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Abstract: Multiverse is a hypothetical idea that other universes can exist beyond our own. Various
scientific theories have suggested scenarios such as the existence of bubble universes that constantly
expand or string theory that attempts to merge gravity with other forces. Thus, a multiverse is a
complex theoretical phenomenon that can best be conceived through computer simulation. Albeit
within the multiverse, the causality of the Mandela effect is entirely possible. To examine the behavior
of the multiverse as a representative ensemble, each universe as a specific ensemble element needs to
be generated. Our universe generation is based on unique universes for two binary attributes of a
population of n = 303. The maximum possible universes this could produce within the multiverse
is in the exponent of 182. To computationally confine the simulation to the scope of this study, the
sample count of the multiverse is nmultiverse = 606. Parameters representing the existence of each
multiverse are implemented through the µ and σ values of each universe’s attributes. By using a
developed reinforcement learning algorithm, we generate a multiverse yielding various universes.
The computer gains consciousness of the parameters that can represent the expanse of possibility
to exist for multiple universes. Furthermore, for each universe, a heart attack prediction model
is performed to understand the universe’s environment and behavior. We test the Mandela effect
or déjà vu of each universe by comparing error test losses with the training size of order M. Our
model can measure the behavior of environments in different regions referred to as specific ensemble
elements. By explicitly exploiting the attributes of each universe, we can get a better idea of the
possible outcomes for the creation of other specific ensemble elements, as seen in the multiverse
space planes.

Keywords: multiverse; Mandela effect; reinforcement learning; theory; algorithm; simulation; artifi-
cial intelligence

1. Introduction

Computer simulations offer the opportunity to model environments, their variables,
and actors that exist in the occurring time plane. Each change in the parameters of the
simulation model creates a unique simulated universe relying on an established classically
computing concept. The implication that each of those simulated universes can occur simul-
taneously yields the idea of multiple parallel universes, a multiverse, or more accurately,
a representative ensemble [1].

Most scientists believe that the multiverse is practically impossible to test because it
is assumed that independent universes cannot interact. This also implies that the laws of
nature in each of these universes must be different for them to be considered the same.
To align our work with the standard statistical view on such problems, on some occasions,
the term a specific ensemble element means universe, whereas a representative ensemble
refers to a multiverse.

The multiverse has been flirted with as an idea in popular entertainment. From a com-
putational standpoint, we can simulate the occurrence of a cascading, stacked, or nested
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multiverse by independently simulating the model of each specific ensemble element. Ad-
vances in parallel and distributed computing have allowed the aliasing of a representative
ensemble during simulation runs, and recent advances in quantum computing have led
to the development of methods to compute the representative ensemble by leveraging
the mechanism of the specific ensemble element itself [2,3]. The aim of this research is
to prove the implied representative ensemble using well-established theories that govern
classical computing. Computing simulations created through parallel computing allow for
the environment variables of each specific ensemble element to exist independently from
other coexisting simulated universes. However, the simulation engine itself is unaware of
the existence of each computed specific ensemble element as a parallel reality to another
computer-specific ensemble element, treating each specific ensemble element as an inde-
pendent element [4]. The concept of the multiverse and parallel reality can then explain the
phenomenon known as the Mandela effect. The déjà vu or Mandela effect occurs when a
large portion of the population mistakenly thinks that a certain event or memory happened.
As a paranormal researcher, Broome [5] coined the term “collective false memory” after she
learned that a large number of people at a gathering in 2010 shared an inaccurate memory
of Mandela’s death in prison during the 1980s. Mandela was alive when the gathering
occurred; he passed away in 2013.

A digital simulation of a representative ensemble allows scientists to create a complex
theoretical framework that can be used to study the behavior of different specific ensemble
elements. One of the most important factors to be considered when developing a multiverse
is the creation of a specific ensemble element. For this purpose, we used a set of unique spe-
cific ensemble elements composed of two binary attributes. We assumed that the maximum
number of specific ensemble elements that could be produced within the representative
ensemble using the given set of parameters was 182. To ensure that the simulation was only
focused on the scope of the study, the sample count for the representative ensemble was set
at 606. The parameters used to represent the specific ensemble elements’ attributes were
implemented using the mu and sigma values. The creation of multiple specific ensemble
elements using the reinforcement learning (RL) algorithm allowed the computer to gain
a deeper understanding of the possibilities of the existence of different specific ensemble
elements. The concept of RL is becoming increasingly important in the development of
artificial intelligence (AI) and the training of models that are based on machine learning
(ML). We also performed a heart attack prediction model as a test of the déjà vu on each
specific ensemble element. It took into account the training size of the order parameter and
the error test losses.

In summary, this work makes the following contributions:

• Parallel Computing Simulation. We prove the existence of a representative ensemble
using well-established theories of classical computing. Through parallel computing,
the environment variables of different specific ensemble elements can exist indepen-
dently of each other.

• AI/ML Algorithm Development. Through the use of RL, the computer simulation can
create multiple specific ensemble elements with different dimensions. We developed
an algorithm where an agent was trained to perform a specific task in an unfamiliar
environment. The environment’s conditions and the rewards available for completing
the task influenced the agent’s behavior. The training losses were computed by taking
into account the predicted value of the false assumptions in the population’s specific
ensemble element.

• Theory Testing. To test the Mandela effect, we generated a prediction model for a
heart attack. According to the multiple universes theory, patients in each specific
ensemble element will have a false memory of experiencing a heart attack. The effect
will be magnified in a representative ensemble where people will believe that those
who suffered a heart attack may not have experienced the same heart attack in the
other specific ensemble elements.
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To this end, this manuscript is structured as follows: Section 2 covers the literature
review, including previous related work and background about the multiverse and the
Mandela effect. Section 3 explains how we deploy the reinforcement learning algorithm
to design the representative ensemble, what are data model parameters, and an overview
of different types of RL algorithms. Next, Section 4 presents the simulation results that
involve seed generation, heart attack prediction model, and fathoming the Mandela effect
based on our model. In Section 5, we discuss our finding and give recommendations for
future work. Finally, we reflect on our research and offer conclusions in Section 6.

2. Literature Review

The past few years have seen the emergence of physics-inspired computing, which
has gained popularity and made advancements in various fields. However, there are many
problems that remain unsolved. Some of these include the classification methodology,
the gap between practice and theory, the selection of an appropriate algorithm, and param-
eter tuning. In this section, we dive into some previous research and basic fundamentals.
Bostrom’s [1] foundational work on the simulation hypothesis implies the possibility of
substrate independence, that is, consciousness being as capable as the computational power
simulating it. Virk [6] uses the many worlds interpretation (MWI) concept through the lens
of the developmental stages of simulated consciousness, which start at base reality and
can progress through ten stages toward the simulation point of the simulation hypothesis
constructed by a probabilistic determination that gets fractionally close to 100%.

In addition to the complexity involved in the simulation point progress, running
simulations as stacked or nested, each complete with multiple universe constituent envi-
ronments and variables, draws in huge computing power. This conforms to the parametric
limitation described by Bostrom’s simulation hypothesis [1]. Limitations in computational
power limit the levels at which a simulation can be run, possibly requiring termination of
the simulation altogether should the nested simulations volumetrically expand beyond the
computational power itself. This can limit the convergence of a multiverse [7].

Among the four types of multiverses Greene [8] theorizes, this study is focused on type
3—inflationary bubbles with fine-tuning, in alignment with the classical-computing domain.
This specificity allows the measurement of multiple timelines to analyze simulated specific
ensemble elements. Minkowski’s space-time diagram [9] laid the basis for measuring
Einsteinian particle motion (variables in our construction) in space (universe). Successive
advances in ways to measure the universe relative to the multiverse, such as the block
universe snapshot and the delayed-choice experiment, have been built on the foundation
of the space-time diagram.

The ongoing popularity of the multiverse has aroused great interest in theorizing and
measuring parallel universes. The elemental concept of the multiverse that realities can
be versatile, implying the possibility of multiple or parallel realities, can be traced back
to Einstein’s theory of relativity [10]. The 1905 relativity theory paved the way for the
general acceptance of symmetry as a valid theoretical basis. The existence of unnaturalness
in different arenas, such as nuclear physics, cosmogenetics, and electroweak symmetry,
indicates the possibility of a multiverse. The multiverse model can be described in a
maximally symmetrical manner if the baryon asymmetry and zero vacuum energy are not
encountered [11].

In addition to the infinity convergence [12], Bhattacharjee [13] notes bread-slice time
and block theory, temporal monodromy, temporal exponentiality, and Mandela effect as
additional ways to conceptualize the multiverse. Deutsch [14] calls the multiverse virtual
reality, tracing its origins to the diagonal argument. Computational limits to simulating a
multiverse have been overcome through the compilation of theories described by CantGoTu
environments. At the sub-element level of such an environment of the multiverse, Turing
positions the requirement of a universal computer that can calculate, simulate, and render
multiple environments using computational logic [14].
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In addition to considering the mathematical modeling and measurement of a mul-
tiverse, it is important to consider the various types of multiverses various researchers
have categorically defined [3,15]. Tegmark [16] describes multiverses based on four types,
progressing from Level 1 (an extension of our universe) to Level 4 (ultimate ensemble).
Greene [8], in addition to his theorization of four types of multiverses, describes nine
categorical types of multiverses: quilted, inflationary, brane, cyclic, landscape, quantum,
holographic, simulated, and ultimate. Additional multiverse-type definitions have been
described using twin-world models and cyclic theories.

The pursuit of modeling a multiverse offers researchers and data scientists the ad-
vantage of analyzing data that may have a variety of possibilities that are conceptually
difficult to imagine but logically possible. Thus, simulating a multiverse provides option-
ality to the decision-making process in data influenced by the Mandela effect. However,
as a natural constraint, the analysis of the multiverse only interacts with the analytical
decision-making, data acquisition, and data cleaning processes. To resolve this limitation,
Rijnhart et al. [17] propose the use of real data sets of varying environments of interest,
each consisting of its own data acquisition method. Bell et al. [18] present a multiverse
modeling and analysis technique with a Gaussian process surrogate for a type 4—higher
dimension—multiverse and apply a Bayesian experimental design. Their model focuses on
efficiency in the exploration of multiverses using ML. Wessel et al. [19] replicate memory
suppression of the Mandela effect on real data sets by performing a multiverse analysis.
Their simulation features a task developed as think/no-think (TNT), which compares
binary levels of dissociative individual performance. By creating a parallel universe for
their data analysis process, the researchers successfully tested the suppression effect on
individual memory inhibition, thus proving the reduction of the Mandela effect of false
shared memories in a large number of people.

2.1. Multiverse

The multiverse encourages the idea of altering retrocausality [20], dubbed by physicists
as states of the past, present, and future. This is the materialistic model of the multiverse.
However, measuring the representative ensemble through a delayed-choice experiment
invalidates this model based on Wheeler’s theory of observation being the proof of a
phenomenon. Wheeler’s theory also sheds light on Schrodinger’s cat (the disappearance
of multiple realities upon observation). Therefore, the spatialization of time as multiple
parallel retrocausalities can be more reasonably measured through the block universe snap-
shot, which is consistent with classical mechanics, as argued by Deutsch [14], and further
supported by Virk [6].

Based on block universe’s time spatialization, simulated universes can be saved in
different states of time (t) that store the environments, variables, and behaviors of each
universe (Figure 1). Each state of t is a snapshot of the universe that can be traversed
through the range (−in f < t < in f ) stored by the simulation or that can be limited by
computational power. Although the example in the figure provides a minuscule snapshot to
describe the idea, a multiverse requires that each causation of time has multiple snapshots
of each independent universe, as Deutsch [14] indicates.

Super-snapshots are another way to describe a multitude of snapshots, where multiple
versions of each snapshot universe exist in a given space. This parallelization is important
for researchers to possess multiple reasonable options for any decision to be taken regarding
any data. Analyzing this parallelization of super-snapshots allows for a representative
ensemble analysis. As described earlier, a multiverse can be distinguished by its various
types. A classic multiverse analysis is conducted by analyzing each snapshot in the
super-snapshot multiverse to measure the simulation outcomes, ultimately affecting the
decision [21].
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Figure 1. Example of parallel snapshots.

Furthermore, the concept of the quantum landscape multiverse refers to the universe’s
evolution from a wavefunction before inflation to a modern classical universe. It involves
the entanglement of various branches of the wavefunction, which is a second source of
correction for the universe’s gravitational potential. Rubio et al. [22] discuss the possible
consequences of a multiverse theory based on the Majorana and Dirac quantized uni-
verse. Their approach unifies dark energy and gravity because Lagrangian’s equations of
motion [23] are related to a relativistic particle [24].

2.2. Mandela Effect

In 2009, Fiona Broome created a website to share her thoughts on the Mandela effect.
During a conference, she discussed the death of Nelson Mandela, who was the former
president of South Africa. Mandela did not die in prison during the 1980s; he passed away
in 2013. As she started talking to other people about her experiences, she realized that there
were people like her. Some of them recalled seeing news coverage of Mandela’s death and
a speech by his widow [5].

The Mandela effect, or déjà vu, is a phenomenon involving consistent false memories
that emerged with the growth of the internet. The increasingly popular hypothesis that
our reality is a simulated augmentation suggests that the past, present, and future exist
simultaneously in parallel universes. The reason for a serious investigation of such a
possibility stems from perceptions of observed reality shared by millions of people who
may be geographically far apart [25].

Although the Mandela effect and the déjà vu phenomenon are similar, they have
slightly different definitions. The former involves several individuals, while the latter in-
volves only one person. According to Dr. Khoury, déj vu is caused by a miscommunication
between the parts of the brain that play a role in remembering and familiarity, which result
in false memory, but the Mandela effect is more challenging to explain because it involves
more people.

Inhibition theory underlines the occurrence of replicated memory signatures that
provide novel cues to the existence of a multiverse. The web of connectivity constructs a
consciousness existing in the dimensionality of time, allowing the past, present, and future
to be changed and creating a parallel universe [26].
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Simulating reality as multiple augmented replications stretch the possibilities of clas-
sical physics. Although quantum physics is being explored as a domain, studies suggest
that it is not outside the realm of possibility for classical physics to observe the inhibition of
memories in parallel environments. The perception of the spatial transformation of space-
time may be outside the realm of human psychological imagination. However, the capable
limits of computational power have demonstrated that simulations can yield multiple
copies of data based on the logical confines of an environment’s possible implications [27].

In addition to calculating the various levels of simulated specific ensemble elements,
achieving consistency of each simulation to maintain efficient computation for the entire
span of retrocausality is vital to the sustainability of the Mandela effect and, thus, by exten-
sion, the multiverse [28]. Computational or commutable lag or delays in the simulation
reduce the flow of environmental states between time, creating gaps in the data of the
space-time diagram based on the simulation hypothesis.

3. Reinforcement Learning Deployment
3.1. Designing the Multiverse

The question of what a good model should be for the universe is dependent on not
only the properties we want to model but also the theoretical framework we have chosen.
For instance, if we want to describe the specific ensemble element using a massive wave
function, it might be natural to do so by developing it in real time. At the same time, if we
want to model the universe using general relativity, it might be possible to create a more
natural model by combining the distribution of mass-energy with a pseudo-Riemannian
manifold [29].

Proposals have been made to design the multiverse through consciousness based on
tje well-established theories of Deutsch, Greene, and Virk [6,8,14]. By using real-world
data to train the RL algorithm, simulations can be created in parallel through the statistical
probability of data sets capable of characterizing various states for a variety of universes.

The representative ensemble design proposed in this study was based on type 3—
inflationary bubbles [30] with fine-tuning. In this type of multiverse, multiple universes
are created from a single point of origin that seeds amplified fluctuations of possibilities
into each universe. The environment generated in each universe has a probabilistic deter-
minant [31] shaping its configuration to modify variable values that create distinct copies
identified by a unique seed label.

In RL, an agent can interact with its environment for a (discrete) time step before it
is reset and repeated in subsequent episodes. The goal of the exercise is to maximize the
agent’s performance. Thus, each seed is populated with its own environment, variables,
and behavior. Seed generation is performed using Monte Carlo simulation for random
number generation of each of the parametric variables defined in the point of origin [32].
To define the Monte Carlo design for each specific ensemble element, there needs to be a
time axis for the spatial domain parameters of the environment. The time axis is considered
an integral of function space:

Int =
∫ b

a
f (x)dx (1)

In the space domain, X is assumed to be a uniformly distributed random variable of
closed interval [a, b]. Based on these variables, Monte Carlo will generate an estimate of the
expected seed value based on n samples as follows:

Seedn =
1
n

n

∑
i

f (Xi) (2)

where the expected value of the uniformly distributed random variable X in the closed
interval of the integral is formulated as follows:

Int = (b− a)E[ f (X)] (3)
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Based on (2) and (3), the equation for the approximate value of the integral in (1) becomes:

In = (b− a)
1
n

n

∑
i

f (Xi) (4)

Another type of computation that is commonly used in the design of a representative
ensemble is the time average. These are the average values that are taken for the various
realizations of the process. Whereas the ensemble averages are usually taken into account
when making a realization of the stochastic process, a time averaging is taken for a specific
realization. Although the space average and time average may seem to be different, if the
transformations are invariant and ergodic, then the former is equal to the latter in almost all
cases. As the number of samples n→ ∞ is increased closer to infinity, the sample average
of the seed Seedn will converge to E[ f (X)], producing (1).

The Monte Carlo process creates the likelihood of similarities among specific ensem-
ble elements:

1. Multiple specific ensemble elements have identical parameters;
2. No two specific ensemble elements have identical parameters;
3. Multiple specific ensemble elements have several identical parameters, but not all

parameters are identical.

The estimation of uniformity is performed through a Gaussian normal distribution.
The yielded data become Poisson data. Considering the central limit theorem in the Monte
Carlo estimation of the expected value of samples as they reach closer to infinity, the yielded
seed generation will abide by a normal distribution of samples as follows:

√
n(Seedn − µ)→ N(0, σ2) (5)

In this normal distribution N(0, σ2),

µ− E[ f (X)]

σ2 −Var(X)
(6)

The Poisson data can be manipulated to alter the parameters of each specific ensemble
element, rejecting or modifying the parameters as they see fit. By altering the values of mean
µ and the square of variance σ2 through Monte Carlo, Laplace approximation, or Bayesian
probability, we will receive a cumulative density function (CDF) that we can use to compare
the sample density of each specific ensemble element seed in the representative ensemble:

CDFseed =
1
2

[
1 + er f (

(x− µ)

(σ
√

2)
)

]
(7)

The error estimation for the Monte Carlo estimation of the expected seed value can
be calculated by subtracting the difference of the seed estimated value from the mean
err → Seedn − µ. For a random variable Z, the error estimation can be rewritten as follows:

err → 1√
n

Z (8)

3.2. Data Model Parameters

We used a real-life dataset of 303 randomly sampled patients measured by the health
conditions of their heart as the point of origin for comparing all other generated specific
ensemble element seeds. The parameters of the data model were extracted from a dataset
containing a total of 13 measured attributes of each patient. Two data attributes were
chosen to represent a model that predicted the likelihood of a heart attack in patients based
on their health conditions: fasting blood sugar (fbs) and patient sex. These two attributes
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were chosen based on the closest medical correlation that leads to a heart attack. For our
heart attack prediction model, a binary value represented each of the two attributes.

f bs

{
1; > 120 mg

dl
0; < 120 mg

dl

sex

{
1; male
0; female

(9)

These two attributes were stored in a data sheet labeled as X. Accompanying them
were two attributes stored in another data sheet labeled as t, which contained true binary
data of actual heart attacks each patient experienced in the data.

These data were considered the origin data that served as the fundamental parameters
to create specific ensemble elements in the representative ensemble. Mapping of the data
model as specific ensemble elements in the representative ensemble was based on the
specific ensemble element parameters of fbs and sex. Each parameter was measured by its
mean (µ) and standard deviation (σ) and mapped on a 2D plane.

A space state is a representation of a system’s possible configurations. It can be used in
the analysis of systems in the fields of game theory and artificial intelligence. For instance,
a space state can be used for solving the shortest path problem known as Vacuum World. It
can also be used for describing the valid state of the eight queens puzzle. The space state at
the t = 0 time state of the representative ensemble. The functioning representative ensemble
has space states of each specific ensemble element that vary with time states. Therefore,
the values of µ and σ vary at each time state based on their environment, showing that the
specific ensemble element is not flat. Figure 2 shows the space-time plane for measuring
the data model in the representative ensemble. This figure is an illustrated example to
help visualize the multiverse. The X-Y plane of the space state represents the standard
deviation and mean with no specific data points. In the simulation, we used time plane
T = 0 for illustrations.

Figure 2. Representative ensemble 3D space-time surface plot based on (µ, σ) of fbs.

3.3. Reinforcement Learning

Computers can be taught to learn in complex environments that are entirely new and
dynamically changing. Such a learning methodology requires a direction specified by a
goal or a reward. It influences the computer’s decision-making process for following the
activity sequence that provides the most rewards without any external intervention or
involvement of human intelligence. Thus, the computer performs a series of activities to
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train itself by evaluating the outcomes it is able to generate based on the reward. This
learning process is described as RL.

In the meta of RL, an agent is defined as having the exclusive goal of being trained
to perform and accomplish tasks in unfamiliar environments. Behavioral influence on the
agent’s activities is managed by observation of the environment and the possible reward(s)
for completing assigned tasks.

Further, an agent’s behavior fundamentally comprises two elements: a learning algo-
rithm and policy. Both elements have an interdependent relationship. At the elemental
level, it is the policy that specifies the actions an agent can or cannot undertake in a given
environment. Policy is commonly established through observation, which can be altered to
fit the environment the agent is operating in. As a result, the learning algorithm depends
on a policy that is based on a relationship of mutual exchange—the variables of the policy
are updated on the basis of activities and observations gathered by the agent. Ultimately,
the learning algorithm must determine a pathway by formulating a policy that results
in the maximum possible outcome or reward an agent can achieve in the environment
through its actions.

Thus, as the name suggests, RL is a computational process where the computer
(defined by one or more agents) interacts with the environment by iteratively improving its
activity without any external human intervention. Driving the computational process is a
workflow scheme. At the fundamental level, RL follows its underlying workflow (Figure 3),
training agents to subscribe to behaviors.

Figure 3. Reinforcement Learning Workflow Scheme.

RL eliminates the need for human involvement, allowing the computational tech-
nique’s implementation across a wide scope. RL’s primary uses consist of automated
robots, vehicles, and characters in computer games as well as more recent consumer appli-
cations. RL can be used for activities as simple as parking a self-driving car or suggesting
movies to a user based on their viewing habits. Critical to RL are the precursor data
acquired through sensory instruments, data-capturing applications, or both. Agents alter
their behavior based on repeated interactions with the environment and acquired data.
Effective RL systems take into consideration environmental noises and other edge-case
deviations, preventing any erratic action that may not match the ordinary purpose or goal
the agent must act upon.

Another vital attribute of reliable RL systems and their agents is the minimization of
the repetition required as a part of learning. This attribute is vital because although it can
lead to agents learning, it has not attained the performance or the corresponding behavior
for actions that yield established rewards. Therefore, the trial-and-error process incurs
costs to the overall system. These costs can sometimes include things such as accidentally
smashing a self-driving car into an unrecognized object (a pedestrian or an object that can
damage or destroy the car itself). Many similar analogies exist in their respective domains.

The iterative nature of the learning process also involves memorizing decision states
and policies so as to decide the future adoption of policies through comparison with past
policies. Memorization and comparative decision-making systems increase the RL process’s
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reliability and efficiency. Such a feature is important because retraining agents must not
be a costly process. Underlying parameters that require updates for agent(s) behavior
are as follows: the environment’s dynamics, the configuration of the learning algorithm,
the training settings, the evaluation of policy and reward value, the identification of the
signals for reward, and the identification of the signals of observation as well as activities.

3.3.1. Types of Algorithms

Techniques to implement RL are characterized by its algorithms. The various algo-
rithms that exist distinguish themselves based on their strategy for optimizing or maxi-
mizing one or more of the RL workflows. In the context of this study, these algorithms are
described by their strategy, utility, and trade-offs. This allows for a comparative evaluation
of the proposed algorithm that can help formulate the multiverse and Mandela effect. This
study involves using MATLAB 2021 to estimate, model, design, and train RL agents for the
representative ensemble.

Deep Q-Network (DQN). This RL algorithm has a value-based agent strategy. Agent(s)
are trained at each time step to update the properties of the critic to estimate future
rewards. DQN agents are trained with a specific behavior that conditions them to use
a circular experience buffer to memorize prior experiences and perform an exploration
of the environment. During environment exploration, agent(s) explore their action space
using one of two methods. Either agent(s) choose an activity randomly, governed by a
probabilistic nature, or agent(s) are driven by reward as defined by a value function. The
choice of agent behavior occurs at each interval of control. A custom discrete environment
is chosen for the DQN agent based on the binary value range interval of the data model
parameters. Computations can be assigned to either the CPU or GPU at the time of
configuring the environment [33]. The observation specifications take place in the time
domain with dimension [4 1], whereas the action specifications take place in the discrete
domain with dimension [1 1]. The agent sampling time is set to 1, whereas the critic
learning rate is set to 0.01. Agent exploration during training is set to an initial epsilon of
1 for epsilon greedy exploration that decays at a rate of 0.005 to an epsilon minimum of
0.01 over 1000 steps. Agent training is limited to a maximum of 500 episodes and upon
reaching the value of 500 average steps. The length of the maximum episode is set to 500,
whereas the average window length is defined by the value 5.

Deep Deterministic Policy Gradient (DDPG). Agents of the DDPG algorithm focus their
strategy on an optimal policy search targeting the maximum total long-term rewards
that can be accumulated. At the time of training, the agents of this algorithm update
the properties of the actor as well as the critic, in contrast to the DQN algorithm, which
updates the properties of only the critic at each episodic learning. However, the agent’s
behavior of memorizing prior experiences is similar to the agent’s behavior in the DQN.
Another distinguishing feature of this algorithm is that it uses a stochastic noise model to
interrupt the choice of action by the agent(s) for the defined policy. The DDPG algorithm
retains several of the dimensional properties that configure agents of the DQN algorithm.
These include the length of episodes, training steps, decay, dimensionality, and reward.
The distinguishing features of the setup lie in the creation stages of the critic and actor,
which involve defining the actions for the rewards based on observations [34].

Twin-Delayed Deep Deterministic Policy Gradient (TD3). This RL algorithm is another
type of DDPG algorithm. Similar to DDPG, TD3 focuses on the exploration of the pol-
icy that provides the maximum long-term reward. TD3 distinguishes itself by reducing
suboptimal policies chosen as a result of overestimating the value functions that DDPG
agents perform. This algorithm improves upon that shortcoming by learning not one but
two Q-value functions as well as by incorporating the minimum value function estimate at
the time of updating its policies. As a result, agents of this algorithm are less frequently
targeted compared to Q-functions. All other characteristics of the TD3 are fundamentally
the same as those of DDPG. For this reason, the configuration of TD3 is similar to that of
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DDPG, with the only exception being the specification of the noise value of the target action
that agents must perform to make actions less exploitable by policies [35].

Actor–Critic Method (A2C, A3C). As the name suggests, agents of the actor–critic
method implement algorithms that are focused on the actor–critic strategy. This algorithm
influences its agents in a discrete or continuous action space to directly optimize the policy
for the actor followed by implementing a critic for reward estimation. This characteristic
defines the goal that drives A2C or A3C agents. In contrast to previous algorithm strategies,
the configuration of the A2C/A3C algorithm is set up such that agents of the actor–critic
algorithm frequently interact with their environment, estimating the probability of the
action that needs to be taken. This is followed by a probabilistic random selection of actions
and then an update to the properties of the actor and critic [33].

Proximal Policy Optimization (PPO). In this algorithm, the strategy is to switch between
two performance steps: (a) use the stochastic gradient descent to improve a segment of the
objective function and (b) sample the data during interaction with the environment. This
algorithm is a rather simpler version of the Trust Region Policy Optimization (TRPO) algo-
rithm. Here, the segment, which is better defined as a clipped surrogate, limits the policy
size changed at each step, improving the stability of the algorithm’s performance. The con-
figuration of the PPO agents during training is similar in some ways to the A2C/A3C
algorithm. Before updating the properties of the actor and critic, the agents frequently
interact with the environment. There is also a random selection of actions in accordance
with an estimated statistical probability in the action space [36].

Soft Actor–Critic (SAC). This is another algorithm that focuses on estimating and
maximizing the long-term reward. The SAC also measures policy entropy, which refers to
uncertainty in a policy. The greater the uncertainty, the higher the capability this algorithm
has to explore the policy and environment. The result of this strategy is that SAC agents are
able to achieve two objectives simultaneously: accumulate the maximum reward possible
and balance the amount of exploration performed in the environment. Training of SAC
agents involves a combination of features described in the DQN, DDPG, and actor–critic
algorithms. Where the properties of actors and critics are routinely updated at the time
of learning, prior values are memorized, and agents randomly choose actions based on a
probabilistic model. The only distinguishing features here are that an entropy weight is
updated as a part of the update routine. This is important for the algorithm because the
measured entropy balances the reward and policy [37].

Q-Learning. This is one of the more commonly used and simpler algorithms in the
RL space. Agents of the Q-Learning algorithm focus their strategy on the value of fu-
ture rewards. Critics are trained to estimate returns from their observations of the envi-
ronment and then choose actions that lead to the greatest returns. Much like the DQN
agents described earlier, Q-learning agents explore their action space by implementing an
epsilon-greedy exploration strategy. The choice of action is probabilistic and driven by the
estimation of future rewards [38].

State-Action-Reward-State-Action (SARSA). SARSA is highly similar to the Q-learning al-
gorithm in that it focuses its strategy on the value of future rewards. The only distinguishing
feature is that the training of critics follows a procedural SARSA sequence to estimate returns
from the critics’ observation of the environment, and then SARSA agents choose actions that
lead to the greatest returns. Similar to Q-learning and DQN, SARSA agents explore their action
space by implementing an epsilon-greedy exploration strategy. The action that has the greatest
value is randomly chosen and driven by the estimation of future rewards [39].

Trust Region Policy Optimization (TRPO). In comparison to the PPO algorithm, this
algorithm has a higher computational demand for training and simulation. However,
the capability of the TRPO is more reliable in environments where its dynamics have low
dimensionality in observation and are deterministic. Many features and configurations of
TRPO are similar to those of PPO. The only distinguishing features are that TRPO switches
between the sampled data from the environment and solve a constrained optimization
problem before updating the policy parameters [40].
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In the setup, the constraint encountered during optimization for the problem-solving
uses KL-divergence. This helps the TRPO algorithm avoid performance compromises.

3.3.2. Designing the Mandela Effect

The Mandela effect suggests that patients in each specific ensemble element will carry
a false memory of heart attacks experienced by other people in their specific ensemble
element. This phenomenon will be magnified in the representative ensemble, where
patients will believe that other patients bearing specific parameters of health conditions
have suffered a heart attack. This may not be true in their specific ensemble element, but it
may be true in another element within the representative ensemble.

Patients will be modeled as agents carrying beliefs in their own unique specific en-
semble element. This is characterized by the measurement of training error losses of the
prediction model. The heart attack prediction model in each specific ensemble element
predicts the number of people who may suffer from cardiac arrest. This prediction model
will create beliefs in the population. The false positive heart attacks reported by the trained
model can then explain the Mandela effect. While the self-reported AI agent of false data
points can act like a déjà vu effect.

The resulting prediction training losses will indicate the index value of false assump-
tions the population will have in its specific ensemble element (Algorithm 1).

Algorithm 1 Multiverse as Representative Ensemble Simulation Model

Require: For consciousness of the specific ensemble element, the algorithm detects the
boundary conditions of the data set. Because we have two data points (fbs and sex),
dimensions for each data point will exist as Dm,n where D represents the data points fbs
and sex

Ensure: The boundary conditions are stored in the variables fbs = [ f bsll , f bsul ] and sex =
[sexll , sexul ]
Calculate the µ (mean) and σ (standard deviation) of the original data set to identify the
origin value of the specific ensemble element. These values become fbs = [µ, σ] and sex =
[µ, σ] and can be plotted on a Cartesian 2D plane
Create the environment for the RL agents to populate the representative ensemble with
multiple specific ensemble elements. The number of unique universes can be quantified
by a smaller number
while total number of specific ensemble elements = n : Sn do

Generate a random value of fbs = [µ, σ] and sex = [µ, σ]
Define a reward value for the agent to check and remove any duplicate values of

[µ, σ] for each Dm,n
if (Dm,n > 1) then

total number of specific ensemble elements = total number of specific ensemble
elements −Dm,n

Set n = total number of specific ensemble elements
end if

end while
Create a data set of 303 array positions for each Dm,n coordinate value
while total number of specific ensemble elements = 1 : Sn do

while total population = 1 : Populationn do
Define a reward value for the agent to randomly populate Matrix Mi,j.

(i = 303, j = 1) based on value of fbs = [µ, σ] and sex = [µ, σ]
end while

end while
Measure each data set containing both data points for total number of specific ensemble
elements

The computational complexity of this algorithm can be computed considering the
first while loop with the condition if statement gives O(n2), then the second set of while
nested loops have the complexity of O(n2), which means the total arithmetic complexity
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is O(max(n2, n2)), equal to O(n2) where the performance is affected by the square of the
input elements.

4. Simulation Results
4.1. Representative Ensemble Seed Generation

Representative ensemble parameters consisting of two binary value attributes (fbs and
sex) from the data model yielded a total of 2.65 possible unique seeds in the representative
ensemble. The theoretical model of a representative ensemble allows it to possess multiple
copies of each seed’s parameters to an infinitesimal amount. The number of unique seeds
generated (Seedn) in this study was sampled to 606 specific ensemble elements in the
representative ensemble, n = 606.

Figure 4 shows the distribution of two attributes characterizing the parameters of the
origin seed of a specific ensemble element in the space plane at t = 0. Figure 5 shows the
distribution of the attributes.

Figure 4. The composition of the origin seed to 303 patients based on the distribution of two attributes:
sex and fbs.

Much like the origin seed in Figure 4 depicting the composition of 303 patients, each
specific ensemble element in a representative ensemble has its own distribution based on
the values of mean and standard deviation. Figure 5 depicts a Monte Carlo probability
model that was performed without any RL.

Therefore, the representative ensemble algorithmic function became the following:
nensemble = ([

parameterLowerLimit
parameterUpperLimit

]
, populationSize, nelement

)
; µ, σ

(10)

The space plane visualization of a clipped segment of representative ensemble gen-
eration can be seen in Figures 6 and 7. Each point represents a specific ensemble element.
It is important to note that both Figures 6 and 7 represent two slices of the same repre-
sentative ensemble at time t = 0. This slicing was performed to render the parameters of
each specific ensemble element in a two-dimensional plane. The 0–1 boundaries are the
mathematical limits of the binary data shown in Equation (9). If the data were to be of
any other number range, it would only increase the computational requirements for the
simulation. Figures 6 and 7 are snapshots of the simulated results X-Y at time interval
t = 0 of 606 ensemble elements, i.e., 606 points. Each point of the ensemble has 303 patients
split by fbs and sex. The randsample sets up the environment to choose the value of mean
and standard deviation between 0 and 1 differentiated by 3 decimal values, 0.0001. No two
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values are duplicates, which occurs frequently, as our model was built to avoid duplicating
from happening.

Figure 5. Fbs and sex CDF of males and females in the origin seed.

Figure 6. Space plane of the representative ensemble based on the fbs parameter.

4.2. Heart Attack Prediction Model in the Multiverse

The heart attack prediction model was simulated for each specific ensemble element
of the representative ensemble. Figure 8 shows the probability of patients in the origin
seed-specific ensemble element at time t = 0 who can experience cardiac arrest. These
data were consistent with the distribution of attributes presented in Figure 5. Additional
specific ensemble elements showed the prediction model based on their own parameter
distribution, as seen in the representative ensemble space planes. Extending this concept to
multiverse systems with cyclic individual-specific ensemble elements allows us to predict
either increasing or decreasing entropy. A cyclic model is a type of cosmological model
that indicates that the specific ensemble element follows an indefinite, infinite cycle, or self-
sustaining cycles. According to the cyclic universe theory, the specific ensemble element
experiences continuous cooling and expansion throughout its evolution. It starts with a Big
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Bang before going through a series of cycles, culminating in a “big crunch”. The time is
considered an integral of function space, as shown in Equation (1).

Figure 7. Space plane of the representative ensemble based on the sex parameter.

Figure 8. Origin seed specific ensemble element analysis of heart attack simulation, where x(1) is the
iteration number for test data factoring in fbs and sex over time for a specific slice of 303 patients,
x(2) refers to a relative residual that is not in x(1), and t̂3(X|θ3) is a predictor of the target function
representing patients. t represents the probability of a patient experiencing a heart attack, T = 0, 1 is
the values of t = 0 test, and t = 1 represents the likelihood of patients experiencing a heart attack.

Data are often cyclical; for instance, time is a rich example. It is a collection of features
that are naturally related to cycles. We are trying to learn how to inform our machine-
learning model about the nature of a feature in a dataset. Let us say we want to understand
the 24-h time series. It could be connected to fbs or sex. However, we want to convey the
idea of its cyclical nature. To learn how to convey the idea of time’s cyclical nature, we will
first create fake time periods. We will only be looking at the time’s appearance on certain
periods, such as 24-h clocks. The seconds past midnight do not exhibit closeness between
the data that cross the “split”. With just the “fbs”, there is nothing to break symmetry
across the entire period. However, we need two dimensions to create a cyclical feature,
which is why we used “sex”. A feature with an out-of-phase component can also break the
symmetry. By combining the two features, all time can be distinguished from one another.
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The time series’ cyclical nature can be observed in our RL model by feeding the fbs and sex
features into it.

There are multiple ways to generate a representative ensemble; the most appropriate
for this study is the cyclic time model. Essentially this method is an iteration space at each
time plane, i.e., x-y points at each interval of time t = 0, t = 1, t = 2, and so on.

Thus, applying a cyclic time model, we could see this prediction model change at
different intervals of time for each specific ensemble element of the representative en-
semble. In the simulation of each specific ensemble element, only the attributes of fbs
changed, whereas sex remained the same for each population. This was performed to
model the behavior of changes to the fbs levels of each patient in the population. Therefore,
the changing values of mean and standard deviation of each fbs and sex value represented
the environment of each specific ensemble element.

4.3. Mandela Effect in the Multiverse

In each specific ensemble element, reversed and nonreversed error detection was
compared with the model prediction training size. The order M of each specific ensemble
element was denoted by the training size, which represented the spread of information at
70% of the dataset. Meanwhile, values of mean and standard deviation characterized the
environment of the specific ensemble element. The test losses indicated the index value of
false memories encountered by the population at each iterative training. The nonreversed
and reversed curves in Figure 9 show the same acceleration because they occurred at the
same time. An object moving with constant acceleration moves with a horizontal line. Zero
slope refers to the movement with constant acceleration. The area under the curve shows
the change in velocity.

Figure 9. Origin seed simulation of detection error test loss vs. training size.

5. Discussion
5.1. Summary of Findings

Computer self-consciousness through RL allows complex ideas that are not possible
to render and demonstrate within human conceptions. Understanding the existence of the
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multiverse is a challenging concept. Establishing theoretical reasoning and experimentation
creates the pathway for observing complex phenomena. A representative ensemble can be
designed and simulated in several ways. This is because a multiverse is not only limited
to a galactic canvas. The planes of space and time can measure instances of the behavior
of environments that exist in multiple regions, termed as specific ensemble elements.
Each specific ensemble element allows the examination of its policies, agents, controls,
critics, observations, rewards, and state spaces. By extracting attributes and categorically
exploiting them as parameters for each specific ensemble element, we can observe the
range of possibilities for spawning other specific ensemble elements.

The data in this study made use of a binary range, which is the smallest possible range
of computational power that can be easily used to design and simulate a functioning repre-
sentative ensemble. In the multiverse, a very small sample size was chosen for rendition
and modeling. Two attributes of each specific ensemble element further narrowed down
possible specific ensemble elements that could exist as unique entities. However, a multi-
verse by no means only has unique entities as described in the design stage. Simulation,
however, only deals with unique specific ensemble elements to reduce the complexity of
duplicate results affecting the quality.

5.2. Recommendation for Future Work

It was observed that even with only two binary value attributes, the notion of a
theoretically possible multiverse consisting of unique specific ensemble elements was com-
putationally demanding. Computing a representative ensemble where multiple copies
of each seed’s parameters exist was entirely outside the scope of this research from a
computational standpoint. The addition of more parameters with larger intervals (nonbi-
nary) is best suited for computation by supercomputers, which are capable of performing
such calculations.

In this study, a lateral scatter-specific ensemble element population was used to
populate the representative ensemble. However, it is entirely possible to create a multiverse
in several other ways, such as multiple clusters, spirals, sinusoidal, and other shapes on the
space plane. Additionally, the behavior on the time plane was modeled cyclically. Other
possible ways to model time-based behavior are: particle decay, stochastic probability,
and time-based functions. These will allow the measurement of all the other ways a
multiverse can exist, thereby increasing the number of possible results. From a human
standpoint, such results are impossible to conceive, which is why the results can only be
taken advantage of by machines and instruments—in this case, software that can detect
health behavior or perceptions and act accordingly.

6. Conclusions

In popular entertainment, the concept of the multiverse has been presented as a
possible one. From a computational perspective, simulations can be used to create mul-
tiverse scenarios by independently testing the models of each specific ensemble element.
Because of the advancements in distributed and parallel computing, the aliasing of the
representative ensemble has been greatly improved. Additionally, because of the universe’s
mechanism, quantum computers are being developed that can compute the representative
ensemble. The goal of this study was to prove the possibility of the multiverse using well-
established theories of classical computing. Through parallel computing, each simulated
specific ensemble element can independently exist as a parallel reality. However, the engine
is not aware that the specific ensemble elements are independent. The complexity of the
concept is best conceptualized through computer simulation, and a multiverse can be
created theoretically. Representative ensemble causality can be predicted within it, and the
Mandela effect can be assumed in this specific ensemble element. To study the behavior of
this specific ensemble element, it has to be generated by taking into account the unique spe-
cific ensemble elements of a population with two binary attributes. The maximum number
of specific ensemble elements that can be generated within the representative ensemble is
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182. To minimize the computational effort required to study the specific ensemble elements,
the sample count for this study was limited to 606. The parameters used to represent the
specific ensemble elements’ attributes were implemented using the µ and σ values. The RL
algorithm utilized in the representative ensemble generated different specific ensemble
elements. Additionally, a heart attack simulation was performed for each specific ensemble
element. The Mandela effect was then tested in each specific ensemble element using the
training size of order M. The computers gained a deeper understanding of the specific
ensemble element’s parameters, which could represent the possibility of having multiple
specific ensemble elements.
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Abbreviations
The following abbreviations are used in this manuscript:

MWI Many Worlds Interpretation
TNT Think/No-Think
DQN Deep Q-Network
CDF Cumulative Density Function
FBS Fasting Blood Sugar
DDPG Deep Deterministic Policy Gradient
A2C, A3C Actor–Critic Method
PPO Proximal Policy Optimization
SAC Soft Actor–Critic
SARSA State-Action-Reward-State-Action
TRPO Trust Region Policy Optimization
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