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Abstract: The present research performs numerical studies to search for the best maneuvers, from
the point of view of minimum time, to make adjustments in the semi-major axis, eccentricity and
inclination of a spacecraft traveling around the Earth. For those maneuvers, low thrust propulsion is
used under optimal and sub-optimal assumptions, to verify the main differences in terms of transfer
time. In addition, solar sail dynamics is used. The spacecraft is assumed to have a propulsion with
a fixed magnitude and that the control is based on choosing the direction of the propulsion. It is
found that optimal control gives the minimum transfer time, while sub-optimal control restricted the
control to follow a predescribed function, which is assumed to be a constant or linear function in time.
Finally, solar sails present themselves as an option where fuel is a critical factor, given their much
longer maneuver duration, but with a zero fuel consumption. The numerical-analytical modeling
of optimization methods developed in this study can break any type of symmetry in the solutions.
In turn, they can increase their energetic efficiency. The present research compares those results in
detail, in particular looking at the transfer time in all cases studied.

Keywords: astrodynamics; maximum principle of Pontryagin; optimal control; orbital mechanics;
solar sailing

1. Introduction

An orbital maneuver occurs when a spacecraft is moved from one orbit to another
through the use of propulsion systems. There are many reasons to perform this task,
such as changing the application of a spacecraft or just making corrections to keep it in
the desired orbit, with applications such as Canuto et al. [1]. It is also common that the
launcher delivers the spacecraft in an orbit that is not the final one due to limitations of the
launch vehicles. In this case, an orbital maneuver is required. It is also common to specify
transfers with minimum time or fuel expenditure because both of them are very important
in space missions.

Recent advances in space technologies have made it possible to perform these maneu-
vers with no fuel expenditure, by using solar sail spacecrafts [2–7]. These vehicles absorb
the linear momentum of sunlight and use it as its own form of propulsion [8].

Thus, our general problem is an optimization problem that consists of changing the
initial state of a spacecraft (position and velocity) from r0, v0 at the time t0, to the final state
r f , v f at the time t f (t f > t0) using the minimum possible time for the transfer. When using
propulsion, there is a cost in terms of fuel to make these maneuvers. Additionally, a zero
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fuel expenditure study is implemented with the use of a solar sail, in order to compare the
transfer time and orbits achieved.

In principle, in a low thrust maneuver, it is possible to choose the direction and
magnitude of the thrust to be applied in the spacecraft at every instant of time, but this
is a solution that is usually very hard to implement. In order to do that, it is necessary to
control the attitude of the satellite and very fast variations of attitude are required, if the
thruster is fixed to the satellite structure. Even if it is not fixed, it is still complicated to
implement a general law for the direction of the thrust.

Therefore, the present paper compares the optimal control version with the sub-
optimal one, where the magnitude of the thrust is constant and the direction is constant
or follows a linear relation with an angle that describes the position of the spacecraft.
This second case represents a situation that is easier to implement. After that, the same
maneuver is simulated using a solar sail, and the results are compared.

In a sense, this paper is a continuation of Prado [9], by comparing optimal control with
a suboptimal solution that uses only one arc for the propulsion, using fuel consumption
as the criterion to be minimized. The main new aspect of the present paper is the use of
a solar sail to perform the same maneuver. Given the propellant-less propulsion offered
by solar sails, it is possible to reduce even further the fuel consumption established by the
optimal solution. The challenge is verifying if the solar sail can make this maneuver, given
its thrust direction restrictions, and how much time it requires.

In summary, this paper presents studies of numerical-analytical modeling, such
as [10–12], and their application on efficient optimization methods in mechanics and con-
trol problems of space missions. Those methods can break any type of symmetry in the
trajectories obtained, but increase their energetic efficiency.

2. Model Used

For the maneuvers based on low thrust constant propulsion, the spacecraft is consid-
ered to be traveling with its equations of motion obtained from the forces that are present
in the system, which are: the gravity field of the Earth, assumed to be Keplerian, and
the thrust, when turned on. The thrust is established with a fixed magnitude, totally free
direction (for the optimal control version of the maneuver) and constant or with linear
variation of the angular motion (for the suboptimal control versions of the maneuver). The
thrust is assumed to be working all the time in all versions of the problem. Afterwards, the
solutions pursued are the direction that the thrust should be applied as a function of time
and the respective transfer time of the maneuver.

The formulation of the problem can be written as:

• Objective Function: T,
where T is the time of transfer, the variable to be minimized with respect to the control;

• Subject to: Equations of motion, constraints in the state and control.

For the suboptimal version, the direction of the application of the thrust (the control)
can be represented by a linear function of the true anomaly of the spacecraft, which is an
angle that defines the position of the spacecraft [13,14]. The direction of the thrust (the
planar angle of pitch (A) and the out-of-plane angle of yaw (B), both angles considering the
orbital plane of the spacecraft as the fundamental plane of reference) can be expressed by
Equations (1) and (2). The “pitch” (A) is the angle of the projection of the thrust vector in
the orbital plane. It is measured from the circumferential direction in a clockwise rotation,
such that a thrust with A = 90◦ is given in the radial direction pointing away from the
central body. The “yaw” (B) is the angle between the thrust vector and its projection in the
orbital plane:

A = A0 + A′ ∗ (s− ss) (1)

B = B0 + B′ ∗ (s− ss) (2)
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where A0, B0, A′, B′ are constants to be found, s is the range angle of the spacecraft, and ss
represents the range angle of the spacecraft when the thrust is turned-on. The range angle
is just an angle that gives the position of the spacecraft with respect to a given point to start
the measurements. When A′ = B′ = 0, we have a constant direction of thrust.

In this format, we have four or six variables to be optimized (the true anomalies of
starting and ending of the thruster and A0, B0, A′, B′). The case that only four variables
need to be optimized is when thrust is given in a constant direction, such that A′ = B′ = 0.

We can use here the same set of variables used in Prado [9], which are shown hereinafter:

X1 =
[
a(1− e2)/µ

]1/2

X2 = e cos (ω− φ)

X3 = e sin (ω− φ)

X4 = (Fuel consumed)/m0

X5 = t
X6 = cos(i/2) cos((Ω + φ)/2)
X7 = sin(i/2) cos((Ω− φ)/2)
X8 = sin(i/2) sin((Ω− φ)/2)
X9 = cos(i/2) sin((Ω + φ)/2)
φ ≡ ν + ω− s

(3)

where s is the range angle of the spacecraft, which is the angle between the position vector
of the spacecraft and a generic reference line in the orbital plane, a is the semi-major axis, e
is the eccentricity, i is the inclination, ω is the argument of periapsis, ν is the true anomaly
of the spacecraft, Ω is the argument of the ascending node, and φ is defined by its equation.
The reason why the spacecraft position is both represented by the true anomaly and the
range angle is to maintain the same notation as Biggs [14,15].

In those variables, the equations of motion are:

dX1/ds = f1 = SiX1F1

dX2/ds = f2 = Si{[(Ga + 1) cos(s) + X2]F1 + GaF2 sin(s)}
dX3/ds = f3 = Si{[(Ga + 1) sin(s) + X3]F1 − GaF2 cos(s)}
dX4/ds = f4 = SiGaF(1− X4)/(X1W)

dX5/ds = f5 = SiGa(1− X4)m0/X1

dX6/ds = f6 = −SiF3[X7 cos(s) + X8 sin(s)]/2
dX7/ds = f7 = SiF3[X6 cos(s)− X9 sin(s)]/2
dX8/ds = f8 = SiF3[X9 cos(s) + X6 sin(s)]/2
dX9/ds = f9 = SiF3[X7 sin(s)− X8 cos(s)]/2

(4)

where 

Ga = 1 + X2 cos(s) + X3 sin(s)
Si = (µX4

1)/[Ga3m0(1− X4)]

F1 = F cos(A) cos(B)
F2 = F sin(A) cos(B)
F3 = F sin(B)

(5)

where F is the magnitude of the force, and W is the ejection speed of the gases.
We also have the constraints given by the fact that the spacecraft has to reach a final

orbit and leave from a given initial orbit.
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3. Optimal Solution

The optimal solution can be obtained using optimal control theory [16]. We can write
first order necessary conditions to have a local minimum and, from there, we can obtain:

(a) The differential equations that give the Lagrange multipliers, called “adjoint equa-
tions”. When we combine them with the equations of motion, we have a complete set
of differential equations that solves the problem;

(b) The “Transversality Conditions”, which are the conditions that the Lagrange multipli-
ers must achieve at the end of the numerical integration. They complete the conditions
to be satisfied by the solution of the problem when combined to the fact that the
maneuver starts at a given initial orbit and ends in a different final orbit;

(c) The “Maximum Principle of Pontryagin”, which states that it is necessary to maximize
the magnitude of the scalar product of the Lagrange multipliers with the right-hand
side of the equations of motion. This point gives the condition to find the optimal
angles of “pitch” and “yaw” at each instant of time.

This problem can be solved using the algorithm described in the next steps:

(i) Give estimates for the initial and final times of the maneuver and the initial values of
the Lagrange multipliers;

(ii) Make a numerical integration of the adjoint equations and the equations of motion,
using the values for the “pitch” and “yaw” angles obtained from the Maximum
Principle of Pontryagin;

(iii) After that, check if the boundary conditions are satisfied. If not, update the initial
values and start again. This update is explained in further detail in Section 4 with the
use of Equations (9) and (10). If the conditions are satisfied, the solution was found.

The adjoint equations are:

dp1

ds
= − 1

X1

[
4

9

∑
j=1

pj f j + p1 f1 − p4 f4 − p5 f5

]
dp2

ds
=

cos(s)
Ga

[
3

9

∑
j=1

pj f j − p4 f4 − p5 f5

]
− Sip2F1

− Si cos2(s)(p2F1 − p3F2)− Si cos(s) sin(s)(p2F2 + p3F1)

dp3

ds
=

sin(s)
Ga

[
3

9

∑
j=1

pj f j − p4 f4 − p5 f5

]
− Sip3F1

− Si cos(s) sin(s)(p2F1 − p3F2)− Si sin2(s)(p2F2 + p3F3)

dp4

ds
= − 1

m0(1− X4)

[
9

∑
j=1

pj f j − p4 f4 − p5 f5

]
dp5

ds
= 0

dp6

ds
= −SiF3

2
[p7 cos(s) + p8 sin(s)]

dp7

ds
=

SiF3

2
[p6 cos(s)− p9 sin(s)]

dp8

ds
=

SiF3

2
[p6 sin(s) + p9 cos(s)]

dp9

ds
= −SiF3

2
[p8 cos(s)− p7 sin(s)]

(6)

where pi are the Lagrange multipliers.
The condition that comes from the Principle of Pontryagin can be written as:

• Extremize
9
∑

i=1
pi fi with respect to A.



Symmetry 2023, 15, 512 5 of 13

To obtain the values of A at every instant of time, it is necessary to make the derivatives
of fi with respect to A and set them to zero [15]. Doing so, we have:

sin(A) = q2/S′ (7a)

cos(A) = q1/S′ (7b)

where: 
S′ = ±

√
q2

1 + q2
2

q1 = p1X1 + p2[X2 + (Ga + 1) cos(s)] + p3[X3 + (Ga + 1) sin(s)]
q2 = p2Ga sin(s)− p3Ga cos(s)

(8)

4. Numerical Method

The solution of the nonlinear programming problem can be found using the gradient
projection method [17,18]. This method is based on selecting an initial guess for all the
components of the vector X, which we call X0. Using this vector, we make a numerical
integration of the trajectory to find the vector X at the final time. At this point, two steps
are taken:

(i) First, we need to make the system satisfy the constraints given by the problem (usually
some orbital elements of the final orbit). For this step, we use the update:

Xi+1 = Xi −∇fT ·
[
∇f · ∇fT

]−1
f (9)

where f is the vector formed by the active constraints;
(ii) After the constraints are satisfied, we take some steps to minimize the fuel consumed.

For this phase, the updates are given by:

Xi+1 = Xi +

(
γ

J(X)
∇J(X) · d

)
d
|d| (10)

with:

d = −
(

I−∇fT
[
∇f · ∇fT

]−1
f
)
· ∇J(X) (11)

where I is the unit matrix, d is the search direction, J is the fuel consumed, and γ is a
parameter that controls the convergence speed of the optimization problem. Large
values increase the convergence speed, but reduce the accuracy of the solution because
there are larger oscillations around the real solution of the problem. On the other side,
lower values require more steps until a convergence is obtained, but the solution is
more accurate.

In both iterations, this procedure continues until |Xi+1 − Xi| < ε, where ε is a given
tolerance that represents the accuracy required for the solution.

5. Solar Sailing

The solar sail spacecraft dynamics is initially defined in a Spacecraft Oriented Frame
(SOF), with an origin at the barycenter of the spacecraft. Its X-axis corresponds to the
direction of the incoming sunlight (u). The Z-axis points in the direction of the cross
product of the position and the velocity of the spacecraft, both in respect to the Sun. Finally,
the Y-axis is defined in agreement with a coordinate system in dextrorotation.

The angles that determine the orientation of the solar sail, defined by the vector normal
to its surface (n), are called azimuth (α) and elevation (δ). The azimuth (α) is the angle
between the projection of n on the XY-plane (projXYn) and u. The elevation (δ) is the angle
between n and projXYn.
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The resulting Solar Radiation Pressure (SRP) thrust (T) is defined as a function of
n. In order to determine its value, it is convenient to make use of the lightness vector
L (Equation (12)), defined as the SRP acceleration normalized by the local gravitational
acceleration of the Sun [19]:

L =

(
1
2

σc

σ

)
nx
[(

2rspecnx + χfrdiff + κabsor
)
n + (absor + rdiff)u

]
(12)

where σc is a constant referred to as critical loading (Equation (13)), σ is the sail loading
(Equation (14)), nx is the n X-axis component, absor, rspec and rdiff are, respectively, the
absorptance, specular reflectance and diffuse reflectance coefficients, χ is another coefficient
related to emission/diffusion, and κ is a dimensionless factor, which results from the net
thrust of the absorbed and re-emitted radiation on the two sides of the sail. The subscripts
“f” and “b” refer to the front and back side of the sail.

σc ≡ 2
I1AU

c g1AU
≈ 1.5368 g/m2 (13)

σ ≡ m
A

(14)

κ ≡ χfεf(T)− χbεb(T)
εf(T) + εb(T)

(15)

where I1AU = 1366 W/m2 and g1AU ≈ 5.930× 10−3 m/s2 are both constants which rep-
resent, respectively, the energy flux emitted by the Sun and its gravitational acceleration,
both at 1 au, c ≈ 2.9979× 108 m/s is the speed of light in vacuum, m is the total mass of the
spacecraft, A and T are, respectively, the solar sail surface area and its temperature and ε is
the solar sail emittance coefficient.

The values for the optical coefficients were taken from solar sail models made in the
early 2000s by the Jet Propulsion Laboratory [20]. The values considered were ab = 0.12,
rspec = 0.8272, rdiff = 0.0528, εf = 0.05, εb = 0.55, χf = 0.79 and χb = 0.55.

Finally, this study considered a sail loading of σ = 198.7 g/m2. This value is calculated
from Equation (16) and was taken from the effective lightness number (β = 0.0077) of the
ACS3 mission from NASA [21]:

β =
σc

σ
(16)

Sail Attitude Strategy

The sail orientation strategy used for the azimuth α is taken from McInnes [20] and
further implemented in Meireles et al. [22]. Even though the spacecraft orbits the Earth, it
is necessary to know the spacecraft distance to the Sun to determine aSRP. Therefore, the
dynamics take place in a Heliocentric Inertial Frame in a three-body gravitational problem
(Sun, Earth and Solar Sail Spacecraft). The strategy consists of maintaining half a rotation
per orbital revolution around the Earth. In order to avoid big attitude maneuvers, the sail
is considered to have both of its sides made of reflective materials. This strategy can be
broken down into two modes of operation:

(i) Increase the spacecraft orbital energy, where the resulting SRP force is directed to the
direction of the spacecraft geocentric velocity (as illustrated in Figure 1);

(ii) Decrease the spacecraft orbital energy, where the resulting SRP force is directed in the
opposite direction of the spacecraft geocentric velocity (as illustrated in Figure 2).
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Figure 1. Strategy (i).

Figure 2. Strategy (ii).

At each instant t, the α(t) and δ(t) are determined as follows, in order to correct the
required orbital elements of the spacecraft:

• Semi-major axis→ are f :

– If a(t) < are f : implement Strategy (i);
– If a(t) > are f : implement Strategy (ii);

• Eccentricity→ ere f :

– If e(t) < ere f : implement Strategy (i) if the spacecraft geocentric eccentricity
vector e points in the opposite direction of the Earth velocity and Strategy (ii) if
otherwise;

– If e(t) > ere f : implement Strategy (i) if e points in the direction of the Earth
velocity and Strategy (ii) if otherwise;

• Inclination→ ire f :

– If i(t) < ire f : δgeo = +35◦ if the spacecraft geocentric true longitude is ν ≈ 0◦ and
δgeo = −35◦ if ν ≈ 180◦;
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– If i(t) > ire f : δgeo = −35◦ if ν ≈ 0◦ and δgeo = +35◦ if ν ≈ 180◦,

where δgeo is the elevation angle of the sail considering a fundamental plane of reference
as the spacecraft geocentric orbital plane. The elevation angle δ in the SOF is defined as
a consequence.

6. Results

To verify the applicability of the methods proposed here, we now make simulations
of orbital maneuvers using all of them. The results obtained in Sections 6.1 and 6.2 are in
accordance with Biggs [14,15]. The solar sail performance in Section 6.3 is in line with the
latest solar sail mission data made available by The Planetary Society [23].

This test case was simulated from a deviated geostationary orbit, which suffered a
small altitude decay and increase in eccentricity and inclination. Geostationary orbits
are sensible to third body perturbations and frequently need orbital corrections. In this
case, the corrections are made with a continuous and constant low thrust. The problem is
defined in the Earth Centered Inertial frame (ECI) and taken from a previous case study
from Biggs [15] with the following data:

• Initial orbit:

– Semi-major axis: 41,904.1 km;
– Eccentricity: 0.018;
– Inclination: 0.688◦;
– Ascending node: −29.8◦;
– Argument of perigee: 7.0◦.

• Initial data:

– Total mass (vehicle + fuel): 300 kg;
– Magnitude of thrust available: 2 N.

• Imposed conditions of final (geostationary) orbit:

– Semi-major axis: 42,164.2 km;
– Eccentricity: 0.0;
– Inclination: 0.0◦.

6.1. Optimal Maneuver

The first method to be tested is the “optimal” one, since it gives the actual minimum
time for the transfer, and the results can be used to verify the other methods. The goal is to
correct deviations from a circular and equatorial orbit and to increase the semi-major axis.
To use the optimal maneuver, we have the data shown next:

• Constraint satisfaction tolerance: 0.03;
• Initial guess:

– Propulsion start: 100.0◦;
– Propulsion end: 110.0◦;
– Initial pitch angle: 180.0◦;
– Initial yaw angle: −45.0◦;
– Initial pitch rate of change: 0.5;
– Initial yaw rate of change: 0.0.

The initial guess values are a consequence of a trial and error process.
The obtained optimal values for “pitch” and “yaw” angles are displayed in Figure 3.
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Figure 3. Optimal pitch and yaw angle values.

• Effectively achieved orbit:

– Semi-major axis: 42,161.23 km;
– Eccentricity: 0.000;
– Inclination: 0.0◦;
– Ascending node: 265.5◦;
– Argument of perigee: 93.2◦;
– True anomaly: 171.8◦.

• Duration of the maneuver: 15,237.6 s.

It is important to remember that the duration of the maneuver is taken from the
integration of f5 from Equation (4).

The results showed that the method converged very well with the initial guess pro-
posed. Besides that, we also see that the “pitch” angle is almost linear, which indicates that
sub-optimal solutions will work very well. The “yaw” angle is clearly not linear. However,
it changes in a range of 54–56 degrees, so may be approximated with a constant value or
constant with small linear variation. The most important result is the minimum time of the
transfer, which is 15 237.6 s, about 253.96 min or 4.23 h. It is important to mention that this
is not the burning time of the propulsion arc because this time is counted from the initial
true anomaly of the spacecraft, and the optimization algorithm chooses the best point to
start the propulsion, which is not the initial true anomaly of the spacecraft. The burning
has a length of about 41 degrees, starting at ss = 249◦ and ending at se = 290◦, as shown by
Figure 3.

6.2. Suboptimal Maneuvers

The next step is to make the same maneuver using two versions of the suboptimal
technique. The first one considers that the direction of the thrust can have a linear variation
with the range angle (or the true anomaly of the spacecraft, since the difference between
them is a constant), and the second one assumes a constant value for the direction.
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The results are shown in Table 1. This table gives the start (ss) and end (se) of the
propulsion (in terms of the range angles), the values of the constants involved (A0, B0, A′,
B′ for the linear variations or A0, B0, for the constant direction and the optimal maneuver)
and the transfer time in seconds.

Table 1. Suboptimal transfers.

Maneuver ss (◦) se (◦) A0 (◦) B0 (◦) A′ B′ Duration
(s)

Optimal 249 290 −26.6 55.7 - - 15,237.6
Linear 235 282 −22 45 0.687 0.067 17,121.3
Constant 221 271 −12 55 0 0 18,305.4

The linear approximation requires a larger burning arc, 47 degrees against 41 degrees
for the optimal maneuver, and has a transfer time of 17,121.3 s (285.35 min or 4.76 h), an
increase of 1883.7 s or 31.40 min. Those results show that the linear approximation is a
very good choice because it does not increase the transfer time too much. In terms of fuel
consumption, although it is not the goal of the present paper, the difference is proportional
because the thrust has constant magnitude and is active all the time. It means an increase
of 12.36%.

When considering the constant direction for the propulsion, this approximation
requires a little bit larger burning arc, 50 degrees and has a transfer time of 18,305.4 s
(305.09 min or 5.09 h). This means an increase of 3067.8 s or 51.13 min. Those results show
that this approximation is also an interesting choice because it does not increase too much
the transfer time. In terms of fuel consumption, it means an increase of 20.13%.

As a summary, both techniques based in a constant low thrust propulsion show good
results, with faster transfer times. The differences among these techniques are between 12%
and 20%, which can be acceptable for many missions considering the simplification of the
control. The next step is to study how to make this maneuver using a solar sail, which does
not use fuel.

6.3. Solar Sail Spacecraft

The progress of the values of the spacecraft geocentric orbital elements over time are
displayed by the black full lines in Figure 4. The red dashed lines indicate their initial
values and the blue dashed lines their given final values.

Figure 4. Orbital elements of the spacecraft over time. (Red line: initial value; Blue line: final value).
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It can be seen that the solar sail was able to correct the inclination in approximately
116 days, the semi-major axis in 185 days, and the eccentricity in 770 days.

The eccentricity can only be corrected in certain moments because it depends on the
relative positions between the Sun, the Earth and the Spacecraft. This justifies the long
idle periods between the days 115 through 185 and 305 through 580. Additionally, the
eccentricity must be the last orbital element to be corrected because it is affected by the
correction of the others. The long time required to correct the eccentricity is a consequence
of these reasons.

The azimuth α and elevation δ values of the sail over time are displayed in Figure 5.

Figure 5. Solar sail attitude angles over time.

The long idle periods of the solar sail, with no exposed surface area to the sunlight
(α = 90◦) and, consequently, a null SRP force, can be verified by this plot. Due to the long
transfer time, it can be difficult to observe the behavior of α and δ in greater detail. The
variation of their values through the course of a day appears as a blur when represented
throughout the entire time frame of the maneuver. Therefore, a second plot is displayed for
a shorter period of 10 days (zoom in on the X-axis).

The duration of the maneuver is: 66,528,000 s (770 days), which is 4366× greater than
the optimal minimum time transfer. In compensation, the solar sail offers the possibility of
zero fuel consumption and presents itself as a viable option when fuel consumption is a
critical factor compared to the orbital maneuver duration.

7. Conclusions

The present paper worked with station-keeping maneuvers for a spacecraft around the
Earth. The goal was to correct deviations in semi-major axis, eccentricity and inclination.
Three techniques were implemented: linear and constant suboptimal control, optimal
control maneuvers (both of them using a constant thrust magnitude) and propulsion
based on solar sails. The criterion is to minimize transfer time, which is the equivalent of
minimizing fuel consumption for the maneuvers based on propulsion. All of them proved
to be successful in achieving a predetermined final orbit, even with a semi-major axis,
eccentricity and inclination constraints.
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The results show clearly that the optimal maneuver has the minimum time transfer,
but suboptimal linear control has a 12.36% greater transfer time. However, it has a much
simpler hardware implementation. Going for a constant direction of thrust, we have an
extra 7.77% in transfer time but a much easier implementation of the control. Regarding
fuel consumption, the differences are the same. Thus, those possibilities are available for a
mission designer.

Solar sails present an advantage, which is the zero fuel consumption. However, they
demand a much longer time (4366× greater) to perform the necessary maneuver. In the
simulation analyzed, it was able to correct the inclination in a little over 116 days, the
semi-major axis in around 185 days and the eccentricity in approximately 770 days. It
is clear that the process is much faster if only semi-major axis and inclination need to
be corrected.

The final decision on which method to use depends on the requirements of the mission,
both in terms of transfer time and fuel available. It also depends on the magnitude of the
corrections and the Keplerian elements to be corrected.
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