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Abstract: Although linearly combining multiple variables can provide adequate diagnostic perfor-
mance, certain algorithms have the limitation of being computationally demanding when the number
of variables is sufficiently high. Liu et al. proposed the min–max approach that linearly combines
the minimum and maximum values of biomarkers, which is computationally tractable and has been
shown to be optimal in certain scenarios. We developed the Min–Max–Median/IQR algorithm under
Youden index optimisation which, although more computationally intensive, is still approachable and
includes more information. The aim of this work is to compare the performance of these algorithms
with well-known Machine Learning algorithms, namely logistic regression and XGBoost, which have
proven to be efficient in various fields of applications, particularly in the health sector. This com-
parison is performed on a wide range of different scenarios of simulated symmetric or asymmetric
data, as well as on real clinical diagnosis data sets. The results provide useful information for binary
classification problems of better algorithms in terms of performance depending on the scenario.

Keywords: classification; linear combination; Youden index; min–max approach; min–max–median
approach; min–max-IQR approach; logistic regression; XGBoost

1. Introduction

The linear combination of multiple biomarkers is often used in clinical practice [1] for
disease diagnosis due to its ease of interpretation and performance [2], which is usually
superior to considering each biomarker separately [3–8]. These new biomarkers are key
for disease screening or understanding the evolution of a disease after diagnosis. As an
example, Prostate-specific antigen (PSA) is the most used biomarker to diagnose prostate
cancer, although it lacks the necessary sensitivity and specificity. The prostate health index
(PHI) and 4Kscore are new biomarkers with greater predictive ability derived from linear
models that include PSA [9].

To assess diagnostic accuracy, statistics derived from the receiver operating charac-
teristic (ROC) curve, such as the area under the ROC curve (AUC) [10] or the Youden
index [11], are often used. In this context, the development of binary classification model
approaches that maximise the AUC has been extensively studied in the literature. Many of
these studies have been the basis for the formulation of subsequently published improved
approaches under ROC-curve-derived optimality criteria.

Su and Liu [12] formulated the optimal linear model that maximises the AUC under
the assumption of multivariate normality. This normality assumption is often not easy to
observe in real clinical practice, being too demanding in part due to the symmetry that
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biomarkers must meet. For many diseases, the progression or advanced stages of them
are associated with high values of the diagnostic tests, so these types of variables tend to
follow asymmetric distributions. Results from a prostate cancer screening cohort show
a clear asymmetry of PSA in the Canadian population [13]. This limitation was solved
by Pepe et al. [14,15], who proposed a distribution-free approach for the estimation of
the linear model that maximises AUC based on the Mann–Whitney U-statistic [16]. This
approach is based on discrete optimisation under extensive search on the parameter vector
of biomarkers coefficients. Although the statistical foundation underpinning the approach
proposed by Pepe et al. has been the basis for subsequent approaches, it has the drawback
of being computationally infeasible when the number of biomarkers is greater than or
equal to three. To address this computational limitation, Pepe et al. [14,15] suggested the
use of stepwise algorithms based on selecting and estimating, at each step, the best linear
combination of two biomarkers, including at each step a new biomarker. This proposal
for partial optimisations at each step was later implemented by Esteban et al. [17] and
Kang et al. [18]. Esteban et al. included tie-handling strategies, and Kang et al. proposed
a simpler and less demanding approach by setting the order of biomarker inclusion at
the beginning of the algorithm. Liu et al. [19] proposed an approach, called the min–max
approach, which is computationally tractable regardless of the number of biomarkers.
This is because it is based on the linear combination of the minimum and maximum
values of biomarkers under the optimisation of the Mann–Whitney U-statistic of the AUC,
involving the search for a single optimal coefficient. Despite its computational advantage,
it has been shown to generally achieve lower accuracy than other approaches that use
information from all biomarkers, such as stepwise approaches, but shows superiority in
some scenarios [3,4,18].

In diagnostic or binary classification problems where combinations of continuous
biomarkers are estimated, dichotomisation of the resulting continuous value, i.e., estab-
lishing a cut-off point, is often key, as it provides a classification rule that allows this
classification of patients into groups [20]. In this sense, the Youden index is a good criterion
for choosing the best cut-off point to dichotomise a biomarker [21] and is an appropriate
summary of the performance of the diagnostic model [22]. For example, the Youden index
takes a cut-off value of 45.9 for PHI in nonfused biopsies [23]. The Youden index maximises
the sum of sensitivity and specificity, giving equal weight to both metrics, so that it can be
considered as the symmetrical point that maximises both metrics simultaneously.

Therefore, although there are different metrics that provide the optimal cut-off point,
in the absence of consensus, with no clear reason to optimise either sensitivity or specificity,
the Youden index provides that optimal balance, being the most used parameter to choose
a threshold.

Although the area under the ROC curve is the most studied diagnostic assessment
statistic in the literature, other statistics such as the Youden index are also used in different
clinical studies and provide accurate categorisation. The algorithms under AUC optimality
cited above were used as a basis for the formulation of subsequent approaches under
Youden index maximisation. Based on the stepwise approach of Kang et al. [18], Yin and
Tian [24] conducted a study under Youden index optimisation. Aznar-Gimeno et al. [25]
developed the stepwise algorithm suggested by Pepe et al. [14,15] under Youden index
maximisation and compared its performance with other approaches in the literature, modi-
fied under Youden index maximisation, such as Yin and Tian’s stepwise approach [24], the
min–max approach [19], logistic regression [26], a parametric method with multivariate
normality and a non-parametric kernel smoothing method. Although Aznar-Gimeno et al.
demonstrated that their proposed approach achieved acceptable performance, superior in
some scenarios, it has the computational limitation of being difficult to approach when the
number of biomarkers increases. The min–max approach, which solves this computational
problem through the linear combination of the minimum and maximum values, did not
prove to be sufficient in terms of discrimination, except in a few specific scenarios.
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Maintaining the advantage of not being subject to any distributional assumptions,
being computationally tractable regardless of the number of original biomarkers while
incorporating more information through a new summary statistic (the median or the
interquartile range), Aznar-Gimeno et al. [27] proposed the so-called min–max–median
and min–max-IQR approaches. These approaches are based on estimating the linear
combination of these three variables using the proposed stepwise algorithm [25]. Aznar-
Gimeno et al. compared the proposed algorithms with the min–max algorithm and logistic
regression. The aim was to compare computationally tractable methods, regardless of the
number of biomarkers. In this sense, cancer shows a substantial clinical heterogeneity,
and the max–min derived approach tries to capture the potential variation underlying the
biological heterogeneity.

Machine learning algorithms have been increasingly used in various fields of ap-
plication [28] and, in particular, in clinical practice and medical research [29–34], due to
their performance potential and efficiency. There are different machine learning and deep
learning techniques that have been applied in the area of health from different sources of
information covering different formats ranging from numerical data to text or images [35].
Numerous studies have applied and evaluated these techniques in recent years with dif-
ferent objectives in the healthcare domain [36], such as predicting events, diagnosing or
prognosing diseases or cancers [37–40]. Analysing their association with patient biomark-
ers such as demographic data, clinical data, pharmacology, genetics, medical imaging or
wearable sensors, [41] (among others), is a challenge that needs to be addressed in a way
that prevents or detects the disease early.

Deep learning has been used to assist in the identification of genes and associated pro-
teomics and metabolomics profiles to detect cancers at early stages [42–44]. Concerning the
early detection of breast cancer, Mahesh et al. [45] evaluated the Naive Bayes classifier, the
Decision Tree classifier, Random Forest and their ensembles. Botlagunta et al. [46] assessed
nine machine learning methods for breast cancer metastasis classification, including logistic
regression, k-nearest neighbours, decision trees, random forest, gradient boosting, and
eXtreme Gradient Boosting (XGBoost) [47]. Rustam et al. [48] compared the performance of
Support Vector Machine (SVM) and Naive Bayes for prostate cancer patient classification.
Huo et al. [49] also evaluated the effectiveness of machine learning models for prostate
cancer prediction, including SVM, decision tree, random forest, XGBoost, and adaptive
boosting (Adaboost). Sabbagh et al. [50] applied logistic regression and XGBoost techniques
to the prediction of lymph node metastasis in prostate cancer patients using clinicopatho-
logic features. Khan et al. [51] propose a self-normalised multiview convolutional neural
network model with adaptive boosting (AdaBoost-SNMV-CNN) for lung cancer nodule
detection in computed tomography scans. Regarding diabetes, Saheb-Honar et al. [52]
examined the classification ability of logistic regression, decision tree, and random forest in
identifying the relationship between type 2 diabetes and its risk factors. Budholiya et al. [53]
present a diagnostic system that employs an optimised XGBoost classifier with the aim of
predicting the occurrence of heart disease. Ensemble models, combining machine learning
and deep learning approaches, provide personalized patient treatment strategies based on
medical histories and diagnostics [54]. The versatility of deep learning models is clear, with
applications for omics data types, as well as histopathology-based genomic inference, pro-
viding perspectives on the integration of different data types to develop decision support
tools [55], but few of them have yet demonstrated real-world medical utility [56].

The primary drawback of one of these algorithms compared to techniques based
on linear models is the lack of explainability and interpretability of the models. One
of the key reasons why these tools may not be effectively implemented and integrated
into routine clinical practice is due to the lack of transparency and explainability of the
models. Explainable artificial intelligence (XAI) is attracting much interest in medicine [57]
and, fortunately, in recent years, work has been carried out on the concept of XAI, which
provides techniques that also offer explainability and transparency of these models.
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XGBoost [47] is one of the most widely used machine learning algorithms of recent
times. This is due to its ease of implementation and good results, proving to be a leader in
many competitions and state-of-the-art studies [58]. The XGBoost algorithm assumes no
normality and combines several weak prediction models, which are usually decision trees,
improving its predictivity and accuracy. This type of model shows versatility as it depends
on some parameters relating to the building trees that can be optimized.

In terms of machine learning algorithms, our work focuses on analysing the predictive
capacity of logistic regression and XGBoost. Numerous studies have compared the per-
formance of logistic regression and XGBoost in the health domain in recent years [59–66].
Unlike logistic regression or other statistical approaches based on linear models, XGBoost
allows capturing non-linear relationships, one of the main reasons for its popularity. How-
ever, although XGBoost is an effective tool in healthcare and has been in demand in recent
years, demonstrating good performance, it does not always outperform conventional statis-
tical methods such as logistic regression [62,66,67]. The choice of the optimal model will
depend on the problem and the type of data. Therefore, it is always necessary to conduct a
comprehensive comparative study to analyse the performance of algorithms in different
scenarios in order to obtain useful information and establish certain guidelines.

Due to the enormous number of data available nowadays by the advances in technol-
ogy, it has been shown that it is essential to develop non-parametric biomarker combination
models that are computationally tractable, regardless of the number of initial biomarkers.
In this sense, our proposed approaches (min–max–median/IQR approach) reduce the
dimensional problem by capturing the heterogeneity of the information through summary
statistics. Although studies comparing the performance of different machine learning tech-
niques have increased in the literature in recent years, so far, there are no studies comparing
the performance of our proposed approaches with machine learning models such as XG-
Boost, which has been in high demand in recent years and which can capture more complex
relationships than the statistical linear methods compared in other studies [25,27]. The
aim of our work was to compare the performance of our proposed min–max–median/IQR
approaches with the min–max approach and the machine learning algorithms known as
logistic regression and XGBoost, maximising the Youden index. For this purpose, they
were compared on a wide range of simulated symmetric or asymmetric data scenarios, as
well as on real clinical diagnostic datasets.

We provide a novel approach based on three main basic characteristics of the set of
predictor variables, the maximum, minimum and median or IQR to capture the larger
discrimination ability to summarize in these three parameters. On the other hand, from
a different perspective, we train and validate additive tree models trying to capture the
sum of the predictive ability of all predictor variables. The results of this work provide
the reader with useful information that can serve as a guide for the choice of the most
suitable algorithm for binary classification problems depending on the characteristics and
behaviour of the data.

2. Materials and Methods

This section introduces some notations and the non-parametric approach of Pepe
et al. [14,15], which forms the basis for our min–max–median/IQR approaches. In the fol-
lowing, we explain our proposed approaches (min–max–median/IQR) and the algorithms
with which we compare performance: min–max approach, logistic regression and XGBoost.
These algorithms were adapted by optimising the Youden index. Finally, the simulated
scenarios and real datasets are detailed, as well as the validation procedure. The entire
study was conducted using the free software R (The R Foundation for statistical computing,
Vienna, Austria) [68]. The code of the whole study can be found in Supplementary Material.

2.1. Background

Consider the following binary classification problem where p is the number of biomark-
ers, n1 is the number of case individuals (with disease) and n2 is the number of control
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individuals (healthy individuals). If Xkij denotes the value of the jth variable or biomarker
(j = 1, . . . , p) for the ith individual of group k = 1, 2 (disease and non-disease), then Xki is
the vector of biomarkers for the ith individual of group k = 1, 2 and X1 = (X11, . . . , X1n1)
and X2 = (X21, . . . , X2n2). Therefore, the linear combination of each group is expressed as
Yk = βTXk, k = 1, 2, where β = (β1, . . . , βp)T denotes the parameter vector.

Defined in the above notation, by definition, the Youden index (J) of the linear combi-
nation is expressed as:

J = maxc{Sensitivity(c) + Speci f icity(c)− 1}
= maxc{FY2(c)− FY1(c)}

(1)

where c denotes the cut-off point and FYk(c) = P(Yk ≤ c) the cumulative distribution
function of random variable Yk. Denoting by cβ = {c : maxc

(
FY2(c)− FY1(c)

)
} the optimal

cut-off point, the expression of the empirical estimate of the Youden index is:

Ĵβ = F̂Y2(ĉβ)− F̂Y1(ĉβ)

=
∑n2

i=1 I
(

βTX2i ≤ ĉβ

)
n2

−
∑n1

i=1 I
(

βTX1i ≤ ĉβ

)
n1

(2)

where I denotes the indicator function.

Pepe et al.’s Approach

Pepe and Thompson [14] proposed a distribution-free approach (without any distri-
bution assumptions) to estimate the linear model that maximizes the AUC based on the
Mann–Whitney U-statistic [16]. The basis on which their proposed approach lies is mainly
in the property of invariance of the ROC curve to any monotonic transformation.

Specifically, Pepe and Thompson propose the following linear model:

Lβ(X) = X1 + β2X2 + · · ·+ βpXp (3)

where p denotes the number of biomarkers, Xi the biomarker i ∈ [1, . . . , p] and βi the
parameter to be estimated. Observe that they did not include an intercept in the linear
model (3), and the coefficient associated with the first variable X1 is 1. This is because the
ROC curves for Lβ(X) (3) and Lα(X) = α0 + α1Lβ(X), α1 > 0 are the same, so it is enough
to consider (3). Thus, considering the optimal parameter vector, the maximum empirical
AUC based on the Mann–Whitney U statistic would be given by the following expression:

ÂUC =
∑n1

i=1 ∑n2
j=1 I(Lβ(X1i) > Lβ(X2j)) +

1
2 I(Lβ(X1i) = Lβ(X2j))

n1 · n2

Note that searching the entire possible parameter vector space Rp−1 and possible
coefficient-variable combinations is computationally intractable. To overcome this limita-
tion, Pepe et al. suggested estimating the parameter vector through a discrete optimisation
over 201 equally spaced values between −1 and 1. This is because selecting β in [−1, 1]
is equivalent to covering the range (−∞, ∞) since the AUC of Xi + βXj for β > 1 and
β < −1 is the same as αXi + Xj for α = 1

β ∈ [−1, 1]. Even so, this optimisation is com-
putationally costly for dimensions p ≥ 3. To address this, Pepe et al. [14,15] suggested
the use of stepwise algorithms, in which a new variable is included in each step, selecting
the best combination of two variables. In this way, the problem is transformed into a
computationally tractable problem by estimating a single parameter p− 1 times using a
linear combination of two variables.

Both the model formulation and the empirical search are the basis for the formulation
of the min–max approach and our proposed algorithms (min–max–median/IQR) that
extend the min–max approach, which are explained below.
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2.2. Min–Max Approach

Liu et al. [19] proposed the so-called min–max approach (MM), which is a distribution-
free approach, as proposed by Pepe et al. [14,15], but with the advantage of being com-
putationally tractable, regardless of the number of original biomarkers. The idea of this
approach is to calculate the minimum and maximum values of the p biomarkers and to
consider the optimal linear combination of these two markers, involving the search for a
single optimal coefficient. Specifically, the original aim is to estimate the β parameter such
as the combination

Xmin + βXmax (4)

which maximizes AUC based on the Mann–Whitney U statistic, where Xmin and Xmax
are the minimum and maximum values of the original p biomarkers for each individual,
respectively.

Considering the Youden index as our target metric to maximise, the min–max approach
can be adapted by selecting the optimal parameter β and cut-off point cβ that maximises
the following expression

Ĵβ =
∑n2

i=1 I
(
X2i,max + βX2i,min ≤ ĉβ

)
n2

−
∑n1

i=1 I
(
X1i,max + βX1i,min ≤ ĉβ

)
n1

(5)

where Xki,max = max1≤j≤p

(
Xkij

)
and Xki,min = min1≤j≤p

(
Xkij

)
for k = 1, 2 and each

i = 1, . . . , nk, and β ∈ [−1, 1], following Pepe et al’s. suggestion of the empirical search of
β.

The procedure can be summarised as follows:

1. For each i individual, the biomarkers with minimum and maximum values (Xmin and
Xmax) are considered as the new 2 markers (for simplicity, X1 and X2).

2. For each of the 201 possible values of β, the value of the linear combination (X1 + βX2)
is calculated for each i individual and the optimal cut-off point is chosen, i.e., the one
that maximises the Youden index.

3. The linear combination that achieves the highest Youden index is the optimal combination.

2.3. Min–Max–Median/IQR Approach

Aznar-Gimeno et al. proposed new non-parametric approaches, so-called min–max–
median (MMM) and min–max-IQR (MMIQR) [27], which extend the idea of the min–max
approach by applying our proposed stepwise algorithm [25], following the suggestion of
Pepe et al. [14,15]. The aim was to include more information in the model while remaining
computationally affordable, although more intensive.

Specifically, the idea behind the approaches is to reduce the dimension of the problem
by reducing the number of original p biomarkers to three, considering the summary
statistic information of the original variables, i.e., the minimum, maximum, median, or
interquartile range (IQR). Our approach extends the min–max approach as it incorporates
a new summary statistic, turning the problem into a three-variable linear combination
optimisation problem. As suggested by Pepe et al., a stepwise algorithm that we developed
is used in this case, where the best linear combination of two variables is selected, including
a new variable in each step.

Below, we provide a detailed description of the procedure for the min–max–median
approach (note that the min–max-IQR approach follows the same steps).

1. Firstly, for each i individual, the minimum, maximum, and median values of p
biomarkers are calculated:

Xki,max = max
1≤j≤p

(
Xkij

)
, Xki,min = min

1≤j≤p

(
Xkij

)
, Xki,median = median1≤j≤p

(
Xkij

)
(6)

where k = 1, 2 and i = 1, . . . , nk. These values are considered as the three new
variables (X1, X2 and X3, for simplicity). Specifically, from now on, the problem is to
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estimate the optimal linear combination of these three variables using the proposed
stepwise algorithm.

2. The first step of the stepwise approach is to choose the combination(s) of the two
variables that maximises the Youden index such that

Ĵβ2 =
∑n2

i=1 I
(
X2ij + β2X2ik ≤ ĉβ2

)
n2

−
∑n1

i=1 I
(
X1ij + β2X1ik ≤ ĉβ2

)
n1

β2 ∈ [−1, 1], ∀j 6= k = 1, . . . , p (7)

using empirical search proposed by Pepe et al. In other words, for each variable
pair, for each value of the 201 (β values), the linear combination is calculated and
the optimal cut-off point that maximises the Youden index is selected. That linear
combination for which the optimal cut-off point has obtained the maximum Youden
index is chosen in this step. Suppose, for simplicity, the optimal linear combination
Xki1 + β2Xki2.

3. The last step is to include the remaining variable (X3) and select the optimal linear
combination(s). Specifically, the previously chosen linear combination (Xki1 + β2Xki2)
is considered as a new variable and the idea of the previous point (2) is re-applied.
Therefore, either combination (8) or (9) that maximizes the Youden index is chosen as
the final optimal combination of the linear model.

Ĵβ3 =
∑n2

i=1 I
(
(X2i1 + β2X2i2) + β3X2i3 ≤ ĉβ3

)
n2

−
∑n1

i=1 I
(
(X1i1 + β2X1i2) + β3X1i3 ≤ ĉβ3

)
n1

β3 ∈ [−1, 1] (8)

Ĵβ3 =
∑n2

i=1 I
(

β3(X2i1 + β2X2i2) + X2i3 ≤ ĉβ3

)
n2

−
∑n1

i=1 I
(

β3(X1i1 + β2X1i2) + X1i3 ≤ ĉβ3

)
n1

β3 ∈ [−1, 1] (9)

For ease, a single optimal linear combination is considered in steps 2 and 3. How-
ever, the maximum Youden index can be reached for different linear combinations. Our
algorithm considers all ties, which can be broken in the last stage (step 3) or not.

Our proposed approaches are openly available to the scientific community through
the R library SLModels [69]. The library also incorporates the min–max algorithm adapted
for the optimisation of the Youden index (previous section).

2.4. Logistic Regression

The logistic regression (LR) (or logit regression) [26] is a statistical model that provides
the probability of an observation/individual i belonging to an output category, given its
set of independent variables Xi, through the logistics function:

P(Yi = 1|Xi) =
1

1 + e−βTXi
=

eβTXi

1 + eβTXi

log
P(Yi = 1|Xi)

1− P(Yi = 1|Xi)
= βTXi

(10)

where β is the vector of parameters to estimate by means of the maximum likelihood
method.

2.5. Extreme Gradient Boosting (XGBoost)

XGBoost (eXtreme Gradient Boosting, XGB) is a scalable tree boosting system that was
developed by Chen and Guestrin [47]. It is a specific optimised implementation of gradient
boosting and is therefore based on the principle of sequential order ensemble learning,
where errors are minimized (loss function) using a gradient descent algorithm. Specifically,
XGBoost is a decision tree ensemble based on the idea of training several weak learners
(base learners) sequentially in order to create a strong learner with higher accuracy. During
training, the parameters of each weak model are adjusted by minimising the objective
function, and each new model is trained to correct the errors of the previous ones. Correctly
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and incorrectly predicted results receive different scores that are finally weighted to obtain
a final result.

The XGBoost algorithm, unlike those presented above, has both parameters and
hyperparameters. Hyperparameters are values of model settings that must be set during
the training process to control the behaviour and performance of the model.

Considering the XGBoost algorithm as an ensemble base learners of decision trees, the
loss function at iteration t to minimise has the following expression:

L(t) =
n

∑
i=1

l
(

yi, ŷi
(t−1) + ft(Xi)

)
+ Ω( ft) (11)

where l is the loss term and Ω( f ) = γT + 1
2 λ||ω||2 is the regularisation term, which

penalizes the complexity of the model, avoiding over-fitting. yi indicates the real output,
ŷi

(t−1) the prediction of the ith individual at the (t − 1)th iterations, f denotes the base
learners, T the number of leaves of the tree and ω the weights of the leaves. γ represents
the minimum loss reductions needed to split a leaf node of the tree. The larger γ is, the
more conservative the algorithm will be.

The complexity of the model can also be limited through the maximum-depth hyper-
parameter, which specifies the maximum number of levels of the tree, where each level
represents a division of the data based on a variable. Another possible regularisation
hyperparameter is shrinkage, which reduces the step size to make the boosting process
more conservative. In other words, it decreases the influence of each individual tree and
allows future trees to improve the model. Random subsampling is another regularisation
technique that can be used. In the case of a column subsample, the hyperparameter specifies
the subsample fraction of columns to be used to construct each tree. The same idea is for
rows, where, if the value is less than 1, a random subset of rows (observations/individuals)
is selected for each tree.

The XGBoost model was applied using the free software R library xgboost. Specifically,
in this study, the following hyperparameters were adjusted over a set of possibilities:

• nrounds: Number of decision trees in the final model.
• gamma (γ): Minimum loss reduction required to split a node.
• eta (shrinkage, learning rate): Step size shrinkage.
• max_depth: Maximum depth of the tree.
• colsample_bytree: Subsample ratio of columns.
• subsample: Subsample ratio of the training instances.

Table 1 shows the hyperparameter possibilities space explored in the study. The ex-
plored values of maximum tree depth for datasets with fewer variables were lower than
those with higher dimensions. For the selection of the best combination of hyperparam-
eters, the grid search technique was used, and 5-fold cross-validation was performed on
the training set. Finally, the model was trained on the entire training dataset with the
selected optimal hyperparameters. The early stopping technique was used as an additional
technique to avoid over-fitting by stopping the training if there was no improvement in
10 iterations in a row.

Table 1. Search space of the hyperparameters explored.

nrounds gamma eta max_depth colsample_bytree subsample

50,100,200 0,0.5 0.1,0.3 [2,20] 0.5,1 0.5,1

2.6. Simulations

A wide range of simulated data were explored in order to analyse and compare the
performance of the algorithms previously discussed. Specifically, scenarios simulating
different biomarker distributions, discrimination capabilities, and correlation between them
were analysed, considering p = 4 and p = 10 biomarkers, and smaller (n1 = n2 = 50) and
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larger (n1 = n2 = 500) sample sizes. As for the biomarker distributions, both symmet-
ric distributions (normal distributions) and asymmetric distributions (different marginal
distributions and multivariate log-normal skewed distribution) were simulated.

The scenarios with different marginal distributions were simulated with 4 biomarkers
following chi-square, normal, gamma and exponential distributions via normal copula
with a dependence parameter between biomarkers of 0.7 for the case population (patients;
diseased population) and 0.3 for the control population (healthy; non-diseased popula-
tion). More specifically, the biomarkers for the control population were considered to be
marginally distributed as χ2

0.1, N(0.1), Γ(0.1), Exp(0.1) and χ2
0.1, N(0.6), Γ(0.8), Exp(0.1)

for case population. Scenarios under log-normal distribution were generated from the con-
figurations of the simulated scenarios under a normal distribution and then exponentiated.

Concerning the scenarios of normal distributions, the null vector m2 =~0 was consid-
ered as the mean vector of the non-diseased population. With respect to the mean vector of
the diseased population (m1), scenarios with the same means m1 = (1.0, 1.0, . . . )T , i.e., the
same predictive ability, and different means m1 = (0.2, 0.5, 1.0, 0.7)T , m1 = (0.2, 0.4, 0.6, 0.8,
1.0, 1.2, 1.4, 1.6, 1.8, 2.0)T , were explored. For simplicity, the variance of each biomarker was
set to 1, so that covariances are equivalent to correlations. The same correlation value was
considered for all pairs of biomarkers. Let Σ1 and Σ2 be the variance–covariances matrices
for diseased and non-diseased populations, respectively. The following scenarios with
different biomarker means were analysed:

– Independents (Σ1 = Σ2 = I).
– High correlation (Σ1 = Σ2 = 0.3 · I + 0.7 · J).
– Different correlation between groups (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J).
– Negative correlation (ρ = −0.1).

where I denotes the identity matrix and J the all-one matrix. Regarding scenarios with the
same biomarker means, the following were explored:

– Low correlation (Σ1 = Σ2 = 0.7 · I + 0.3 · J).
– Different correlation between groups (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J).
– Different correlation between groups with biomarkers independents in the non-

diseased population (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I).

2.7. Application in Real Datasets

The methods being examined were also applied in two real clinical datasets: for the
diagnosis of Duchenne muscular dystrophy and for maternal mortality risk.

Duchenne muscular dystrophy (DMD) is a genetic disorder passed down from a
mother to her children, causing progressive muscle weakness and wasting. Percy et al. [70]
analysed the effectiveness of detecting this disorder using four biomarkers extracted from
blood samples: serum creatine kinase (CK), haemopexin (H), pyruvate kinase (PK) and
lactate dehydrogenase (LD). The dataset was obtained at https://hbiostat.org/data/,
accessed on 30 January 2023. After removing observations with missing data, the dataset
used contains information on the four biomarkers of 67 women who are carriers of the
progressive recessive disorder DMD and 127 women who are not carriers.

Maternal mortality refers to the death of a woman due to a pregnancy-related cause.
It is one of the main concerns of the Sustainable Development Goals (SDG) of the United
Nations. The dataset used for analysing maternal mortality was obtained at [71] (Maternal
Health Risk), which contains information on the following six risk factors for maternal mor-
tality: age in years during pregnant, upper value of blood pressure in mmHg (SystolicBP),
lower value of blood pressure in mmHg (DiastolicBP), blood glucose levels in mmol/L (BS),
body temperature in ºF (BodyTemp) and a normal resting heart rate in beats per minute
(HeartRate). An IoT-based risk monitoring system was used to gather this information
from various hospitals, community clinics, and maternal healthcare centres in the rural
areas of Bangladesh. The level of risk intensity was also provided by differentiating three
categories: low (406 women), medium (336 women) and high (272 women). To adapt data
to our study, the following binary problems were considered: (i) predicting high or medium

https://hbiostat.org/data/
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risk versus low risk and (ii) predicting high risk versus medium or low risk. The original
dataset contains repeated data, outliers and anomalous data that may be due to errors in
data retrieval. In our study, data from women aged 13–50 years were considered, duplicate
rows were removed, and two observations were removed with heart rate values of 7 beats
per minute, which is an erroneous value. Finally, the dataset used in the study contained
196 low-risk, 86 medium-risk and 95 high-risk observations.

2.8. Validation

A total of 59 simulated data scenarios were explored, considering different sample
sizes, number of biomarkers, distributions, discriminatory ability, and correlations. For
each simulated scenario, each method was trained considering random samples from
the underlying distribution (100) and validated using new data simulated with the same
configuration (100). For real data, a 10-fold cross-validation procedure was performed.

During training, the model parameters were estimated, and the optimal cut-off point
that maximises the Youden index was obtained. The estimated model and the cut-off point
selected were applied to the validation set. The Youden indices obtained in the validation
set are shown in the tables in the following sections.

3. Results

This section presents the results of the performance achieved by each of the methods
studied, both for the simulated scenarios and for the real data datasets. We denote the
logistic regression, XGBoost, min–max approach, min–max–median approach, and min–
max-IQR approach by LR, XG, MM, MMM, and MMIQR, respectively.

3.1. Simulations

The results obtained from the 100 random samples for each scenario are presented
as the mean of the maximum Youden indices as well as the standard deviation. The
following sections present the results for the symmetric (normal) and non-symmetric
distribution scenarios.

3.1.1. Symmetric Distributions

Tables 2 and 3 display the results obtained from the simulated scenarios for p = 4
biomarkers following a multivariate normal distribution with different means and the
same means, respectively. The code can be found at Supplementary Material: Chapter 1,
Sections A.1.–A.5.

The results in Table 2 show, in general, a superiority of logistic regression over the other
algorithms, except in the scenario of different correlations and larger sample sizes, where
XGBoost significantly outperforms it. Our proposed algorithms (MMM/MMIQR) show
similar performance to the min–max approach or superior, particularly when biomarkers
are independent or negatively correlated.

Table 3 presents the results for biomarkers with the same predictive ability. The con-
clusions derived are different from those in the Table 2 above (different mean). Logistic
regression achieves the highest average performance value in the same and low correlation
scenarios, although the rest of the algorithms obtained very close values. The summary-
statistics-based methods (MM, MMM, MMIQR) and especially our proposed algorithms
(MMM/MMIQR) outperformed the other algorithms in scenarios with different correla-
tions. XGBoost outperforms logistic regression in scenarios with different correlations and
large sample sizes.
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Table 2. Normal distributions. Different means. Four biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Independents

(50,50) 0.453 (0.0919) 0.3878 (0.1016) 0.3696 (0.1037) 0.3884 (0.1075) 0.3938 (0.1107)
(500,500) 0.4882 (0.0282) 0.4698 (0.0322) 0.4103 (0.0308) 0.4397 (0.0317) 0.432 (0.0343)

High correlation (Σ1 = Σ2 = 0.3 · I + 0.7 · J)

(50,50) 0.4392 (0.0904) 0.3598 (0.1004) 0.2652 (0.106) 0.249 (0.0925) 0.2646 (0.0892)
(500,500) 0.4653 (0.0286) 0.4457 (0.0315) 0.2966 (0.0367) 0.2954 (0.0378) 0.2963 (0.0362)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.392 (0.0933) 0.3758 (0.0946) 0.3212 (0.0978) 0.3288 (0.0892) 0.3194 (0.1007)
(500,500) 0.4262 (0.031) 0.4814 (0.0314) 0.3564 (0.0323) 0.3593 (0.0306) 0.3598 (0.0307)

Negative Correlation (ρ = −0.1)

(50,50) 0.5074 (0.0808) 0.4578 (0.0857) 0.4358 (0.0826) 0.4708 (0.0802) 0.461 (0.0841)
(500,500) 0.5562 (0.0239) 0.5306 (0.0245) 0.4658 (0.027) 0.5147 (0.0279) 0.5053 (0.0323)

Table 3. Normal distributions. Same means. Four biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Low correlation (Σ1 = Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.4878 (0.09) 0.429 (0.0942) 0.4794 (0.0954) 0.482 (0.097) 0.4818 (0.0971)
(500,500) 0.5254 (0.0285) 0.5125 (0.0284) 0.5073 (0.0278) 0.5183 (0.032) 0.5182 (0.0295)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.4598 (0.0958) 0.4628 (0.1004) 0.5366 (0.0904) 0.5438 (0.0813) 0.5398 (0.0869)
(500,500) 0.4783 (0.0259) 0.5279 (0.0284) 0.5609 (0.0285) 0.5627 (0.0271) 0.5632 (0.0271)

Different Correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

(50,50) 0.5452 (0.0779) 0.5186 (0.0831) 0.5758 (0.0776) 0.587 (0.0825) 0.59 (0.0771)
(500,500) 0.5748 (0.028) 0.5875 (0.0289) 0.5975 (0.0279) 0.6097 (0.0247) 0.6088 (0.0246)

Tables 4 and 5 present the results obtained considering the above scenarios for
p = 10 biomarkers. The code can be found at Supplementary Material: Chapter 1,
Sections A.6.–A.10. Table 4 shows the Youden indices achieved for biomarkers with differ-
ent means. The conclusions derived are similar to those in Table 2, with our more hardened
approaches being significantly superior to the min–max approach, especially when biomark-
ers are independent or negatively correlated, where they achieve the best performance.
Logistic regression generally outperforms all other algorithms in all other scenarios.

The results reported in Table 5 show similar behaviour to Table 3. In general, the
summary statistics-based methods and, in particular, our approaches outperform the
others. The XGBoost algorithm outperforms logistic regression, generally, in the different
correlation scenarios.

3.1.2. Asymmetric Distributions

This section presents results derived from simulated scenarios of non-normal distribu-
tions. Tables 6–8 show the results obtained from simulated data for p = 4 biomarkers. The
code can be found in Supplementary Material: Chapter 1, Sections B.1.–B.6. Specifically,
Tables 6 and 7 consider scenarios under log-normal distribution and Table 8 considering
different marginal distributions (χ2, normal, gamma and exponential). Tables 9 and 10
display the results obtained from simulated data for p = 10 biomarkers following a
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log-normal distribution. The code can be found in Supplementary Material: Chapter 1,
Sections B.7.–B.11.

Table 4. Normal distributions. Different means. Ten biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Independents

(50,50) 0.8698 (0.055) 0.86 (0.061) 0.7704 (0.0642) 0.8716 (0.0547) 0.8616 (0.0647)
(500,500) 0.9448 (0.0093) 0.9288 (0.0142) 0.7962 (0.0187) 0.8996 (0.0146) 0.8993 (0.0175)

High correlation (Σ1 = Σ2 = 0.3 · I + 0.7 · J)

(50,50) 0.8324 (0.0696) 0.7992 (0.0726) 0.6672 (0.0854) 0.6644 (0.0868) 0.662 (0.0861)
(500,500) 0.9191 (0.0149) 0.8935 (0.0168) 0.6893 (0.0245) 0.6899 (0.0253) 0.6888 (0.0271)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.789 (0.071) 0.7658 (0.0706) 0.4924 (0.0932) 0.4948 (0.0961) 0.4982 (0.0977)
(500,500) 0.8585 (0.0174) 0.8626 (0.0179) 0.5287 (0.0274) 0.5471 (0.0255) 0.5464 (0.0248)

Negative Correlation (ρ = −0.1)

(50,50) 0.9232 (0.0552) 0.8884 (0.075) 0.865 (0.0599) 0.9468 (0.0482) 0.9576 (0.0418)
(500,500) 0.9936 (0.0042) 0.9764 (0.0145) 0.8953 (0.0166) 0.996 (0.0035) 0.9962 (0.0034)

Table 5. Normal distributions. Same means. Ten biomarkers..

Size (n1,n2) LR XG MM MMM MMIQR

Low correlation (Σ1 = Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.5216 (0.09) 0.508 (0.0833) 0.5202 (0.0812) 0.5328 (0.0885) 0.531 (0.0841)
(500,500) 0.5803 (0.0264) 0.5595 (0.0255) 0.5501 (0.0281) 0.5742 (0.0302) 0.5751 (0.0285)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.4206 (0.1047) 0.4662 (0.106) 0.6784 (0.0758) 0.6774 (0.0821) 0.6766 (0.08)
(500,500) 0.5044 (0.0283) 0.6324 (0.0279) 0.692 (0.0226) 0.6929 (0.0233) 0.6946 (0.0242)

Different Correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

(50,50) 0.621 (0.0816) 0.6146 (0.0819) 0.6966 (0.0751) 0.7172 (0.0706) 0.718 (0.0715)
(500,500) 0.6849 (0.0237) 0.714 (0.0257) 0.712 (0.0203) 0.7373 (0.025) 0.7378 (0.0253)

Table 6 reports results for the scenario of biomarkers with different means. It shows
tnat logistic regression outperforms the others in high-correlation scenarios. The XGBoost
algorithm dominates the others in all other scenarios for larger sample sizes and in all
scenarios of different correlations. Our min–max-IQR approach outperforms the others in
small sample sizes of negative correlations and particularly the min–max approach in the
independent biomarker scenarios.

The results reported in Table 7 show a similar behaviour to Table 3 (normal distribu-
tions) but with a worse logistic regression performance, such that our approaches generally
perform the best in all scenarios.
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Table 6. Log-normal distributions. Different means. Four biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Independents

(50,50) 0.4112 (0.0936) 0.385 (0.1016) 0.3658 (0.106) 0.393 (0.1031) 0.3852 (0.1077)
(500,500) 0.4562 (0.03) 0.4686 (0.0313) 0.4096 (0.0324) 0.4376 (0.0315) 0.435 (0.0328)

High correlation (Σ1 = Σ2 = 0.3 · I + 0.7 · J)

(50,50) 0.4108 (0.1009) 0.354 (0.0998) 0.2596 (0.1025) 0.2468 (0.1004) 0.246 (0.102)
(500,500) 0.4502 (0.0282) 0.446 (0.0318) 0.2954 (0.0365) 0.2935 (0.037) 0.2935 (0.0337)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.3492 (0.0955) 0.3814 (0.0879) 0.3158 (0.0942) 0.3198 (0.0955) 0.3166 (0.102)
(500,500) 0.394 (0.0337) 0.4815 (0.0328) 0.3558 (0.0325) 0.3571 (0.0317) 0.3567 (0.0334)

Negative Correlation (ρ = −0.1)

(50,50) 0.4538 (0.0963) 0.4466 (0.0861) 0.4268 (0.0834) 0.4794 (0.0795) 0.4802 (0.0853)
(500,500) 0.4916 (0.0264) 0.5304 (0.0252) 0.4627 (0.0248) 0.5051 (0.0274) 0.5044 (0.0278)

Table 7. Log-normal distributions. Same means. Four biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Low correlation (Σ1 = Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.4592 (0.0955) 0.4312 (0.0943) 0.4704 (0.0933) 0.483 (0.0879) 0.4816 (0.095)
(500,500) 0.5049 (0.0301) 0.5121 (0.029) 0.5051 (0.027) 0.5161 (0.0282) 0.5151 (0.0282)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.4066 (0.0926) 0.4524 (0.1019) 0.5444 (0.0911) 0.5358 (0.0905) 0.54 (0.0884)
(500,500) 0.4166 (0.0279) 0.5292 (0.0278) 0.5606 (0.0266) 0.5607 (0.0276) 0.56 (0.0279)

Different Correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

(50,50) 0.4556 (0.0853) 0.522 (0.0755) 0.5784 (0.0813) 0.5832 (0.0865) 0.5798 (0.0897)
(500,500) 0.4755 (0.0282) 0.5881 (0.0288) 0.5982 (0.0276) 0.6074 (0.025) 0.6079 (0.0258)

The results in Table 8 indicate that, in scenarios of different marginal distributions,
the XGBoost algorithm dominates the rest significantly. In these scenarios, the summary
statistics-based methods are the worst performers.

Table 8. Different marginal distributions.Four biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

(50,50) 0.6572 (0.108) 0.6838 (0.0947) 0.3716 (0.1194) 0.3442 (0.1234) 0.3616 (0.1251)
(500,500) 0.7065 (0.0363) 0.7692 (0.0220) 0.435 (0.0453) 0.4357 (0.0442) 0.4358 (0.0429)

Table 9 shows that logistic regression outperforms the rest in high-correlation scenarios
but is closely followed by the XGBoost algorithm. The XGBoost algorithm dominates over
the others in independent scenarios of larger sample sizes and scenarios with different
correlations between groups. Our approaches achieve the best performance in independent
biomarker scenarios and smaller sample sizes and in scenarios with negative correlations.
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Table 9. Log-normal distributions. Different means. Ten biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Independents

(50,50) 0.8344 (0.0556) 0.8594 (0.065) 0.7728 (0.0632) 0.8772 (0.0545) 0.8646 (0.0591)
(500,500) 0.901 (0.0137) 0.9293 (0.0128) 0.7966 (0.018) 0.895 (0.0154) 0.8929 (0.0178)

High correlation (Σ1 = Σ2 = 0.3 · I + 0.7 · J)

(50,50) 0.817 (0.0706) 0.8034 (0.0745) 0.6584 (0.0762) 0.6572 (0.0828) 0.657 (0.0805)
(500,500) 0.8948 (0.0164) 0.8916 (0.0173) 0.6825 (0.0224) 0.6812 (0.0244) 0.6814 (0.0248)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.7436 (0.0795) 0.7692 (0.077) 0.4994 (0.0932) 0.505 (0.0961) 0.5026 (0.097)
(500,500) 0.808 (0.0217) 0.8626 (0.018) 0.5218 (0.0279) 0.5452 (0.0257) 0.5445 (0.025)

Negative Correlation (ρ = −0.1)

(50,50) 0.8946 (0.0586) 0.886 (0.0755) 0.8704 (0.05) 0.952 (0.0449) 0.953 (0.0457)
(500,500) 0.9703 (0.01) 0.9756 (0.0143) 0.8938 (0.0149) 0.9947 (0.0044) 0.9964 (0.0036)

The results reported in Table 10 show a general dominance of our approaches over the oth-
ers, with logistic regression performing significantly worse in scenarios of different correlation
than in other scenarios.

Table 10. Log-normal distributions. Same means.Ten biomarkers.

Size (n1,n2) LR XG MM MMM MMIQR

Low correlation (Σ1 = Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.5072 (0.0917) 0.5066 (0.0859) 0.5144 (0.0869) 0.5306 (0.0931) 0.5344 (0.0886)
(500,500) 0.5656 (0.0253) 0.5592 (0.0292) 0.5459 (0.0277) 0.5739 (0.0296) 0.5748 (0.0288)

Different Correlation (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J)

(50,50) 0.35 (0.1058) 0.4666 (0.1037) 0.6732 (0.0852) 0.661 (0.091) 0.664 (0.0905)
(500,500) 0.4253 (0.0277) 0.6321 (0.0275) 0.6796 (0.0239) 0.6802 (0.0254) 0.6811 (0.0251)

Different Correlation (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I)

(50,50) 0.4944 (0.0835) 0.613 (0.0756) 0.69 (0.0789) 0.7166 (0.0762) 0.7186 (0.0782)
(500,500) 0.5506 (0.0265) 0.715 (0.0239) 0.7122 (0.0225) 0.738 (0.0231) 0.7376 (0.0222)

3.1.3. Summary

To provide a better understanding of our proposed approaches’ performance com-
pared to other algorithms, this section provides a summary of the previously displayed
results in Figures 1 and 2. Figure 1 shows the results from simulated scenarios of normal
distributions, while Figure 2 displays the results from non-normal distributions. The value
on the y-axis represents the value after subtracting the average Youden index achieved by
our proposed best approach (MMM or MMMIQR) among the other algorithms: logistic
regression, XGBoost and min–max approach. The blue value corresponds to the difference
with logistic regression (denoted by MMM-LR), red with XGBoost algorithm (MMM-XG),
and black with min–max approach (MMM-MM). Thus, negative values on the graph repre-
sent scenarios where algorithms outperform our approaches and positive values in other
scenarios. The further away from zero, the more significant the difference.

Regarding scenarios with normal distributions (Figure 1), machine learning algorithms
(logistic regression and XGBoost algorithm) outperform our approaches, particularly in
scenarios with biomarkers with different predictive capacity, mainly in scenarios with
high correlations and different correlations (scenarios 2 and 3). However, our approaches
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outperform the others in scenarios with biomarkers with similar predictive ability (scenarios
5–7) and in scenarios of biomarkers with negative correlations, mainly for scenarios with a
higher number of biomarkers. Note that these differences are more pronounced in scenarios
with a higher number of biomarkers.

Figure 1. Normal distributions. Difference in the average Youden index achieved by our approach
(MMM/MMIQR) and the other algorithms (MMM-LR, MMM-XG, MMM-MM). 1: Independents.
2: High correlations. 3: Different correlations (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J). 4: Negative
correlations. 5: Low correlation. 6: Different correlations (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J).
7: Different correlations (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I).
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Figure 2. Non-normal distributions. Difference in the average Youden index achieved by our
approach (MMM/MMIQR) and the other algorithms (MMM-LR, MMM-XG, MMM-MM). 1: Log-
normal. Independents. 2: Log-normal. High correlations. 3: Log-normal. Different correlations
(Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J). 4: Log-normal. Negative correlations. 5: Log-normal.
Low correlation. 6: Log-normal. Different correlations (Σ1 = 0.3 · I + 0.7 · J, Σ2 = 0.7 · I + 0.3 · J).
7: Log-normal. Different correlations (Σ1 = 0.5 · I + 0.5 · J, Σ2 = I).
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As for the scenarios of non-normal distributions (Figure 2), the behaviour in scenarios
of log-normal distributions is similar to those with normal distributions (Figure 1 above),
but with larger differences overall in favour of our algorithm with respect to logistic
regression in scenarios with biomarkers of the same means. In scenarios where biomarkers
follow different marginal distributions, the XGBoost algorithm significantly achieves the
best performance. XGBoost also outperforms the others in scenarios of biomarkers with
different means and different variance-covariance matrices between groups.

3.2. Real Datasets
3.2.1. Duchenne Muscular Dystrophy

Figure 3 shows the distribution of each biomarker, and Table 11 displays the correlation
matrix between them in each group (67 carriers and 127 non-carriers) for the Duchenne
muscular dystrophy dataset, where rCK−H denotes the correlation between the pair of
biomarkers CK and H. The code can be found in Supplementary Material: Chapter 2,
Section A.1.

Figure 3. Marginal distributions of biomarkers. DMD dataset.

Table 11. Correlation between biomarkers. DMD dataset.

rCK−H rCK−PK rCK−LD rH−PK rH−LD rPK−LD

Non-Carrier −0.33 0.1 0.2 0.08 0.18 0.22
Carrier −0.14 0.7 0.49 −0.12 −0.1 0.48

Because the range of biomarker values differs from the others, the values of each
biomarker were normalised before applying summary statistics-based methods, thus ensur-
ing the correct use of these methods. The biomarkers CK and H show a negative correlation,
which is stronger in the non-carrier group. Conversely, the other biomarker pairs generally
show positive correlations, with a stronger correlation observed in the carrier group.

The estimates of the Youden index of each biomarker (CK, H, PK, LD) produced in a
univariate way on the whole dataset were 0.612, 0.417, 0.508, and 0.578. Table 12 presents
the average value of the maximum Youden indices achieved in each fold for each of the
analysed methods, as well as their respective values of sensitivity and specificity. The code
can be found in Supplementary Material: Chapter 2, Section A.2.

Logistic regression achieved the best performance, although our approaches are not
far behind, outperforming the XGBoost algorithm and notably the min–max approach.

3.2.2. Maternal Health Risk

This section presents the performance results of the approaches to the problem of
predicting high or medium versus low risk of maternal mortality (High–Medium vs. Low
Risk) and the problem of predicting high risk versus low or medium risk of maternal
mortality (High vs. Medium–Low Risk) for the Maternal Health Risk dataset.
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Table 12. Ten-fold cross-validation. DMD dataset.

Algorithm Youden Sensitivity Specificity

LR 0.8008 0.8476 0.9532
XG 0.7047 0.8142 0.8905

MM 0.6258 0.7952 0.8306
MMM 0.7793 0.8595 0.9198

MMIQR 0.7772 0.8761 0.9011

3.2.3. High–Medium vs. Low Risk

Figure 4 displays the distribution of each variable, and Table 13 shows the correlation
matrix between them in each group (196 low risk and 181 medium-high risk). The variables
Age, SystolicBP, DiastolicBP, BS, BodyTemp and HeartRate are denoted by V1, V2, V3, V4,
V5, and V6, respectively. The code can be found in Supplementary Material: Chapter 2,
Section B.1.

Figure 4. Marginal distributions of biomarkers. Maternal Health dataset. High–Medium vs. Low Risk.

Table 13. Correlation between biomarkers. Maternal Health dataset. High–Medium vs. Low Risk.

rV1−V2 rV1−V3 rV1−V4 rV1−V5 rV1−V6 rV2−V3 rV2−V4 rV2−V5 rV2−V6 rV3−V4 rV3−V5 rV3−V6 rV4−V5 rV4−V5 rV5−V6

Low Risk 0.39 0.4 0.17 −0.13 −0.17 0.8 0.07 −0.08 −0.15 0.11 −0.1 −0.09 0.03 −0.02 0.11
High–Medium Risk 0.46 0.39 0.53 −0.38 0.08 0.75 0.27 −0.41 −0.07 0.27 −0.36 −0.14 −0.17 0.19 0.12

Positive and negative correlations are shown between the variables, generally with
greater strength in the higher-risk group (High–Medium Risk). The estimates of the Youden
index of each biomarker (Age, SystolicBP, DiastolicBP, BS, BodyTemp and HeartRate)



Symmetry 2023, 15, 756 19 of 26

produced in a univariate way on the whole dataset were 0.305, 0.304, 0.153, 0.377, 0.249,
0.217, respectively. The predictive capacity of the biomarkers in this dataset was lower
than the previously presented DMD dataset, as can also be seen in Figure 4.

Table 14 presents the performance achieved by each of the analysed methods af-
ter the application of 10-fold cross-validation. The values of each biomarker were nor-
malised before applying the summary statistics-based methods. The code can be found in
Supplementary Material: Chapter 2, Section B.2.

Table 14. Ten-fold cross-validation. Maternal Health dataset. High–Medium vs.Low Risk.

Algorithm Youden Sensitivity Specificity

LR 0.5366 0.6611 0.8755
XG 0.586 0.74 0.846

MM 0.4563 0.7055 0.7508
MMM 0.4739 0.718 0.7559

MMIQR 0.4739 0.718 0.7559

The XGBoost algorithm and logistic regression achieved better performance than the
summary-statistics-based methods, especially XGBoost which performs the best.

3.2.4. High vs. Medium–Low Risk

Figure 5 shows the distribution of each variable and Table 15 the correlation matrix
between them in each group (282 low–medium risk and 95 high risk). Age, SystolicBP,
DiastolicBP, BS, BodyTemp and HeartRate are denoted by V1, V2, V3, V4, V5 and V6,
respectively. The code can be found in Supplementary Material: Chapter 2, Section C.1.

Figure 5. Marginal distributions of biomarkers. Maternal Health dataset. High vs. Medium–Low Risk.



Symmetry 2023, 15, 756 20 of 26

Table 15. Correlation between biomarkers. Maternal Health dataset. High vs. Medium–Low Risk.

rV1−V2 rV1−V3 rV1−V4 rV1−V5 rV1−V6 rV2−V3 rV2−V4 rV2−V5 rV2−V6 rV3−V4 rV3−V5 rV3−V6 rV4−V5 rV4−V5 rV5−V6

Medium–Low Risk 0.44 0.41 0.33 −0.14 −0.13 0.74 0.18 −0.08 −0.16 0.17 −0.1 −0.16 0.05 0.03 0.22
High Risk 0.44 0.4 0.55 −0.57 0.06 0.84 0.23 −0.57 −0.04 0.18 −0.54 −0.09 −0.4 0.14 −0.01

As in the previous example, positive and negative correlations between pairs of
variables are shown. The Youden index estimates for each biomarker (Age, SystolicBP, Dias-
tolicBP, BS, BodyTemp and HeartRate) univariate over the whole dataset were 0.347, 0.386,
0.268, 0.564, 0.22 and 0.272, respectively, which are higher than in the previous example.

Table 16 displays the performance achieved for each of the analysed methods. The
values of each biomarker were normalised before applying the summary statistics-based
methods. The code can be found in Supplementary Material: Chapter 2, Section C.2.

Table 16. Ten-fold cross-validation. Maternal Health dataset. High vs. Medium–Low Risk.

Algorithm Youden Sensitivity Specificity

LR 0.6225 0.8036 0.849
XG 0.7159 0.8238 0.8921

MM 0.6149 0.8932 0.7217
MMM 0.5831 0.8851 0.6981

MMIQR 0.5831 0.8851 0.6981

The XGBoost algorithm significantly outperformed the other algorithms. It was followed
by logistic regression, but the summary-statistics-based algorithm was not far behind.

4. Discussion and Conclusions

In binary classification problems in healthcare, the choice of thresholds to dichotomise
the model output into groups of patients is crucial and can aid decision-making in clinical
practice. In the absence of consensus on the benefits of optimising the classification of one
group or another, the Youden index is a standard criterion that provides good performance
for the model.

Models combining biomarkers for binary classification have received sufficient atten-
tion in the literature. The parametric approach has the limitation of meeting the assumption
of normality; by contrast, other authors propose non-parametric approaches without as-
sumptions of biomarker distributions but with the limitation of being computationally
intractable when the number of biomarkers increases.

Liu et al. [19] proposed the min–max approach, which is a non-parametric and com-
putationally tractable approach regardless of the number of biomarkers, based on the
linear combination of minimum and maximum values of biomarkers. The idea behind this
proposal is that the maximum and minimum values chosen among the biomarkers can
allow the best discrimination between sick and healthy patients. However, this approach
may not be sufficient in terms of discrimination when the number of biomarkers grows,
because it is not enough to capture all the discrimination abilities of the set of predictor
variables. To improve the min–max algorithm, we proposed the min–max–median/IQR
approach under a Youden index maximisation that incorporates a new summary statistic
with reasonably good performance. This approach uses a stepwise algorithm that we
proposed in [25], which is based on the work of Pepe et al. [14,15].

The use of machine learning algorithms, such as XGBoost, has become increasingly
popular in recent years due to their ease of implementation and good results. However, the
choice of the optimal approach depends on the problem and the data to be processed. It is
therefore essential to make a thorough comparison before providing some guidelines for
the selection of the optimal algorithm.

The aim of this paper is to present a comprehensive comparison of our min–max–
median/IQR approaches with the min–max approach and machine learning algorithms
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such as logistic regression and XGBoost, in order to optimise the Youden index. For this
purpose, the algorithms were compared on 59 different simulated data scenarios with
symmetric and non-symmetric distributions, as well as on two real-world datasets.

The results of the simulated scenarios showed that the machine learning approaches
outperformed our approaches, in particular in scenarios with biomarkers with differ-
ent predictive abilities and in biomarker scenarios with different marginal distributions.
However, our approaches outperformed them in scenarios with biomarkers with normal
and log-normal distributions with the same predictive ability and different correlations
between groups.

Regarding the real datasets, XGBoost outperformed the other algorithms in predicting
maternal health risk, while logistic regression achieved the best performance in predicting
Duchenne dystrophy, with our proposed approaches closely following. The data show that
the problem of predicting Duchenne dystrophy is simpler than that of predicting maternal
death risk. In the former, linear combination approaches outperform XGBoost. However,
XGBoost outperforms the others on the more complex problem. This may be due to its
ability to capture non-linear relationships.

In summary, regardless of the symmetry assumption, non-parametric approaches are
always a good alternative for modelling data, but their performance is not guaranteed.
Therefore, the modelling process requires a combination of techniques and the optimization
of hyperparameters, as we have demonstrated with extensive simulations and application
on real data. This work provides the scientific community with a comparison of the per-
formance of our approaches (min–max–median/IQR) and machine learning algorithms,
that can be applied and explored in different binary classification problems, such as cancer
diagnosis. We proposed a non-parametric approach, addressing the limitations of previous
linear biomarker combinations that assume multivariate normality. It also addresses the
limitation of the computational burden of certain approaches in the literature, being always
approachable regardless of the number of initial biomarkers. This is achieved thanks to
the formulation of our algorithm that linearly combines the minimum, maximum, and
median or interquartile range biomarkers, thereby converting the n-biomarker combina-
tion problem into a three-biomarker combination problem. Although there are several
techniques that reduce the dimensionality of the problem for subsequent classification
algorithm application, our proposed approach provides a different perspective in this
regard. The way our approach is formulated allows the three biomarkers considered (min-
imum, maximum and median or interquartile range) to correspond to different original
biomarkers for each patient. This offers the possibility of capturing biomarker hetero-
geneity in the data. Subsequently, our approach applies a stepwise algorithm, which we
published in [25] , and which demonstrated acceptable performance in the comparison
study. Therefore, our approach proposes a novel formulation in the state of the art that
addresses certain limitations in the literature. Furthermore, a comparison of our approach
with other approaches, such as the XGBoost algorithm, provides performance results with
other approaches that also help to capture biomarker heterogeneity, albeit from a different
perspective. XGBoost is a decision tree ensemble algorithm that builds multiple trees and
combines their predictions to produce the final output. For the construction of each tree, a
random subset of biomarkers/variables is selected and used to partition the data. In this
way, each tree is constructed with information from different biomarkers, thus helping to
avoid overfitting.

Our approaches have been shown to be superior to other algorithms, including ma-
chine learning algorithms, in scenarios with biomarkers having the same predictive capacity
and different correlations between groups. These results are not surprising, as there is
a variety of health problems in which the combination of the minimum and maximum
of biomarkers provides the best classification. In prostate cancer, the worst diagnosis
corresponds to a higher value in PSA and a lower value in prostate volume. PSA density
is defined by the division of PSA and prostate volume, and it shows a better predictive
ability than PSA. Thus, we can choose as a biomarker for prostate cancer the PSA density
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or the combination provided by PSA and prostate volume. Moreover, as with PSA, there is
a variety of competing biomarkers such as PCA3, SelectMdx, and 4Kscore, in which high
values correspond to a greater probability of cancer. The min–max derived approaches
gives the opportunity to choose from them the one which takes the highest value. Similar
to prostate volume, the free PSA takes lower values with a worse diagnosis of prostate
cancer; therefore, choosing the minimum and maximum marker for a group of candidates
with similar performance can contribute to the best discrimination ability. In addition, the
third parameter, median or interquartile range, informs about the performance of the set of
biomarkers. The cost-effectiveness of a set of biomarkers to diagnose a unique disease can
be controversial, but molecular or metabolomic markers are associated with a variety of
cancers, and their analysis has been increasing in recent years. The stratification of cancer
or its prognosis will be derived from biomarkers built from information derived from
different perspectives.

Although our work includes an exhaustive comparison study in various real and
simulated data scenarios, yielding interesting results, the conclusions must be considered
within the framework of our study. All conclusions derived from our study are limited to
the scenarios and algorithms explored. One of the limitations of the study is the variety
of machine learning algorithms considered. While the XGBoost algorithm and logistic
regression have been widely used in recent years and have proven efficient, a comparative
study that includes additional machine-learning techniques would provide more consistent
conclusions. In future work, we propose exploring other machine learning algorithms,
deep learning and ensemble models, to compare their performance with our approaches,
particularly in scenarios where they are optimal.

Another limitation of the study is the variety of real datasets used, where in no case
did our approach achieve the best performance. As future work, we propose evaluating
the performance of our approach on real datasets that meet the conditions of the optimal
simulation scenarios. One example could be the dataset used in [19], where the authors
demonstrated that the min–max combination of three growth hormones (IGFBP3, IGF1,
and GHBP) was superior to the other linear combinations for identifying autism. The aim
of this evaluation would be to determine whether our approaches outperform min–max
and the other algorithms studied.

In addition to scenarios combining multiple biomarkers with the same predictive ca-
pability, our approach could also be applied in scenarios where repeated measurements of
a single biomarker are recorded, converting the temporal information into three summary
measurements. Readers are encouraged to evaluate our approaches in such problems,
for example, the detection of events or neurodegenerative diseases from gait informa-
tion retrieved from wearable sensor measurements. Another line of future work could
involve adapting the models and the study to other objective metrics, such as the weighted
Youden index.

In conclusion, our study presents a comprehensive comparison of various approaches,
presenting our proposed approach (min–max–Median/IQR) as an alternative to machine
learning models such as logistic regression and XGBoost, in certain scenarios where it
has demonstrated superior performance. We believe that the results of this research will
provide valuable insights for the development and application of classification algorithms
in the field of medicine, such as cancer diagnosis.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/sym15030756/s1.
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ROC Receiver operating characteristic
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XGBoost Extreme Gradient Boosting
SVM Support Vector Machine
XAI Explainable artificial intelligence
MM Min–max approach
MMM Min–max–median approach
MMIQR Min–max-IQR approach
IQR Interquartile range
LR Logistic regression
XGB XGBoost algorithm
DMD Duchenne Muscular Dystrophy
CK Serum creatine kinase
H haemopexin
PK Pyruvate kinase
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SDG Sustainable Development Goals
SystolicBP Upper value of blood pressure
DiastolicBP Lower value of blood pressure
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