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Abstract: I share some reminiscences of the late Steven Weinberg. Then I discuss a topic in quantum
field theory that he taught me: the role of state wave functionals in deriving the iε term of the
Feynman propagator when using functional formalism. This is perhaps a curiosity for in–out
scattering amplitudes on flat-space backgrounds, but it has much greater significance for the in–in
amplitudes of the Schwinger–Keldysh formalism in cosmology. It also touches on the fate, about
which Weinberg wondered, of the large logarithms one sometimes finds in quantum corrections from
inflationary particle production.
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1. Reminiscences of Big Steve

Physicists recall the oddest things about Steven Weinberg, often having nothing to
do with his towering scientific achievements. I first heard him speak at a colloquium at
MIT, during September of 1977. I had just met Nick Tsamis, a fellow freshman grad student
who became Weinberg’s final student at Harvard. Nick would also become my best friend
and a collaborator with whom I have so far written 71 papers. Fall classes had not yet
begun so we hiked over to nearby MIT to hear Weinberg speak on spontaneous symmetry
breaking. My memory may have faded but I believe he was introduced by Viki Weisskopf,
who recalled Weinberg’s greatest contribution during his six years at MIT (1967–1973).
That period witnessed the paper that would earn the 1979 Nobel Prize, but Weisskopf
passed this over to instead commend Weinberg’s insistence that one should be able to open
the windows of MIT’s Center for Theoretical Physics! The other thing I recall from that
colloquium is that Weinberg illustrated spontaneous symmetry breaking using the example
of a cigar: both ends are equivalent but one end is lighted and the other is smoked.

Similar to many Harvard students, I took to calling Weinberg “Big Steve”. He taught
my first course on quantum field theory during the 1977–1978 academic year and it was
one of the seminal experiences of my life. We students had a saying that you must take
QFT three times before really understanding it. In the end, I took it only twice, and if I
have understood the subject, it is due to the genius of the men who taught me: first, Steven
Weinberg and then, Sidney Coleman. Their styles were interestingly different. Whereas
Sidney emphasized mathematical elegance, Big Steve proceeded from universal principles
and erected a workman-like framework of mutually reinforcing theory. His approach
reminded me of the enormous structural strength evident in bridges, which survived from
the early industrial period of the United States.

Big Steve’s QFT course was a mind-expanding experience. After most lectures, I
would stumble back to my room in Perkins Hall and lay there, staring at the empty ceiling
as my mind struggled to process the powerful concepts that were being impressed upon it.
The course also had humorous aspects. Harvard policy required faculty to provide office
hours, so Weinberg announced that his would take place right after class on Tuesdays and
Thursdays. However, he did not really want to sit in his office for questions that might never
come, so each lecture ended with him apologizing that a dental appointment precluded
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holding office hours that day. That same dental appointment stretched throughout the
entire 1977–1978 academic year! The funny thing is, I do not recall anyone complaining:
Big Steve’s lectures were so brilliantly clear that no office hours were necessary.

History was important to Big Steve, and he made effective use of it in writing and
teaching. His 1972 text on gravitation and cosmology prefaces its historical review of
mankind’s long struggle to perceive order in the cosmos with a passage from Anna Com-
nena’s encomium to her father, who spent his life restoring order from the chaos that
followed Manzikert. Weinberg devoted the first lectures of his QFT course to a historical
review of quantum field theory, with particular attention to the many attempts at supplant-
ing it. His message was that these alternatives always ended up being recognized as either
incorrect or consequences of quantum field theory. Listening to Weinberg speak made you
share his conviction that QFT is the finest thing our species ever created. I recall an Arthur
C. Clarke novel, set more than a billion years in the future, in which a character casually
comments about needing to consult a “field theory expert” to understand a particular
device. You could believe in that future after hearing Weinberg’s lecture.

Big Steve was full of historical anecdotes, such as Dirac’s explanation for failing to
quantize the photon field because he was afraid something “would go wrong”. In fact,
something did go wrong when the first loop computations revealed ultraviolet divergences,
and some physicists overreacted by rejecting quantum field theory. Then came the Shelter
Island Conference, after which the leading theorists of the day began to puzzle out renor-
malization. Weinberg recounted [1] how students poked fun at the erroneous dismissal
of loop corrections with the quip, “Just because something is infinite does not mean it is zero!”
That story about divergences meant a lot to me when I later encountered skepticism about
large logarithmic loop corrections from inflationary gravitons [2–8] because of the potential
for gauge dependence [9–12]. A procedure for removing gauge dependence is being devel-
oped [13,14], and I intend to channel Big Steve when announcing its success: “Just because
something is gauge dependent does not mean it is zero!”

Weinberg never questioned the reality of large logarithms when he discovered them in
loop corrections to the primordial power spectrum. Quoting from the second of his famous
papers on cosmological correlators [15]:

In generic theories, the N integrals over time in the N-th order perturbation
theory will yield correlation functions at time t that grow as lnN [a(t)]. Such
a power series in ln[a(t)] can easily add up to a time dependence that grows,
such as a power of a(t), or even more dramatically. As everyone knows, the
series of powers of the logarithm of energy encountered in various flat-space
theories, such as quantum chromodynamics, can be summed by the method of
the renormalization group. It will be interesting to see if the power series in
ln[a(t)] encountered in calculating cosmological correlation functions at time t,
though arising here in a very different way, can be summed by similar methods.

Some disagree [16], but I think Big Steve was right about basic physics [17]. I hope he
would appreciate the procedure being devised for implementing the resummation whose
potential he foresaw [18,19].

Everyone who had the privilege of working with Weinberg knows the enthusiasm
he brought to research, and his determination to overcome all obstacles. I well recall
the time he asked me to visit the UT in 2005, in order to consult about his work on loop
corrections to the primordial power spectrum [20]. He had just realized that the in–out
amplitudes of conventional quantum field theory are not the appropriate objects of study
in cosmology because they are dominated by assumptions about the yet-unknown future,
and because even the matrix elements of Hermitian operators are not generally real. I
cannot count the number of times I have grown irritated listening to intellectually dishonest
colleagues attempt to avoid these problems by devising tricks to make the in–out formalism
accomplish something for which it was never intended, and for which it is not well suited.
Not Big Steve. He understood that true expectation values are the better object of study in
cosmology and, not knowing of the Schwinger–Keldysh formalism [21–28], he devised a
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Hamiltonian technique for computing them [20], which is now more commonly used than
Schwinger’s method. Weinberg only learned of Schwinger’s work from his then-student,
Bua Chaicherdsakul, and he of course gave full credit to Schwinger thereafter.

Aside from being blown away by Big Steve having invented his own version of the
Schwinger–Keldysh formalism, the incident I most recall from that visit came during the
morning of my final day. I had gotten up early and was waiting in the hotel before departing
for the airport. The phone rings and who should it be but Steven Weinberg, apologizing for
the early call and asking to discuss a physics issue that had been troubling him. Another
passage from that Clarke novel comes to mind, about the men of the Dawn Ages never
permitting problems to hold them up for very long.

I will close by recalling part of the final e-mail notes we exchanged. I had written to
congratulate him on winning the Breakthrough Prize and to share some sad news about
a mutual friend. That was September of 2020, when the pandemic still dominated our
lives, and I mentioned the travel bans that had kept my wife and me apart for six months.
Weinberg replied:

I am glad that you and your wife are together again. My wife and I are to-
gether, fanatically isolated at home, but both of us getting a lot of work done and
staying safe.

He was 87 at the time! I recall thinking how fine it would be, should I chance to reach that
age, to remain so active and so passionate about physics (I count 17 books and papers
written after he had turned 80 [29–45]). Big Steve was a force of nature; it was a privilege to
have known him.

2. The True Origin of the iε

Weinberg believed that everything about quantum field theory should be derived.
He used the term “folk theorems” to describe commonly accepted beliefs for which no
derivation was currently available. I chose the topic for this article to be a minor but
irritating lacuna in the derivation of propagators from functional formalism. It was a point
Big Steve derived for us back in 1977–1978, which is usually resolved by hand-waving (a
Russian colleague pointed out a similar derivation by Slavnov and Faddeev [46]). I refer
to the famous “iε” part of the Feynman propagator. To make the discussion transparent I
will work in the context of a Simple Harmonic Oscillator whose position is q(t), and whose
dynamics are controlled by the Lagrangian,

L =
1
2

mq̇2 − 1
2

mω2q2 . (1)

The propagator we will use the functional integral formalism to derive is,

i∆(t; t′) ≡
〈

Ω
∣∣∣T[q(t)q(t′)]∣∣∣Ω〉 =

h̄ e−iω|t−t′ |

2mω
, (2)

= lim
ε→0+

h̄
m

∫ ∞

−∞

dk0

2π

ie−ik0(t−t′)

(k0−ω+iε)(k0+ω−iε)
= lim

ε→0+

h̄
m

∫ ∞

−∞

dk0

2π

ie−ik0(t−t′)

(k0)2−ω2+iε
. (3)

Of course, there is absolutely no ambiguity about the canonical derivation, which proceeds
from (2) to (3). The issue is how we would obtain (3) directly from the functional integral
formalism, ⌋⌈

[dq] q(t)q(t′) exp

[
i
h̄

∫ ∞

−∞
ds
{1

2
mq̇2(s)− 1

2
mω2q2(s)

}]
. (4)

The short answer is that it is just not possible. Although expression (4) should result in
some function that obeys the propagator equation,

im
h̄

( d2

dt2 + ω2
)

i∆(t; t′) = δ(t−t′) , (5)
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it is not at all clear how i∆(t; t′) acquires the correct real part from an exponent that is
entirely imaginary. Some QFT texts argue that the iε follows from complex analysis, by the
need to deform the functional integration over q(s) into the complex plane. However, this is
problematic when one considers the four different propagators of the Schwinger–Keldysh
formalism, each of which follows from a separate functional integral. Other texts argue that
the iε has something to do with the temporal integration running from −∞ to +∞, but this
is also problematic when one considers that the free Lagrangian (1) must produce the very
same propagator (3), no matter when the initial and final states are specified. Big Steve had
no patience with this sort of hand-waiving, and he discovered a better explanation.

The key is incorporating the ground state wave function in the functional integral
expression (4). For the simple harmonic oscillator (1), this is

Ω(q) =
[πmω

h̄

] 1
4

exp
[
−mω

2h̄
q2
]

. (6)

Let us also make the range of temporal integration finite, and employ a classical source
J(s),

Z[J] ≡
⌋⌈
[dq]Ω∗

(
q(t f )

)
× exp

[
i
h̄

∫ t f

ti

ds
{1

2
mq̇2(s)− 1

2
mω2q2(s) + J(s)q(s)

}]
Ω
(

q(ti)
)

. (7)

Note that the functional integration in expression (7) only extends over functions q(s) for
ti ≤ s ≤ t f . We should be able to recover the propagator (3) by functionally differentiating
Z[J],

i∆(t; t′) =
(−ih̄)2δ2Z[J]

δJ(t)δJ(t′)

∣∣∣∣∣
J=0

. (8)

Expression (7) is the functional integral of exp[ i
h̄ E[q, J]], with exponent,

E[q, J] =
imω

2
q2(t f ) +

∫ t f

ti

ds
[1

2
mq̇2(s)− 1

2
mω2q2(s) + J(s)q(s)

]
+

imω

2
q2(ti) . (9)

The result of any Gaussian integral is the exponential evaluated at its stationary point. To
find this stationary point, we vary (9), taking care to include the surface variations,

δE[q, J]
δq(t)

= mδ(t−t f )
[
q̇(t f )+iωq(t f )

]
−m

[
q̈(t)+ω2q(t)− J(t)

m

]
−mδ(t−ti)

[
q̇(ti)−iωq(ti)

]
. (10)

Note that the surface variations enforce Feynman boundary conditions, which cannot be
obtained without including the initial and final states. Setting (10) to zero has a unique
solution,

q[J](t) =
i
h̄

∫ t f

ti

dt′ i∆(t; t′)J(t′) . (11)



Symmetry 2023, 15, 856 5 of 12

Partial integration makes it simple to evaluate the exponent (9) at its stationary point,

E
[
q[J], J

]
=

im
2

q(t f )
[
q̇(t f )+iωq(t f )

]
+
∫ t f

ti

dt

{
−1

2
mq(t)

[
q̈+ω2q(t)− J(t)

m

]
+

1
2

q(t)J(t)

}
+

im
2

q(ti)
[
q̇(ti)−iωq(ti)

]
, (12)

=
i

2h̄

∫ t f

ti

dtJ(t)
∫ t f

ti

dt′ J(t′) i∆(t; t′) . (13)

Hence, we conclude,

ln
[

Z[J]
]
= − 1

2h̄2

∫ t f

ti

dtJ(t)
∫ t f

ti

dt′ J(t′) i∆(t; t′) , (14)

which obviously gives the Feynman propagator in expression (8).
The generalization to quantum field theory is straightforward; in making it, I shall

adopt the usual convention of setting h̄ = c = 1. The Lagrangian density of a free scalar
field on flat space with a space-like signature is,

L = −1
2

∂µ ϕ∂µ ϕ− 1
2

m2 ϕ2 . (15)

It seems that the application of quantum field theory brings me back to something else Big
Steve taught us: that all free theories become simple harmonic oscillators in spatial Fourier
coordinates,

ϕ̃(t,~k) ≡
∫

d3x ei~k·~x ϕ(t,~x) . (16)

We can identify each mode’s mass and frequency by using Parseval’s theorem on the
Lagrangian,

L ≡
∫

d3xL =
∫ d3k
(2π)3

{1
2

˙̃ϕ(t,~k) ˙̃ϕ∗(t,~k) +
1
2
(k2+m2)ϕ̃(t,~k)ϕ̃∗(t,~k)

}
. (17)

A comparison with (1) implies the identifications,

ω →
√

k2 + m2 , m −→ d3k
(2π)3 . (18)

Hence, the ground state wave functional is,

Ω
[

ϕ(t)
]
= N exp

[
1
2 ∑

~k

mω ϕ̃(t,~k)ϕ̃∗(t,~k)

]
, (19)

= N exp

[
1
2

∫ d3k
(2π)3 ϕ̃(t,~k)

√
k2 + m2 ϕ̃∗(t,~k)

]
, (20)

= N exp

[
1
2

∫
d3x ϕ(t,~x)

√
−∇2 + m2 ϕ(t,~x)

]
. (21)

3. State Wave Functionals in Cosmology

I hope people will agree that Big Steve’s functional derivation of the iε in the propaga-
tor is far superior to the usual hand-waiving. However, we already knew the answer from
canonical formalism. The real efficacy of state wave functionals becomes evident when
applying the Schwinger–Keldysh formalism to study the time evolution of expectation
values in cosmology.
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3.1. Cosmological Particle Production

Quantum field theory in cosmology is much more interesting than its flat-space cousin
owing to what Schrödinger termed “the alarming phenomena” of particle production
“caused by accelerated expansion” [47–50]. To understand this, consider a homogeneous,
isotropic, and spatially flat geometry with a scale factor a(t), Hubble parameter H(t), and
first slow roll parameter ε(t),

ds2 = −dt2 + a2(t)d~x·d~x =⇒ H(t) ≡ ȧ
a

, ε(t) ≡ − H
H2 . (22)

Students of QFT are familiar with how the energy–time uncertainty principle permits a
virtual particle of energy E =

√
k2 + m2 to exist for a time ∆t <∼ 1/E. The simplest way to

understand many QFT effects is by positing the existence of these virtual particles and then
using the classical field theory, from which it follows that the strongest effects come from
virtual particles with the longest persistence times ∆t. An expanding universe (H > 0)
strengthens the QFT effects because the momentum k redshifts to increase the persistence
time, which is governed by the integral,

∫ t+∆t

t
dt′
√

k2

a2(t′)
+ m2 <∼ 1 . (23)

Just as in flat space, the longest-lived virtual particles are the lightest. Taking the massless
limit gives ∫ t+∆t

t
dt′

k
a(t′)

<∼ 1 . (24)

For accelerated expansion (ε < 1), the integral converges even as ∆t → ∞. Hence, a
sufficiently long wavelength virtual particle can live forever.

Although correct, the preceding discussion fails to account for the rate dN/dt at
which virtual particles emerge from the vacuum. This is very important because almost
all massless particles possess a killer symmetry known as conformal invariance, which
means they cannot tell the difference between a metric gµν(x) and another Ω2(x)× gµν(x).
Changing the time coordinate t of the cosmological geometry (22) to “conformal time” η
with dη ≡ dt/a(t) makes the geometry conformal to flat space,

ds2 = −dt2 + a2d~x·d~x = a2
[
−dη2 + d~x×d~x

]
. (25)

This means that the emergence rate in conformal coordinates is the same as in flat space,

dN
dη

= Γflat =⇒ dN
dt

=
dN
dη
· dη

dt
=

1
a(t)
·Γflat . (26)

Therefore, any massless particle with a sufficiently long wavelength emerges during accel-
erated expansion can exist forever, but very few emerge.

Massless fermions and vector gauge bosons are conformally invariant, and so are
conformally coupled scalars. These particles do not, by themselves, give rise to interesting
effects in cosmology. However, massless, minimally coupled scalars are not conformally
invariant, nor are gravitons, which obey the same linearized equation of motion [51]. On a
de Sitter background (which means ε = 0, H is constant and a(t) = eHt), the occupation
number for a scalar with wave vector~k (or each polarization of a graviton) is staggering,

N(t,~k) =
[Ha(t)

2‖~k‖

]2
. (27)

In addition to the obvious exponential growth, note also that the occupation number only
becomes of order one at horizon crossing, ‖~k‖ ≡ k = Ha(t). This is very important because
it guarantees that cosmological particle production is an infrared effect, which can be
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studied reliably using general relativity as a low-energy effective field theory, without
needing its unknown ultraviolet completion.

The explosive growth evident in expression (27) is the origin of two observables from
the epoch of primordial inflation: the power spectra of gravitons [52] and scalars [53]. In
fact, the occupation number (27) can be expressed in terms of the tensor power spectrum
∆2

h(k), not just for de Sitter (ε = 0) but for general ε < 1,

N(t,~k) −→
π∆2

h(k)
64Gk2 ×a2(t) . (28)

The power spectra are tree-order quantum effects but the quanta from which they derive
must interact with themselves and other particles. In certain cases, these interactions lead
to time-dependent effects that grow as more particles are ripped out of the vacuum.

The choice of vacuum is so contentious in cosmological QFT that I had better explain
how expression (27) was derived. The spatial integral of the Lagrangian density of a
massless, minimally coupled scalar ϕ(t,~x) can be written using Parseval’s theorem, as a
Fourier mode sum of independent harmonic oscillators ϕ̃(t,~k),∫

d3x a3
[1

2
ϕ̇2 − 1

2a2 ‖~∇ϕ‖2
]
=
∫ d3k
(2π)3 a3

[1
2
|ϕ̃|2 − k2

2a2 |ϕ̃|
2
]

. (29)

Each wave vector~k corresponds to an independent harmonic oscillator with time-dependent
mass and frequency,

m(t) −→ d3k
(2π)3×a3(t) , ω(t, k) −→ k

a(t)
. (30)

At any instant, this system is a harmonic oscillator, so we can define the instantaneous
occupation number N by writing the expectation value of its energy as E = ω( 1

2 + N). For
the de Sitter geometry, the mode function u(t, k) is simple and we find,

u(t, k) =
H√
2k3

[
1− ik

aH

]
exp

[ ik
aH

]
=

H√
2k3

[
1 + ikη

]
e−ikη

=⇒ 1
2

a3
[
|u̇|2 + k2

a2 |u|
2
]
=

k
a

[1
2
+
( aH

2k

)2]
. (31)

The mode function (31) is known as the Bunch–Davies vacuum [54–56], and one can see
from the occupation number (27) that it corresponds to a state that was empty in the distant
past when a(t)→ 0.

3.2. Time Dependence in Cosmological QFT

Accelerated expansion changes the cosmological quantum field theory in profound
ways. First, it is nonsense to base the theory on asymptotic scattering experiments. At least
classically, the universe began with a singularity at some finite time, and no one knows
how it will end. Fixtures of flat-space QFT, such as Euclideanization and defining “the
vacuum” as “the unique, normalizable energy eigenstate” come to seem quaint. Instead of
in–out matrix elements between states, which were free at asymptotically early and late
times, we must become accustomed to computing true expectation values in the presence of
states, which are defined at some finite time. Finally, the explosive production of massless,
minimally coupled scalars and gravitons evident in expression (27) implies that we must
expect time-dependent effects as more virtual particles emerge from the vacuum.

Consider a self-interacting scalar field on de Sitter background,

L = −1
2

∂µ ϕ∂ν ϕgµν
√
−g− 1

4
λϕ4√−g . (32)
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The first dimensionally regulated computation I ever conducted on the de Sitter background
was the expectation value of this model’s stress–energy tensor at 1- and 2-loop orders [57,58],

Tµν = ∂µ ϕ∂ν ϕ− 1
2

gµνgρσ∂ρ ϕ∂σ ϕ− 1
4

gµνλϕ4 . (33)

Although the vacuum is not unique, most people work on the Bunch–Davies vacuum,
which we saw from (31) was empty in the distant past. However, cosmological particle
production means that we must release the state at some finite time, which can be taken to
be t = 0, at which point the de Sitter scale factor a(t) = eHt is unity.

Because the state is homogeneous and isotropic, the expectation value takes the perfect
fluid form, 〈

Ω
∣∣∣Tµν(t,~x)

∣∣∣Ω〉 = uµuν×
[
ρ(t)+p(t)

]
+ gµν×p(t), uµ ≡ δ0

µ . (34)

The renormalized result consists of a “simple” part, which grows with time or remains
constant, plus a “complicated” part that falls off exponentially [59],

ρ(t) =
3H2

8πG
+

λH4

(2π)4

{
2 ln2(a) +

13
6

ln(a)− 43
18

+
π2

3

− 3
2a2 − 2

∞

∑
n=4

(n+1)
n2an

}
+ O(λ2) , (35)

p(t) = − 3H2

8πG
+

λH4

(2π)4

{
−2 ln2(a)− 7

2
ln(a) +

5
3
− π2

3

+
1

2a2 −
2
3

∞

∑
n=4

(n−3)(n+1)
n2an

}
+ O(λ2) . (36)

A nice check on accuracy is that (35) and (36) obey conservation, ρ̇ = −3(ρ + p).

3.3. Eliminating the Divergence with the Initial State

In addition to being complicated, the infinite sums actually cause expressions (35) and (36)
to diverge at t = 0, for which a = 1. These divergences have nothing to do with inflationary
particle production. They derive instead from the initial state, which is free despite the interaction.
Similar divergences would occur in flat-space QFT if we had specified the state to be the free
vacuum at some finite time. The cure for these divergences is to correct the initial state. Note
that we do not need the full state; no one is ever going to find the full state wave functional for
an interacting quantum field theory in 3 + 1 dimensions. All we need is the order λ correction;
only this part of the initial state can affect our perturbative results (35) and (36).

It is well to recall how a quartic interaction would change the ground state of a simple
harmonic oscillator (1) in quantum mechanics,

H =
p2

2m
+

mω2q2

2
+

λq4

4
, |Ω〉 = |0〉+

∞

∑
n=1

an|n〉 ⇒ an = −λ〈n|q4|0〉
4nω

+ O(λ2) . (37)

If we release the system at t = 0 in a functional integral over configurations q(t), then its
wave function depends upon the position q0 ≡ q(t = 0). The first order correction is,

Ω1(q0) = −
λ

16m2ω3

[
1− 2mωq2

0

]2
×Ω0(q0) , (38)

where Ω0(q0) is the harmonic oscillator ground state (6).
If we release the QFT state at t = 0 in the functional formalism, then the state wave

functional will depend on ϕ0(~x) ≡ ϕ(t = 0,~x). From the preceding quantum mechanical
discussion, we expect that the order λ correction to Bunch–Davies vacuum Ω0[ϕ0] will
involve zero, two, and four powers of ϕ0. Because the stress tensor operator (33) has
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the form ∂ϕ∂ϕ + λϕ4, only the ∂ϕ∂ϕ part can couple with the order λ state correction to
contribute to the expectation value at order λ. If this contribution is to depend on the time
t at which the stress tensor is evaluated, it must couple with the order λ state correction
involving two powers of ϕ0. Homogeneity and isotropy then imply a correction of the
form,

Ω1[ϕ0] =
λH
2

∫ d3k
(2π)3 F

( k
H

)∣∣∣ϕ̃0(~k)
∣∣∣2 ×Ω0[ϕ0] . (39)

A straightforward calculation reveals that the kernel is [59],

F(x) =
ie2ix

32π2(1+ix)2

{
e−2ix − x3

∫ ∞

x

dz
z4 e−2iz

[
1 + 2 ln

( z
x

)]}
. (40)

The corrected energy density and pressure are free of both divergences and exponentially
falling contributions,

ρnew =
3H2

8πG
+

λH4

(2π)4

{
2 ln2(a) +

13
6

ln(a)− 43
18

+
π2

3

}
+ O(λ2) , (41)

pnew = − 3H2

8πG
+

λH4

(2π)4

{
−2 ln2(a)− 7

2
ln(a) +

5
3
− π2

3

}
+ O(λ2) . (42)

3.4. Can We Absorb the Logarithms?

The factors of ln(a) = Ht in expressions (41) and (42) derive from inflationary particle
production. There are two such factors because the expectation value of the ϕ4 part of
the stress tensor (33) involves two coincident propagators, each of which contributes a
ln(a) [60–62], 〈

Ω0

∣∣∣ϕ2(t,~x)
∣∣∣Ω0

〉
= UV Divergence +

H2

4π2 ln(a) . (43)

The physical way of understanding this is that inflationary particle production forces the
scalar further up its potential.

Higher loop corrections involve even more factors of ln(a). At order λN , there can be up
to 2N factors of ln(a) [63]. Starobinsky has inferred a stochastic formalism [64], which can
be proven to reproduce the leading logarithms at each order in perturbation theory [63]. In
cases such as this model (32), where a time-independent limit is approached, Starobinsky’s
technique can even be used to find this limit [65],〈

Ω
∣∣∣Tµν(t,~x)

∣∣∣Ω〉 −→ 3H4

32π2 gµν . (44)

The physical picture is that inflationary particle production pushes the scalar up its potential
until an equilibrium is reached with the classical downward force. That equilibrium
corresponds to a particular state wave functional; if the system were released in this state,
there would be no time dependence.

Some people invoke the existence of an equilibrium state to argue that inflationary
particle production is somehow not real, or else does not induce time dependence in QFT.
This shows the same level of disingenuity as denying the inflationary origin of primordial
perturbations because one could obtain identical results by starting with a state that has
exactly the desired pattern of correlations. However, the anti-time dependence position
becomes completely untenable when one considers models for which no static limit is
approached. Although scalar quantum electrodynamics approaches a static limit [66],
a Yukawa-coupled massless, minimally coupled scalar does not [67]. Nonlinear sigma
models also show large logarithms [63,68–70], and some of these models do not approach a
static limit [18,19].
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Nonlinear sigma models are interesting in that capturing their large logarithms re-
quires a variant of the renormalization group in addition to a variant of Starobinsky’s
stochastic formalism [18,19]. This is because their interactions involve derivatives, unlike
the ϕ4 interaction of the scalar model (32). Quantum gravity also involves derivative
interactions and its large inflationary logarithms [3–8,71] are not completely captured by
Starobinsky’s stochastic formalism [72]. I suspect that combining Starobinsky’s formalism
with a variant of the renormalization group will suffice [6], as it did for nonlinear sigma
models, but that remains to be proven. It is not known if the large logarithms of quantum
gravity add up to approach a static limit.

4. Conclusions

Steven Weinberg dominated high-energy particle theory for decades and inspired
generations of physicists. I was fortunate to be among them. Two of the things I most
admired about Weinberg were his refusal to accept dogma and his willingness to take risks.
In addition to sharing some reminiscences, I have here discussed a topic that illustrates
both of those characteristics: the role of state wave functionals in quantum field theory.

State wave functionals are the correct way to derive the iε of the Feynman propagator
from the flat-space functional formalism. They assume a larger role in cosmological QFT
because one must specify states at finite time, and because inflationary particle production
sometimes injects secular growth into expectation values, the potential for which Weinberg
discovered in the scalar power spectrum [15]. Perturbative corrections to the free vacuum
state are necessary to remove divergences on the initial value surface [59], which leaves
large logarithms from inflationary particle production. Weinberg realized the importance
of resuming these logarithms [15]. In some cases, they can be summed to produce a static
limit, which can be subsumed into a highly nonlinear state wave functional [65]. For other
models, time dependence persists forever [18,19] and one is tempted to wonder if some
otherwise curious features of late-time cosmology might be explained as residual QFT
effects [73,74]. Wherever he is now, Big Steve would love that.
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