exponentials,
qp−Gaussian distributions were obtained for the averaged momenta and qE−exponential
distributions for the individual energies, with qp and qE depending on the quotient α/d as
shown in Figure 14. We will come back to these results in Section 5.2.

Figure 13. Inertial α-XY d-dimensional model (for d = 1, 2, 3) for α/d = 0.9. Left: qp-Gaussian
distribution of momenta (for comparison, a Maxwellian distribution is indicated in dashed line).
Right: qE-exponential distribution of energies (for comparison, a BG distribution is indicated in
dashed line). Both distributions are averaged along the very long-time interval indicated in the insets.
Figure reproduced from Ref. [72].
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Figure 14. qp of the momenta distribution (a) and qE of the energy distribution (b) as functions of
α/d, along the same very long time interval indicated in Figure 13. Figure reproduced from Ref. [72].

The duration tQSS of the quasistationary state of the α-XY model as a function of N,
α and d was studied in Ref. [73]. The relation tQSS ∼ NA(α/d)e−B(α/d)2

was obtained, in
which the dependence of tQSS on α and d is again through the quotient α/d.

In addition, the duration of the QSS of the α-XY model as a function of the total
energy per particle U was studied in Ref. [74]. The QSS, which exists along the whole
long-range interaction regime, provided 0.61 < U < Uc =

3
4 , disappears as U → Uc and

this duration was found to go through a critical phenomenon, namely tQSS ∝ (Uc −U)−ξ ,
with a universal value ξ ' 5/3, independent of α/d.
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A further generalization consists of considering rotors of two degrees of freedom, in-
stead of planar ones. The Hamiltonian of the so-called α-Heisenberg model, first introduced
in [75], is

Hα = K + Vα =
N

∑
i=1

L2
i

2
+

ε

2Ñ ∑
i 6=j

1− Si · Sj

rα
ij

, (39)

where now the three component spins Si, normalized to unity, with associated angular
momenta Li = Si × Ṡi (we consider unit moments of inertia), rotate freely in space and the
order parameter is again the total magnetization, now given by

M =
1
N

N

∑
i=1

Si. (40)

The equation of state for the α-Heisenberg model in the long-range regime is given by

U = T +
ε

2
(1−M2) (41)

and the critical values of the temperature and the energy per particle for the para-ferro
transition to occur are (Tc, Uc) = ( 1

3 , 5
6 ).

Finally, the equations of motion for the α-Heisenberg model are{
Ṡi = Li × Si
L̇i = ε Si ×Mi

, (42)

with Mi = 1
Ñ ∑j 6=i

Sj
rα

ij
. Equations (42) have been integrated by means of the standard

fourth order Runge–Kutta algorithm, together with a fast Fourier transform algorithm,
with an integration step, h = 0.2, such that the energy was conserved within a relative
precision 10−5.

As in the case of the α-XY model, qL−Gaussian and qE−exponential distributions
were obtained for the time averaged angular momenta and energies, respectively, for the
α-Heisenberg model in [76], as shown in Figure 15. Also in this paper, a scaling of the
largest Lyapunov exponent with the system size in the form λ ∼ N−κ(α/d) was obtained,
as shown in Figure 16, with positive values of κ beyond the long-range regime (that is, for
α/d > 1). We will come back to these results in Section 5.2.

The duration tQSS of the quasistationary state of the α-Heisenberg model as a function
of N, α and d has also been studied in Ref. [77]. As in the α-XY model, a relation in the form
tQSS ∼ NA(α/d)e−B(α/d)2

has also been obtained.

Figure 15. Cont.
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Figure 15. Inertial α-Heisenberg d-dimensional model (for d = 1, 2, 3) for α/d = 0.9. Top: qL—
Gaussian distribution of momenta. Bottom: qE—exponential distribution of energies. Both distribu-
tions are averaged after a very long time has elapsed. Figure reproduced from Ref. [76].
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Figure 16. Top: α/d-dependence of the κ exponent for the maximal Lyapunov exponent λ(N) ∼
N−κ(α/d) of the d-dimensional model α-Heisenberg. This figure is reproduced from Ref. [76]. Bot-
tom: Top panel in Log-linear scale. For α/d = 2, we obtain κ ' 0.001.
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4. Asymptotically Scale-Free Networks

Rather unexpectedly a priori, some ubiquitous classes of growing networks—usually
referred to as scale-free ones—are closely related [78–86] with various of the previous
complex many-body systems. The relationship is neatly caused by the assumption of
preferential attachment along the network growth. To illustrate this, we refer here to the
d-dimensional model focused on in [85]. The attachment probability for the newly arrived
site i is assumed to be given by

Πij ∝
εi

d αA
ij

(αA ≥ 0) , (43)

where dij is the Euclidean distance between i and j, where j runs over all preexisting sites.
The local energy εi is defined as

εi ≡
ki

∑
j=1

wij

2
(wij ≥ 0) , (44)

where the link weight wij satisfies the probability distribution

P(w) =
η

w0 Γ
(

1
η

) e−(w/w0)
η
(w0 > 0; η > 0) , (45)

which satisfies
∫ ∞

0 dw P(w) = 1. As particular cases of Equation (45) we have η = 1, which
corresponds to an exponential distribution, η = 2, which corresponds to a half-Gaussian
distribution, and η → ∞, which corresponds to an uniform distribution within w ∈ [0, w0].
See Figure 17.

Figure 17. Sample of a N = 100 network for (d, αA, η, w0) = (2, 1, 5, 1, 1). As can be seen, for this
choice of parameters, hubs (highly connected nodes) naturally emerge in the network. Each link has
a specific width wij and the total energy εi associated to the site i will be given by half of the sum over
all link widths connected to the site i (see zoom of site i). This figure is reproduced from Ref. [84].

The numerical simulations strongly suggest, for all values of the model parameters,

p(ε) ∝ e
−βq ε
q where

q =

{
4
3 if 0 ≤ αA/d ≤ 1
1
3 e1−αA/d + 1 if αA/d > 1 .

(46)

See Figure 18. The long-range region corresponds to 0 ≤ αA/d ≤ 1, the intermediate
region corresponds to 1 < αA/d < ∞, and the short-range region is attained only at the
αA/d→ ∞ limit. If the attachment probability was assumed to decay exponentially with
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distance as Πij ∝ e−dij/∆ (∆ > 0), instead of as the power-law (43), the short-range region
(i.e., q = 1) would emerge for any ∆ > 0.

Figure 18. The index q is associated with e−βq ε
q , as a function of αA/d, where αA characterizes the

distance range of the preferential attachment and d is the dimension of the growing network. All
the points corresponding to typical values of wc have been satisfactorily fitted with the analytical
expression indicated inside the figure. Figure reproduced from Ref. [85] where further details can
be seen.

5. Clues Concerning the Domains of Validity of BG and q-Statistics

In what follows, we present several suggestive clues that are available in the literature
enabling us to conjecture the domains of validity and failure of the BG statistics and
of q-statistics.

5.1. Clue I—Asymptotically Scale-Free Networks

In Section 4, we have focused on a d-dimensional network growth model which, by
definition of its preferential attachment rule, is essentially scale-free [85]; its interaction
decays as 1/rαA (αA ≥ 0). We have obtained an energy distribution given by

p(ε) ∝ e
−βqε
q , (47)

which is really not particularly surprising given the hypotheses under which the model
has been constructed. The corresponding value of q is given by Equation (46). The value
q = 4/3 precisely corresponds to the divergence of its second moment 〈ε2〉 ≡

∫ ∞
0 dε ε2 p(ε).

Indeed, this moment is finite for all values of q < 4/3 and diverges logarithmically precisely
at q = 4/3. For αA/d > 1, the value of q starts decreasing but does not drop to q = 1 until
the limit α/d → ∞ is attained. This is because the interaction 1/rαA cannot be properly
considered as local unless α/d → ∞. This interaction is integrable for α/d > 1. This is
necessary but not sufficient for the BG statistics to be justified. Integrability is equivalent to
the finiteness of the zeroth moment of r, but the validity of the BG theory requires that all
momenta be finite. In other words,

∫ ∞
1 dr rd−1rnr−αA is finite for all values of n = 0, 1, 2, . . . .

This does not happen unless αA → ∞. In contrast, if the interaction was given, for example,
by e−r/r0 (r0 > 0), or if it was nonvanishing only for, say, first, second, or third neighboring
sites, all momenta would be finite, and we would naturally expect BG statistics to be
verified. To summarize, the region 0 ≤ αA/d ≤ can be properly called a long-range regime,
but the region 1 < αA/d < ∞ cannot be properly be called a short-range regime. Indeed, it
is a sort of intermediate-range regime. The proper short-range regime only emerges for
αA/d→ ∞.
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5.2. Clue II—Momenta and Energy Distributions of Classical Many-Body Hamiltonians

Let us first focus on the α-XY inertial ferromagnet addressed in Section 3.4
(see Figures 13 and 14).

For the momenta distributions, we verify that qp appears to be equal to 5/3 for
0 ≤ α/d ≤ 1 and to possibly decrease exponentially down to qp = 1 for α/d increasing
above unity. The second moment 〈p2〉 of a qp-Gaussian is finite for qp < 5/3 and diverges
for 5/3 ≤ qp < 3.

For the energy distributions, we verify that qE appears to be equal to 4/3 for 0 ≤ α/d ≤ 1
and to possibly decrease exponentially down to qE = 1 for α/d increasing above unity. The
second moment 〈E2〉 of a qE-exponential is finite for qE < 4/3 and diverges for 4/3 ≤ qE < 2.

Let us focus now on the α-Heisenberg inertial ferromagnet (see Figure 15). We see that
qL appears to be compatible with qL = 4/3 within the interval 0 ≤ α/d ≤ 1. Analogously,
qE appears to be numerically compatible with qE = 4/3 within the same interval.

Let us finally focus on the β version of the α-Fermi–Pasta–Ulam–Tsingou d-dimensional
oscillators (see Figure 19). In this case, the numerical α-dependence of the index qp of the
qp-Gaussian distribution of velocities follows a different path. Indeed, it appears to vanish,
like for the two previous Hamiltonian models (α-XY and α-Heisenberg), neatly above the
value α = 1, but it is not constant within the interval 0 ≤ α ≤ 1. However, these preliminary
results are relatively old and not totally consistent. Therefore, we should be cautious when
revisiting these simulations with higher precision.

Figure 19. Dependence on α (exponent characterizing the range of the two-body interactions)
of the index qp corresponding to the qp-Gaussian momenta distributions of the α-Fermi–Pasta–
Ulam–Tsingou one-dimensional β model. Top: Figure reproduced from Ref. [87]. Bottom: Figure
reproduced from Ref. [88].
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5.3. Clue III—Maximal Lyapunov Exponent of the Classical α-Heisenberg Inertial Ferromagnet

This property has been focused on in [76] for the d = 1, 2, 3 models. From the available
data, it has been possible to plot Figure 16.

Clues I, II, and III enable, for classical many-body Hamiltonian systems, the conjecture
indicated in Figure 20 for each of the qp and qE indices for the momenta qp-Gaussians and
the energy qE-exponential distributions, respectively.

0 1 2 3

α/d

0

1

q(0)

2

q(α/d)

Figure 20. Conjectural (α/d)-dependence of each momenta and energy indices qp and qE, respectively,
for classical d-dimensional many-body Hamiltonian models; qp(0) = 5/3 and qE(0) = 4/3 are
plausible values. Furthermore, a more general conjecture emerges, namely 2

qp(α/d)−1 = 1
qE(α/d)−1 ;

hence qp(α/d)−1
qE(α/d)−1 = 2 , ∀(α/d) (see Figure 21); the BG instance (qp = qE = 1) is attained only in the

α/d→ ∞ limit.

0 0.5 1 1.5

α/d

0

1

2

3

(q
p
-1

)/
(q

E
-1

)

d = 1
d = 2
d = 3
〈d〉

Figure 21. A conjectural scaling, namely qp(α/d)−1
qE(α/d)−1 = 2, ∀(α/d), cannot be excluded from the low-

precision data in [72]; such scaling is in fact analytically verified for the Coherent Noise Model, as
shown in Equation (4.85) of [89]. Clearly, more sensibly precise data are needed to draw conclusions.
In any case, this conjecture is consistent with the hypothesis that both the distribution probability
of the energy and that of the kinetic energy (which is proportional to p2) behave proportionally to

e−βq energy
qE .
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Another, more generic, conjecture is possible as well, as indicated in Figure 22. This
alternative conjecture recovers that of Figure 20 as (α/d)c → ∞ is its particular case.

0 1 2 3

α/d

0

1

q(0)

2

q(α/d)

(α/d)
c

Figure 22. Alternative conjecture for the (α/d)-dependence of each momenta and energy indices qp

and qE, respectively, for classical d-dimensional many-body models. In this case, the three long-range
[0 ≤ α/d ≤ 1], intermediate [1 < α/d < (α/d)c], and short-range [α/d ≥ (α/d)c] regions for the
two-body interactions are apparent.

5.4. Clue IV—Viscous-Fluid Spherical Capacitor

A spherical capacitor whose interior is constituted by a dissipative fluid containing a
large number of equally charged small masses has recently been focused on in [90] within
molecular dynamics. The interaction between the particles is a repulsive Coulombian one. The
radial density of the stationary state exhibits a q-exponentially decaying profile with q ' 1.35
rather than the commonly assumed exponentially decaying profile within the Debye–Huckel
theory for electrolites (or the Yukawa theory in nuclear physics) (see Figure 23).

Figure 23. Cont.
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Figure 23. Top: Spherical capacitor with equally charged and equally massive small particles in
overdamped motion between two oppositely charged conductive spheres. Bottom: Radial density
distribution at the stationary state (for comparison, the q = 1 solution, i.e., Debye–Huckel or Yukawa,
is indicated as well in dashed line). Figure reproduced from Ref. [90].

The repulsive Coulombian interaction between the particles corresponds to α = 1.
Therefore, given that d = 3, we have α/d = 1/3, which definitively corresponds to long-
range interactions. This result is numerically consistent with the value q = 4/3 suggested
in Figure 20.

5.5. Clue V—Overdamped Many-Body Systems

Several types of many-body fluid confined d-dimensional systems with repulsive
two-body interactions between particles whose motion is overdamped are susceptible to
analytical study (see [91,92], to mention but a few).

If the interaction decays exponentially with distance (without exclusion of the origin)
we typically obtain, for the d = 1 stationary state distribution for the spatial distribution
associated with a parabolic confinement, a q-Gaussian with q = 0. The same distribution is
verified for the scaled velocity distribution.

If the repulsive interaction decays as the power-law ∝ 1/rα (with exclusion of the
origin, and α > d), the stationary-state d-dimensional spatial distribution associated with a
parabolic confinement is once again proven to be a q-Gaussian with q = 1− α/d. The same
class of distribution is approximately observed for the scaled velocity distribution.

Both classes of systems are indicated in Figure 24.

Figure 24. Exact spatial and approximate scaled-velocity distributions are q-Gaussians with q(α/d) as
indicated. The analytical results are taken from [91] for the q = 0 case and from [92] for the q < 0 case.
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The clue that is provided by the latter of these two examples is that q 6= 1, and not
q = 1, within the intermediate region α/d > 1.

5.6. Clue VI—Kinetics of Point Defects in Short-Range-Interacting Hamiltonians

The kinetics of point defects in short-range interacting d-dimensional Hamiltonians
with the O(n) symmetry for n = d has been focused in [93,94]. It was found that the
distribution of the point defect velocities is a q-Gaussian with

qp =
d + 4
d + 2

. (48)

It happens that this value of qp is the upper bound for a d-dimensional qp-Gaussian
to have a finite second moment. For d = 1 we obtain qp = 5/3, which coincides with the
value conjectured in Figure 20 for the plateau associated with α/d ∈ [0, 1].

5.7. The Intriguing Case Of The Lennard–Jones’ Two-Body Potentials For Modeling Real Gases

Mie introduced in 1903 [95] a model for real gases (d = 3) with the two-body potential

V(r) = Cε
[(σ

r

)n
−
(σ

r

)m]
(0 < m < n; ε > 0) (49)

with

C ≡ n
n−m

( n
m

) m
n−m

. (50)

Two decades later, Lennard–Jones studied [96–98] the particular case (n, m) = (12, 6)
on physical and thermodynamical grounds. The Lennard–Jones potential corresponds
therefore to

VLJ(r) = 4ε
[(σ

r

)12
−
(σ

r

)6]
, (51)

where the attractive term is interpreted as a van der Waals interaction, and the repulsive
term is a phenomenological one representing a hard, strong interaction. For nearly one
century, this model for a real fluid has been handled on BG grounds with qualitatively
successful comparisons with experiments. However, it corresponds to α/d = 2, which,
according to the conjecture indicated in Figure 20, is included within the intermediate-range
region, for which we expect q 6= 1. How are we supposed to handle this puzzling situation?
A possible outcome might be argued as follows. A relation of the type

qE(α/d) ' 1 + κ(α/d) (52)

has some degree of plausibility. Indeed, for, say, the α = 0 XY ferromagnet (MFA model),
we might have qE ' 4/3 and κ ' 1/3. In that case, the α/d = 2 case would lead (see
caption of Figure 16) to a value similar to q ' 1.001. This value surely is numerically
indistinguishable from q = 1 at the precision within which comparisons of empirical and
theoretical (Lennard–Jones) results are performed for real gases.

6. Final Remarks and Conclusions

The basic footprints of Boltzmann–Gibbs statistical mechanics are the energy distri-
bution, the velocity distribution, and the time and size dependencies of the entropy. They
are, respectively, given by exponentials (the BG weight, as well as the time sensitivity to
the initial conditions, and phenomena relaxing with time), Gaussians (the Maxwellian
distribution of velocities, as well as similar fluctuating quantities), and qentropy = 1 (i.e.,
SBG). Within the q-generalized theory that has been focused on here, these footprints
become q-exponentials, q-Gaussians, and q-entropies, respectively. These are precisely the
properties that have been reviewed above, for systems with both low and large number of
degrees of freedom, either conservative or dissipative, with dimensionalities d = 0, 1, 2, 3,
diverse ranges of interactions (long, intermediate, short), involving both discrete and con-
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tinuous time, with either classical or quantum nature, among other specificities. It has
been profusely exhibited, in diverse complex dynamical systems, the various situations in
which the q-concepts satisfactorily replace the BG concepts that are intimately related to
ergodicity, mixing, symmetry of homogeneous occupancy of phase space, and similar ones.

Naturally, several interesting sets of open questions arise, which remain challenges
for the future. One of them deserves a special mention at this stage, namely the energy
and velocity distributions of classical many-body Hamiltonian d-dimensional systems with
nonfrustrating two-body interactions of arbitrary range. The coupling constant is assumed
to decay with the two-body distance r as 1/rα: 0 ≤ α/d ≤ 1 corresponds to long-range
interactions, 1 < α/d < ∞ corresponds to intermediate-range, and, finally, α/d → ∞
corresponds to short-range interactions, precisely the case which is most currently studied
within the BG theory. First-principle dynamical numerical studies appear to indicate that,
for 0 ≤ α/d < ∞, two physically different regions might exist in the (N, t)→ (∞, ∞) limit,
one of them corresponding to N/tγ below some (α/d)-depending threshold (with γ > 0),
and the other one corresponding to N/tγ above that same threshold. The correct description
in the former case appears to be BG statistics, whereas in the latter case it appears to be
q-statistics. In the region of validity of q-statistics, the energy distribution would be of
the qE-exponential form, with qE = 4/3 for 0 ≤ α/d ≤ 1, and would exponentially decay
down to qE = 1 for α/d increasing above unity up to infinity. The momenta distribution
could be of the qm-Gaussian form with (qm − 1)/(qE − 1) = 2 for all values of α/d. At
the α/d → ∞ limit, the correct description follows BG statistics for any (N, t) → (∞, ∞)
ordering. In other words, in the α/d→ ∞ limit, the abovementioned threshold diverges.

These and related remarks suggest the following features.

- The spatially averaged two-body potential
∫ ∞

1 dr rd−1r−α is finite for α/d > 1, and
diverges for 0 ≤ α/d ≤ 1. Such finiteness is necessary but not sufficient for all the
BG thermostatistical quantities to be finite. Consistently, the total internal energy is
thermodynamically extensive for α/d > 1, and superextensive for 0 ≤ α/d ≤ 1.

- The finiteness of the spatially averaged two-body potential is necessary for BG statisti-
cal mechanics to be applicable but it is not sufficient. Its full applicability requires also
the finiteness of all the associated momenta, i.e.,

∫ ∞
1 dr rd−1r−α rn must also be finite

for n = 1, 2, 3, . . . . Such a strong requirement is satisfied only in the α/d→ ∞ limit of
the present power-law models, or for Hamiltonians involving interactions only among
relatively close neighbors (first, second, and third neighbors, for instance).

- The maximal Lyapunov exponent appears to decay with the number N of elements
as N−κ(α/d) with κ(α/d) ≥ 0. It is possible that roughly κ(α/d) ' qE(α/d)− 1, for
all values of α/d. If so, we can guarantee strong chaos (hence, mixing in phase-space,
hence ergodicity) in the N → ∞ limit only for α/d → ∞. In all other cases, i.e.,
0 ≤ α/d < ∞, we would have, in the N → ∞, weak chaos, and therefore ergodicity
and mixing will not be guaranteed. This is consistent with the failure of the BG
theory which is observed (nonexponential energy distribution, and non-Gaussian
momenta distribution).

- The fact that a BG partition function, as well as other thermostatistically relevant
quantities (e.g., equations of states, energy and velocity distributions) are computable
(within analytical mean-field methods, for example) is necessary but not sufficient for
the BG theory to satisfactorily describe the system.

Further insights and analytical results in the statistical mechanics of complex systems
are certainly very welcome in order to corroborate the above scenario involving some
conjectural issues.
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