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Abstract: In this paper, we propose three real representations of a generalized Segre quaternion
matrix. We establish necessary and sufficient conditions for the existence of the η-anti-Hermitian
solution to a system of constrained matrix equations over the generalized Segre quaternion algebra.
We also obtain the expression of the general η-anti-Hermitian solution to the system when it is
solvable. Finally, we provide a numerical example to verify the main results of this paper.
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1. Introduction

In 1843, Hamilton [1] discovered the real quaternions

H = {q = q0 + q1i + q2 j + q3k : i2 = j2 = k2 = −1, ijk = −1, q0, q1, q2, q3 ∈ R}

which is a four-dimensional non-commutative division algebra over the real number field R.
The real quaternions have played an important role in many fields such as quantum

physics, computer graphics and signal processing [2–4]. In these areas, the real quaternion
algebra is more useful than the usual algebra. For example, Ling et al. [5] presented a new
algorithm for solving the linear least squares problem over the quaternions. By means
of direct quaternion arithmetics, the algorithm does not make the scale of the problem
dilate exponentially, compared to the conventional real or complex representation methods.
However, the multiplication of real quaternions is non-commutative; therefore, to avoid
non-commutativity, the commutative quaternion algebra was introduced.

In 1892, Segre [6] defined the commutative quaternions

S = {a = a0 + a1i + a2 j + a3k : i2 = −1, j2 = 1, ij = ji = k, a0, a1, a2, qa3 ∈ R}

which is a four-dimensional commutative algebra that is not divisible over R.
The commutative quaternions have been widely applied in various fields. For color

image processing, Pei et al. [7] defined a simplified commutative quaternion polar form
to represent color images, which is useful in the brightness–hue–saturation color space.
After this, Pei et al. [8] developed the algorithms for calculating the eigenvalues, the
eigenvectors and the singular value decompositions of commutative quaternion matrices.
They employed the singular value decompositions of commutative quaternion matrices
to implement a color image which reduces the computational complexity to one-forth of
the conventional. Guo et al. [9] defined the reduced canonical transform of commutative
quaternions which is the generalization of reduced Fourier transform of commutative
quaternions. Lin et al. [10] established a commutative quaternion valued neural network
(CQVNN) and studied the asymptotic stability of CQVNN.

The commutative quaternion matrix equations have been studied extensively.
In [11], Kosal et al. studied some algebraic properties of commutative quaternion matrices
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using complex representations. Kosal et al. [12] gave the expression of the general solution
to the Kalman–Yakubovich conjugate matrix equation over the commutative quaternions
by means of real representations of a commutative quaternion matrix. Moreover, Kosal
et al. [13] studied Sylvester-conjugate commutative quaternion matrix equations using
real representations. In [14], Kosal et al. proposed a different kind of real representation
of commutative quaternion matrices, and they also studied the general solution to matrix
equation AX = B over the commutative quaternions.

Segre [6] extended the commutative quaternion algebra to the generalized Segre
quaternion algebra Sg, which is defined as follows:

Sg = {a = a0 + a1i + a2 j + a3k : a0, a1, a2, a3 ∈ R and i, j, k /∈ R},

where i, j, k satisfy the following multiplication rules:

i2 = k2 = α, j2 = 1, ij = ji = k, jk = kj = i, ik = ki = αj.

Here, we only consider the case in which α 6= 0. In particular, Sg is the commutative
quaternions S when α = −1.

The generalized Segre quaternion algebra, which includes the commutative quater-
nions, shows the superiority of the proposed approach in signal processing over its coun-
terpart in the real quaternions. Moreover, the Segre quaternions have potential applications
in linear models, filtering and smoothing as well as signal detection [15].

The commutative quaternion algebra has many vital applications to areas of math-
ematics and physics. On this basis, the generalized Segre quaternion algebra is rarely
studied. Out of this motivation, we focus on the generalized Segre quaternion algebra in
this paper.

For A ∈ Sm×n
g , A can be uniquely expressed as A = A0 + A1i + A2 j + A3k, where

A0, A1, A2, A3 ∈ Rm×n. We define η-conjugates [11], η ∈ {i, j, k}, as follows:

Ai = A0 − A1i + A2 j− A3k,
Aj = A0 + A1i− A2 j− A3k,
Ak = A0 − A1i− A2 j + A3k,

and η-conjugate transposes, η ∈ {i, j, k}, as follows:

Ai∗ = A0
T − AT

1 i + AT
2 j− AT

3 k,
Aj∗ = AT

0 + AT
1 i− AT

2 j− AT
3 k,

Ak∗ = AT
0 − AT

1 i− AT
2 j + AT

3 k.

Definition 1. For η ∈ {i, j, k}, A ∈ Sn×n
g is called η-Hermitian matrix if A = Aη∗, A ∈ Sn×n

g
is called η-anti-Hermitian matrix if A = −Aη∗.

The concept of η-(anti)-Hermitian matrix is a more generalized concept comparing
with (skew-)Hermitian matrix. η-(anti)-Hermitian matrix has important applications in
linear modeling and convergence analysis in statistical signal processing [16–18]. The
η-(anti)-Hermitian solutions to matrix equations over real quaternions have been vastly
investigated [19–22]. However, the η-anti-Hermitian solutions to matrix equations over the
commutative quaternion algebra have received little attention. Yuan et al. [23] investigated
the Hermitian solutions of commutative quaternion matrix equation (AXB, CXD) = (E, G),
which has wide applications in control and system theory, stability theory and neural
network. Tian et al. [24] studied the anti-Hermitian solutions of matrix equations AXAH +
BYBH = C over the commutative quaternion algebra.
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Motivated by significant application and research value of η-(anti)-Hermitian matrix
and matrix equations, we consider the η-anti-Hermitian solution to the generalized Segre
quaternion matrix equation

AX = B (1)

and a system of constrained generalized Segre quaternion matrix equations

E1XE2 + F1YF2 = H,

s.t.


A1X = B1,
XA2 = B2,
C1Y = D1,
YC2 = D2,

(2)

where X and Y are unknown matrices and the other matrices are given with appropriate
orders. The classic matrix equation AX = B over the real quaternions is important in
various applications, for example, Yuan et al. [25] discussed its application in color image
restoration. However, to the best of our knowledge, currently known real representations
of commutative matrices are not able to address the η-anti-Hermitian solutions of ma-
trix equations. Our scientific innovation lies in not only establishing three different real
representations, making up for the result of η-anti-Hermitian solutions over the commu-
tative quaternions, but also generalizing it to the Segre quaternion algebra which is more
extensive and of application value.

2. Preliminaries

In this section, we specify the notations of the paper and propose three real representa-
tions of the matrix over the generalized Segre quaternion algebra. The algebraic properties
of the real representations are also given.

2.1. Notations

Throughout this paper, we use the following notations:

• In denotes the n× n identity matrix;
• AT , rank(A) denote the transpose and rank of a matrix A, respectively;
• A† denotes the Moore–Penrose inverse of A, which satisfies simultaneously AA† A =

A, A† AA† = A†, (AA†)∗ = AA† and (A† A)∗ = A† A. Moreover, LA = I − A† A and
RA = I − AA† are two projectors induced by A, respectively;

• A⊗ B = (apqB) ∈ Rmt×ns denotes the Kronecker product of matrices A = (apq) ∈
Rm×n and B = (bpq) ∈ Rt×s;

• Vec(A) = (x1
T , x2

T , · · · , xn
T)T ∈ Rmn, where xi(i = 1, · · · , n) is the i-th column

vector of A, denotes the stretching function of a matrix A.

2.2. Real Representations

Theorem 1. Let A ∈ Sm×n
g and B ∈ Sn×s

g . Then,

(1) (Aη)T = (AT)
η
= Aη∗,

(2) (AB)η = Aη Bη ,
(3) (AB)T = BT AT ,
(4) (AB)η∗ = Bη∗Aη∗,
(5) (Aη∗)η∗ = A.

Proof. For (2), it can be obtained by the proof of Theorem 3.1 in [11]. The others can be
verified easily.
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Let A ∈ Sm×n
g , A = A0 + A1i + A2 j + A3k, where A0, A1, A2, A3 ∈ Rm×n. By gen-

eralizing the real representation in [14], we define a kind of real representations of A as
follows:

Aσi =


A0 αA1 A2 αA3
A1 A0 A3 A2
A2 αA3 A0 αA1
A3 A2 A1 A0

.

Similarly, we define two other kinds as follows:

Aσj = Vm Aσi =


−A0 −αA1 −A2 −αA3
A1 A0 A3 A2
A2 αA3 A0 αA1
−A3 −A2 −A1 −A0

, Aσk = Wm Aσi =


A0 αA1 A2 αA3
A1 A0 A3 A2
−A2 −αA3 −A0 −αA1
−A3 −A2 −A1 −A0

,

where

Vm =


−Im 0 0 0

0 Im 0 0
0 0 Im 0
0 0 0 −Im

 and Wm =


Im 0 0 0
0 Im 0 0
0 0 −Im 0
0 0 0 −Im

.

Let

Gn =


In 0 0 0
0 −αIn 0 0
0 0 In 0
0 0 0 −αIn

, Rn =


0 αIn 0 0
In 0 0 0
0 0 0 αIn
0 0 In 0

,

Sn =


0 0 In 0
0 0 0 In
In 0 0 0
0 In 0 0

 and Tn =


0 0 0 αIn
0 0 In 0
0 αIn 0 0
In 0 0 0

.

By direct calculation, the following properties of three real representations are obtained.

Proposition 1. For A, B ∈ Sm×n
g , C ∈ Sn×s

g , λ ∈ R, then

(1) A = B⇔ Aση = Bση , η ∈ {i, j, k},
(2) (A + B)ση = Aση + Bση , (λA)ση = λAση , η ∈ {i, j, k},
(3) (AC)σi = Aσi Cσi , (AC)σj = Aσj VnCσj , (AC)σk = Aσk WnCσk ,
(4) (a) Rm

−1 Aσi Rn = Aσi , Sm
−1 Aσi Sn = Aσi , Tm

−1 Aσi Tn = Aσi ,
(b) Rm

−1 Aσj Rn = −Aσj , Sm
−1 Aσj Sn = −Aσj , Tm

−1 Aσj Tn = Aσj ,
(c) Rm

−1 Aσk Rn = Aσk , Sm
−1 Aσk Sn = −Aσk , Tm

−1 Aσk Tn = −Aσk

(5) (Ai∗)
σi = Gn

−1(Aσi )TGm, (Aj∗)
σj = Gn

−1(Aσj)TGm, (Ak∗)
σk = Gn

−1(Aσk )TGm,

(6) (a) A = 1
4
(

Im iIm jIm kIm
)

Aσi


In

1
α iIn
jIn

1
α kIn

,

(b) A = 1
4
(
−Im iIm jIm −kIm

)
Aσj


In

1
α iIn
jIn

1
α kIn

,

(c) A = 1
4
(

Im iIm −jIm −kIm
)

Aσk


In

1
α iIn
jIn

1
α kIn

.
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3. η-Anti-Hermitian solution to Equation (1) and the System (2)

In this section, by three real representations and related lemmas, we derive the neces-
sary and sufficient conditions for Equation (1) and the system (2) to have η-anti-Hermitian
solutions over Sg and obtain expressions of the general η-anti-Hermitian solution in
Section 3.1 and Section 3.2, respectively. In Section 3.3, we give a numerical example.

3.1. η-Anti-Hermitian Solution to Equation (1)

Lemma 1. [26] Let A ∈ Rm×n and B ∈ Rm×n. Then, the matrix equation AX = B has a skew
symmetric solution X = −XT ∈ Rn×n if and only if

RAB = 0, BAT = −ABT .

In which case, the general skew symmetric solution to AX = B is

X = A†B− (A†B)T + A† ABT(A†)T + LAU(LA)
T ,

where U = −UT ∈ Rn×n is an arbitrary matrix.

Theorem 2. Let A ∈ Sg
m×n, B ∈ Sg

m×n, η ∈ {i, j, k},

Aη =


Aσi Gn

−1, η = i
Aσj VnGn

−1, η = j
Aσk WnGn

−1, η = k
and Bη = Bση .

Then, the Equation (1) has an η-anti-Hermitian solution X = −Xη∗ ∈ Sg
n×n if and only if

(1) The corresponding real matrix equation AηYη = Bη has a skew symmetric solution Yη ∈
R4n×4n.

(2) The following conditions hold:

RAη
Bη = 0, Bη Aη

T = −Aη Bη
T . (3)

The above two statements are equivalent to each other. In which case, the general η-anti-
Hermitian solution to Equation (1) can be expressed as follows:

(a) in the case of η = i,

X =
1

16
(

In − 1
α iIn jIn − 1

α kIn
)
(Yi − Rn

TYiRn
−1 + Sn

TYiSn
−1 − Tn

TYiTn
−1)


In

1
α iIn
jIn

1
α kIn

,

(b) in the case of η = j,

X =
1

16
(
−In − 1

α iIn jIn
1
α kIn

)
(Yj + Rn

TYjRn
−1 − Sn

TYjSn
−1 − Tn

TYjTn
−1)


In

1
α iIn
jIn

1
α kIn

, (4)

(c) in the case of η = k,

X =
1
16
(

In − 1
α iIn −jIn

1
α kIn

)
(Yk − Rn

TYkRn
−1 − Sn

TYkSn
−1 + Tn

TYkTn
−1)


In

1
α iIn
jIn

1
α kIn

.
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In above (a)–(c),

Yη = Aη
†Bη − (Aη

†Bη)
T + Aη

† Aη Bη
T(Aη

†)T + LAη
ULAη

T , (5)

where U = −UT ∈ R4n×4n is an arbitrary matrix.

Proof. We only prove the case of η = j and the other cases can be conducted in similar
ways.

First, we show that any skew symmetric solution to real matrix equation

AjYj = Bj (6)

can generate a j-anti-Hermitian solution to Equation (1) over Sg.
Let us suppose that Equation (6) has a skew symmetric solution Y. Applying (4) of

Proposition 1 to Equation (6), we obtain the following three equations:

Aσj RnVnGn
−1YRn

−1 = Bσj , Aσj SnVnGn
−1YSn

−1 = Bσj , Aσj TnVnGn
−1YTn

−1 = Bσj .

By direct computation, we have

RnVn = −VnRn, RnGn
−1 = −Gn

−1Rn
T , (7)

SnVn = −VnSn, SnGn
−1 = Gn

−1Sn
T , (8)

TnVn = VnTn, TnGn
−1 = −Gn

−1Tn
T , (9)

Rn
−1 =

1
α

Rn, Sn
−1 = Sn, Tn

−1 =
1
α

Tn.

It is easy to show that Rn
TYRn

−1, −Sn
TYSn

−1 and −Tn
TYTn

−1 are skew symmetric
solutions to Equation (6). Let

Y =
1
4
(Y + Rn

TYRn
−1 − Sn

TYSn
−1 − Tn

TYTn
−1),

then, Y is also a skew symmetric solution to Equation (6).
Assume that Y has the form:

Y =


Y11 Y12 Y13 Y14
Y21 Y22 Y23 Y24
Y31 Y32 Y33 Y34
Y41 Y42 Y43 Y44

, Yij ∈ Rn×n, i, j = 1, 2, 3, 4,

then, we have

Gn
−1Y =


−Z0 −αZ1 −Z2 −αZ3
Z1 Z0 Z3 Z2
Z2 αZ3 Z0 αZ1
−Z3 −Z2 −Z1 −Z0

,

where

Z0 =
1
4
(−Y11 −

1
α

Y22 + Y33 +
1
α

Y44), Z1 =
1

4α
(−Y12 −Y21 + Y34 + Y43),

Z2 =
1
4
(− 1

α
Y24 +

1
α

Y42 + Y31 −Y13), Z3 =
1

4α
(−Y14 + Y41 −Y23 + Y32).
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It is easy to find that Gn
−1Y is the j-real representation of the matrix over Sg, so by (6) of

Proposition 1, we can construct a new matrix X over Sg:

X =
1
4
(
−In iIn jIn −kIn

)
Gn
−1Y


In

1
α iIn
jIn

1
α kIn



=
1
16
(
−In − 1

α iIn jIn
1
α kIn

)
(Y + Rn

TYRn
−1 − Sn

TYSn
−1 − Tn

TYTn
−1)


In

1
α iIn
jIn

1
α kIn

.

Evidently, Gn
−1Y is the j-real representation of X. Note that Y is a skew symmetric

solution to Equation (6). By Proposition 1, we obtain

(AX)σj = AjY = Bj = Bσj , (X j∗)σj = Gn
−1YT = −Gn

−1Y = −Xσj ,

clearly, X is a j-anti-Hermitian solution to Equation (1) over Sg. Therefore, any skew
symmetric solution to Equation (6) can generate a j-anti-Hermitian solution to Equation (1).

Conversely, let us suppose that Equation (1) has a j-anti-Hermitian solution X over Sg,
by Proposition 1, we obtain

Aj(GnXσj) = (AX)σj = Bσj = Bj, GnXσj = Gn(−X j∗)
σj = −(GnXσj)T .

Thus, GnXσj is a skew symmetric solution to Equation (6). Hence, any j-anti Hermitian
solution to Equation (1) can generate a skew symmetric solution to Equation (6).

It is easy to see that Equation (1) has a j-anti-Hermitian solution if and only if the
Equation (6) has a skew symmetric solution. By Lemma 1, Equation (6) has a skew sym-
metric solution Yj as shown in Formula (5) if and only if condition (3) holds. In this
case, by substituting Yj into Formula (4), we can obtain a j-anti-Hermitian solution to
Equation (1).

3.2. η-Anti-Hermitian Solution to the System (2)

Lemma 2. [27] Let A ∈ Rm×n, b ∈ Rm. Then, the equation Ax = b is consistent if and only if

AA†b = b.

In which case, the general solution is x = A†b + LAu, where u ∈ Rn is an arbitrary vector.

Lemma 3. Let us suppose that A ∈ Rk×n, B ∈ Rn×l , C ∈ Rk×s, D ∈ Rs×l , E ∈ Rk×l ,

Zij =

√
2

2
(ei

(n)(ej
(n))T − ej

(n)(ei
(n))T), i = 1, 2, . . . , n− 1; j = i + 1, . . . , n, (10)

Wpq =

√
2

2
(ep

(s)(eq
(s))T − eq

(s)(ep
(s))T), p = 1, 2, . . . , s− 1; q = p + 1, . . . , s, (11)

where ei
(n) is the i-th column vector of In.

Set

S1 =
(
Z12 · · · Z1n Z23 · · · Z2n · · · Zn−1,n

)
∈ Rn× 1

2 n2(n−1),

S2 =
(
W12 · · · W1s W23 · · · W2s · · · Ws−1,s

)
∈ Rs× 1

2 s2(s−1),

G =
(
Vec(Z12) · · · Vec(Z1n) Vec(Z23) · · · Vec(Z2n) · · · Vec(Zn−1,n)

)
∈ Rn2× 1

2 n(n−1), (12)
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H =
(
Vec(W12) · · · Vec(W1s) Vec(W23) · · · Vec(W2s) · · · Vec(Ws−1,s)

)
∈ Rs2× 1

2 s(s−1), (13)

M = (BT ⊗ A)G, N = (DT ⊗ C)H, d = Vec(E), Q =
(

M N
)
. (14)

Then, the real matrix equation

AXB + CYD = E (15)

has a skew symmetric solution (X, Y) if and only if

QQ†d = d. (16)

In this case, the general skew symmetric solution to Equation (15) can be expressed as

X = S1(a⊗ In), Y = S2(b⊗ Is), (17)

where
a =

(
I 1

2 n(n−1) 0
)

σ, b =
(

0 I 1
2 s(s−1)

)
σ, σ = Q†d + LQu, (18)

and u ∈ R 1
2 n(n−1)+ 1

2 s(s−1) is an arbitrary vector.

Proof. From the definition of {Zij} and {Wpq} in (10) and (11), it is easy to verify that {Zij}
and {Wpq} form the orthonormal bases of the set of all skew symmetric matrices in Rn×n

and Rs×s, respectively. That is,

(Zij, Zpq) =

{
0, i 6= p or j 6= q
1, i = p and j = q

, (Wij, Wpq) =

{
0, i 6= p or j 6= q
1, i = p and j = q

.

Now, if X and Y are skew symmetric matrices in Rn×n and Rs×s, respectively, they
can be expressed as

X = ∑
i,j

aijZij, Y = ∑
p,q

bpqWpq, (19)

where the real numbers aij (i = 1, . . . , n − 1, j = i + 1, . . . , n) and bpq (p = 1, . . . , s − 1,
q = p + 1, . . . , s) are yet to be determined. Substitute Formula (19) into Equation (15), we
obtain

∑
i,j

aij AZijB + ∑
p,q

bpqCWpqD = E. (20)

Set
a =

(
a12 · · · a1n a23 · · · a2n · · · an−1,n

)T ,

b =
(
b12 · · · b1s b23 · · · b2s · · · bs−1,s

)T , σ =
(
aT bT)T ,

and let G, H, M, N, d and Q be defined in (12)–(14). Applying the stretching function to
both sides of Equation (20), by direct computation, we have

Ma + Nb = d. (21)

From the definition of the stretching function, it is evident that Equation (15) is
equivalent to Equation (21), which is then equivalent to the following equation:

Qσ = d. (22)

It follows from Lemma 2 that Equation (22) is consistent if and only if
condition (16) holds, in which case, the general solution σ to Equation (22) can be shown
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in Formula (18). Therefore, the general skew symmetric solution to Equation (15) can be
shown in Formulas (17) and (18).

Theorem 3. Suppose A1 ∈ Sm1×n
g , B1 ∈ Sm1×n

g , A2 ∈ Sn×m2
g , B2 ∈ Sn×m2

g , C1 ∈ St1×s
g ,

D1 ∈ St1×s
g , C2 ∈ Ss×t2

g , D2 ∈ Ss×t2
g , E1 ∈ Sk×n

g , E2 ∈ Sn×l
g , F1 ∈ Sk×s

g , F2 ∈ Ss×l
g , H ∈ Sk×l

g ,
η ∈ {i, j, k}. Let Zij, Wpq, S1, S2, G, H be given as in Lemma 3 where n and s change to 4n and
4s, respectively.

Set

Aη =

(
A1
−Aη∗

2

)
, Bη =

(
B1
Bη∗

2

)
, Cη =

(
C1
−Cη∗

2

)
, Dη =

(
D1
Dη∗

2

)
,

Aη =


Aσi

i G−1
n , η = i

Aσj
j VnG−1

n , η = j
Aσk

k WnG−1
n , η = k

, Bη = Bη
ση , Cη =


Cσi

i G−1
s , η = i

Cσj
j VsG−1

s , η = j
Cσk

k WsG−1
s , η = k

, Dη = Dη
ση ,

E1η =


E1

σi G−1
n , η = i

E1
σj VnG−1

n , η = j
E1

σk WnG−1
n , η = k

, E2η =


E2

σi , η = i
VnE2

σj , η = j
WnE2

σk , η = k
,

F1η =


F1

σi G−1
s , η = i

F1
σj VsG−1

s , η = j
F1

σk WsG−1
s , η = k

, F2η =


F2

σi , η = i
VsF2

σj , η = j
WsF2

σk , η = k
, Hη = Hση ,

Ê1η = E1η LAη
, Ê2η = LT

Aη
E2η , F̂1η = F1η LCη

, F̂2η = LT
Cη

F2η , (23)

Ĥη = Hη − E1η [Aη
†Bη − (Aη

†Bη)
T + Aη

† Aη Bη
T(Aη

†)T ]E2η

− F1η [Cη
†Dη − (Cη

†Dη)
T + Cη

†Cη Dη
T(Cη

†)T ]F2η

, (24)

M̂η = ((Ê2η )
T ⊗ Ê1η )G, N̂η = ((F̂2η )

T ⊗ F̂1η )H, dη = Vec(Ĥη), Qη =
(

M̂η N̂η

)
. (25)

Then, the system (2) has an η-anti-Hermitian solution (X, Y) over Sg if and only if

(1) The corresponding system of real matrix equations
Aη Mη = Bη

Cη Nη = Dη

E1η MηE2η + F1η Nη F2η = Hη

(26)

has a skew symmetric solution (Mη , Nη).
(2) The following conditions hold:

RAη
Bη = 0, Bη Aη

T = −Aη Bη
T , RCη

Dη = 0, DηCη
T = −Cη Dη

T , (27)

QηQ†
ηdη = dη . (28)

The above two statements are equivalent to each other. In which case, the general η-anti-
Hermitian solution to the system (2) can be expressed as follows:

(a) in the case of η = i,
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X =
1

16
(

In − 1
α iIn jIn − 1

α kIn
)
(Mi − Rn

T MiRn
−1 + Sn

T MiSn
−1 − Tn

T MiTn
−1)


In

1
α iIn
jIn

1
α kIn

,

Y =
1

16
(

Is − 1
α iIs jIs − 1

α kIs
)
(Ni − Rs

T NiRs
−1 + Ss

T NiSs
−1 − Ts

T NiTs
−1)


Is

1
α iIs
jIs

1
α kIs

,

(b) in the case of η = j,

X =
1
16
(
−In − 1

α iIn jIn
1
α kIn

)
(Mj + Rn

T MjRn
−1 − Sn

T MjSn
−1 − Tn

T MjTn
−1)


In

1
α iIn
jIn

1
α kIn

, (29)

Y =
1

16
(
−Is − 1

α iIs jIs
1
α kIs

)
(Nj + Rs

T NjRs
−1 − Ss

T NjSs
−1 − Ts

T NjTs
−1)


Is

1
α iIs
jIs

1
α kIs

, (30)

(c) in the case of η = k,

X =
1
16
(

In − 1
α iIn −jIn

1
α kIn

)
(Mk − Rn

T MkRn
−1 − Sn

T MkSn
−1 + Tn

T MkTn
−1)


In

1
α iIn
jIn

1
α kIn

,

Y =
1
16
(

Is − 1
α iIs −jIs

1
α kIs

)
(Nk − Rs

T NkRs
−1 − Ss

T NkSs
−1 + Ts

T NkTs
−1)


Is

1
α iIs
jIs

1
α kIs

.

In above (a)–(c),

Mη = Aη
†Bη − (Aη

†Bη)
T + Aη

† Aη Bη
T(Aη

†)
T
+ LAη

Uη LAη
T , (31)

Nη = Cη
†Dη − (Cη

†Dη)
T + Cη

†Cη Dη
T(Cη

†)
T
+ LCη

Vη LCη
T , (32)

where
Uη = S1(aη ⊗ I4n), Vη = S2(bη ⊗ I4s), (33)

aη =
(

I2n(4n−1) 0
)
ση , bη =

(
0 I2s(4s−1)

)
ση , ση = Q†

ηdη + LQη
u, (34)

and u ∈ R2n(4n−1)+2s(4s−1) is an arbitrary vector.

Proof. We only prove the case of η = j and the other cases can be conducted in similar
ways.



Symmetry 2023, 15, 592 11 of 15

At first, it is clear that the following system of matrix equations{
A1X = B1
XA2 = B2

has a j-anti-Hermitian solution X over Sg if and only if{
A1X = B1

−Aj∗
2 X = Bj∗

2
i.e., AjX = Bj

has a j-anti-Hermitian solution X over Sg, by Theorem 2, if and only if

Aj Mj = Bj

has a skew symmetric solution M over R. Similarly,
A1X = B1
XA2 = B2
C1Y = D1
YC2 = D2

has a j-anti-Hermitian solution (X, Y) over Sg if and only if{
Aj Mj = Bj
CjNj = Dj

(35)

has a skew symmetric solution (M, N) over R.
Then, we show that any skew symmetric solution (M, N) to the system

Aj Mj = Bj
CjNj = Dj

E1 j MjE2 j + F1 jNjF2 j = Hj

(36)

can generate a j-anti-Hermitian solution (X, Y) to the system (2).
Let us suppose that the system (36) has a skew symmetric solution (M, N). By the

proof of Theorem 2,

M =
1
4
(M + Rn

T MRn
−1 − Sn

T MSn
−1 − Tn

T MTn
−1)

and
N =

1
4
(N + Rs

T NRs
−1 − Ss

T NSs
−1 − Ts

T NTs
−1)

are also the skew symmetric solutions to the system (35). Apply (4) of Proposition 1 to

E1 j MjE2 j + F1 jNjF2 j = Hj. (37)

By (7)–(9), we obtain the following three equations

E1 j(Rn
T MRn

−1)E2 j + F1 j(Rs
T NRs

−1)F2 j = Hj,

E1 j(−Sn
T MSn

−1)E2 j + F1 j(−Ss
T NSs

−1)F2 j = Hj,

E1 j(−Tn
T MTn

−1)E2 j + F1 j(−Ts
T NTs

−1)F2 j = Hj.

Hence,M andN are also the skew symmetric solutions to Equation (37) and therefore
to the system (36).
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From the proof of Theorem 2, we know that Gn
−1M and Gs

−1N are the j-real repre-
sentations of matrices over Sg; moreover, we can construct new matrices X and Y over Sg:

X =
1
4
(
−In iIn jIn −kIn

)
Gn
−1M


In

1
α iIn
jIn

1
α kIn



=
1

16
(
−In − 1

α iIn jIn
1
α kIn

)
(M + Rn

T MRn
−1 − Sn

T MSn
−1 − Tn

T MTn
−1)


In

1
α iIn
jIn

1
α kIn

,

Y =
1
4
(
−Is iIs jIs −kIs

)
Gs
−1N


Is

1
α iIs
jIs

1
α kIs



=
1

16
(
−Is − 1

α iIs jIs
1
α kIs

)
(N + Rs

T NRs
−1 − Ss

T NSs
−1 − Ts

T NTs
−1)


Is

1
α iIs
jIs

1
α kIs

.

Clearly, Gn
−1M and Gs

−1N are the j-real representations of X and Y, respectively. Accord-
ing to Theorem 2, (X, Y) is a j-anti-Hermitian solution to the system (35) over Sg.

Note that (M,N ) is a skew symmetric solution to Equation (37), we obtain

(E1XE2)
σj + (F1YF2)

σj = E1 jME2 j + F1 jN F2 j = Hj = Hσj ,

i.e.,
E1XE2 + F1YF2 = H. (38)

Hence, (X, Y) is a j-anti-Hermitian solution to Equation (38) and therefore to the
system (2). Consequently, any skew symmetric solution (M, N) to the system (36) can
generate a j-anti-Hermitian solution to the system (2).

Conversely, let us suppose that the system (2) has a j-anti-Hermitian solution (X, Y)
over Sg, then we obtain

Aj(GnXσj) = (AjX)σj = Bj
σj = Bj, Cj(GsYσj) = (CjY)

σj = Dj
σj = Dj,

E1 j(GnXσj)E2 j + F1 j(GsYσj)F2 j = (E1XE2)
σj + (F1YF2)

σj = Hσj = Hj.

Thus, (GnXσj ,GsYσj ) is a skew symmetric solution to the system (36) over R, then any
j-anti-Hermitian solution to the system (2) can generate a skew symmetric solution to the
system (36).

It is clear that the system (2) has a j-anti-Hermitian solution if and only if the
system (36) has a skew symmetric solution. By Lemma 1, the system (35) has a skew
symmetric solution if and only if condition (27) holds, the general skew symmetric so-
lutions (Mj,Nj) to the system (35) are as shown in Formulas (31) and (32), where Uj =

−Uj
T ∈ R4n×4n and Vj = −Vj

T ∈ R4s×4s are arbitrary matrices.
By substituting Formulas (31) and (32) into Equation (37), we have

Ê1j UjÊ2j + F̂1j Vj F̂2j = Ĥj, (39)

where Ê1j , Ê2j , F̂1j , F̂2j and Ĥj are defined as in (23)–(24).
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According to Lemma 3, Equation (39) has a skew symmetric solution (Uj, Vj) if and
only if condition (28) holds, where M̂j, N̂j, dj and Qj are defined as in
Formula (25); then, the general expression of the skew symmetric solution to the
Equation (39) as shown in Formulas (33) and (34).

In conclusion, the system (2) has a j-anti-Hermitian solution over Sg if and only if
conditions (27) and (28) hold. In this case, the expression of the general j-anti-Hermitian
solution to the system (2) can be given by (29)–(34).

Corollary 1. Under the same definitions in Theorem 3, if conditions (27) and (28) hold, and

rank(Qη) = 2n(4n− 1) + 2s(4s− 1), (40)

then the system of real matrix Equations (26) has a unique skew symmetric solution

Mη =


Mη11 Mη12 Mη13 Mη14

Mη21 Mη22 Mη23 Mη24

Mη31 Mη32 Mη33 Mη34

Mη41 Mη42 Mη43 Mη44

, Nη =


Nη11 Nη12 Nη13 Nη14

Nη21 Nη22 Nη23 Nη24

Nη31 Nη32 Nη33 Nη34

Nη41 Nη42 Nη43 Nη44

,

where Mηpq ∈ Rn×n and Nηpq ∈ Rs×s. In this case, the system (2) also has a unique η-anti-
Hermitian solution X = X0 + X1i + X2 j + X3k, Y = Y0 + Y1i + Y2 j + Y3k, which can be given
as follows:

(1) in the case of η = {i, k},

X0 = Mη11 , X1 =
1
α

Mη12 , X2 = Mη13 , X3 =
1
α

Mη14 ,

Y0 = Nη11 , Y1 =
1
α

Nη12 , Y2 = Nη13 , Y3 =
1
α

Nη14 ,

(2) in the case of η = j,

X0 = −Mj11 , X1 = − 1
α

Mj12 , X2 = −Mj13 , X3 = − 1
α

Mj14 ,

Y0 = −Nj11 , Y1 = − 1
α

Nj12 , Y2 = −Nj13 , Y3 = − 1
α

Nj14 .

Proof. Since rank equality (40) holds, the column vectors of Qj are linearly independent.
By Lemma 2 in Chapter 1 of [27], we obtain

Qj
†Qj = I2n(4n−1)+2s(4s−1).

In this case, LQj = 0. According to Theorem 3, the system (26) has a unique skew
symmetric solution (M, N) and the system (2) has at least one η-anti-Hermitian solution.
Let us assume that the system (2) has two different solutions (X, Y) and (X̂, Ŷ). By the
proof of Theorem 3, (GnXση , GsYση ) and (GnX̂ση , GsŶση ) are two different skew symmetric
solutions to the system (26) which conflicts with our assumption. Therefore, the system
(2) has a unique η-anti-Hermitian solution (X, Y). Let us assume (Mη , Nη) is a unique
symmetric solution to the system (26); we can obtain Xt and Yt (t = 0, 1, 2, 3) from Xση and
Yση , where Xση = G−1

n Mη and Yση = G−1
s Nη .

3.3. Numerical Examples

Consider the general j-anti-Hermitian solution to the system (2) over Hg when α = −1.
Let

A1 =
(
2− i + 4j + k −i + 3j + 2k

)
, B1 =

(
12 + 6i 6 + 6j− 6k

)
,
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A2 =

(
1− 2i + j + k
2− i + j + k

)
, B2 =

(
6 + 6j− 6k

6i

)
, C1 =

(
2 + i− j 1 + j + k

)
,

D1 =
(
−k 1 + 2i + j

)
, C2 =

(
1 + i + j + 2k
−1− i + j

)
, D2 =

(
−1− 2i− j

2j− k

)
,

E1 =

 j + k 1 + i
2 + 2j 2i + j + k

1 + 2j + k 3k

, E2 =

(
i− 5j 3 + 2k 1 + 2i + 5k
−2− k 6j 3i + j + 3k

)
,

F1 =

 6− j 3i− 6k
i + 2k −5
3 + k −2i + 3j

, F2 =

(
i− j + 2k 3 + k 2j
−5 −2i + 3j 6 + 3i + j− 6k

)
,

H =

 −53− 69i− 48j + 3k 62− 19i + 15j + 45k −35 + 80i + 152j− 37k
−41− 42i− 67j− 37k 41 + 53i + 27j + 42k 21 + 84i + 54j + 153k
−15 + 5i− 83j− 43k 86 + 30i− 44j + 18k 42 + 34i− 3j + 81k

.

By direct computation of Aj, Bj, Cj, Dj, Qj and dj, it can be verified that

RAj Bj = 0, Bj Aj
T = −AjBj

T , RCj Dj = 0, DjCj
T = −CjDj

T , QjQ†
j dj = dj,

and
rank(Qj) = 56.

According to Corollary 1, the system (26) has a unique skew symmetric solution. By
computation, we obtain the unique j-anti-Hermitian solution to the system (2) over Hg is

X =

(
3j + 3k 2− j− 3k
−2− j− 3k 3j + 3k

)
, Y =

(
k 2 + i + 2j

−2− i + 2j −j− k

)
.

4. Conclusions

In this paper, we discuss the existence and general expression of the η-anti-Hermitian
solution to the generalized Segre quaternion matrix Equation (1) and the system (2) by
using the real representations of matrices over the generalized Segre quaternion algebra,
Moore–Penrose generalized inverse, Kronecker product and the stretching function. In the
end, a numerical example is given to verify the main results. The η-Hermitian solution to
the generalized Segre quaternion matrix Equation (1) and the system (2) and other systems
may be considered in the future.
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